説明

トラクタ

【課題】廉価な構成で精度の良いPM堆積量を予測するディーゼルエンジンを搭載したトラクタを提供すること。
【解決手段】排気ガス中の粒状化物質(PM)を捕集するディーゼルパティキュレートフィルタ(46b)を備えたディーゼルエンジンを搭載したトラクタにおいて、燃料を噴射しない状態でエンジンをクランキングし、このクランキングエンジン回転数が安定するとDPF(46b)前後の圧力を圧力センサ(58,53)で検出して差圧を求め、この差圧からDPF(46b)内に堆積しているPM量を求める第2予測手段(L2)をECU(100)内に構成したことを特徴とするトラクタの構成とする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、ディーゼルパティキュレートフィルタ(DPF)備えたディーゼルエンジンを搭載したトラクタに関する。
【背景技術】
【0002】
ディーゼルパティキュレートフィルタ(DPF)を再生する場合、DPF内に溜まる煤の量を予測するにあたり、燃料中の炭化水素含有量を検出してPM堆積量を予測する構成である(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2005−2817号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
前述のような技術では、燃料中の炭化水素含有量を検出するシステムがコスト高となる。また、このシステムの搭載場所も考慮しなくてはならない。
【0005】
本発明の課題は、前述のような不具合を解消して、精度の良いPM堆積量を予測するディーゼルエンジンを搭載したトラクタを提供することである。
【課題を解決するための手段】
【0006】
本発明の上記課題は次の構成によって達成される。
【0007】
すなわち、請求項1記載の発明では、排気ガス中の粒状化物質(PM)を捕集するディーゼルパティキュレートフィルタ(46b)を備えたディーゼルエンジンを搭載したトラクタにおいて、燃料を噴射しない状態でエンジンをクランキングし、このクランキングエンジン回転数が安定するとDPF(46b)前後の圧力を圧力センサ(58,53)で検出して差圧を求め、この差圧からDPF(46b)内に堆積しているPM量を求める第2予測手段(L2)をECU(100)内に構成したことを特徴とするトラクタとしたものである。
【0008】
請求項2記載の発明では、排気ガス中の粒状化物質(PM)を捕集するディーゼルパティキュレートフィルタ(46b)を備えたディーゼルエンジンを搭載したトラクタにおいて、機体の任意の位置に空気ポンプ(69)を設け、該空気ポンプ(69)からの配管をDPF(46b)の上流側に接続し、電源が入り状態でエンジン停止中に前記空気ポンプ(69)でDPF(46b)の上流側に空気を送り、このときのDPF(46b)の前後の圧力を圧力センサ(58,53)で検出して差圧を求め、この差圧からDPF(46b)内に堆積しているPM量を求める第3予測手段(L3)をECU(100)内に構成したことを特徴とするトラクタとしたものである。
【0009】
請求項3記載の発明では、燃料噴射量と経過時間からDPF(46b)内に堆積するPMの量を予測する第1予測手段(L1)をECU(100)内に構成したことを特徴とする請求項1又は請求項2に記載のトラクタとしたものである。
【発明の効果】
【0010】
本発明は上述のごとく構成したので、請求項1及び請求項2記載の発明においては、DPF46b内に堆積しているPM量の予測が精度良く可能となる。
【0011】
請求項3記載の発明においては、機体が作業走行している状態でPM量を予測して再生できる。
【図面の簡単な説明】
【0012】
【図1】蓄圧式燃料噴射装置の全体構成図
【図2】制御モードによるエンジン回転数と出力トルクの関係を示す線図
【図3】トラクタの左側面図
【図4】トラクタの平面図
【図5】吸気系と排気系の模式図
【図6】PM量予測のブロック図
【図7】DPFの排気系の模式図
【図8】エンジンの性能図
【図9】DPFの排気系の模式図
【図10】DPFの排気系の模式図
【図11】農業用建屋の模式図
【図12】始動時のフローチャート図
【図13】発進時のフローチャート図
【発明を実施するための形態】
【0013】
本発明を実施するための最良の形態を説明する。
【0014】
なお、後述する各実施例は、理解を容易にするために、個別または混在させて図示、あるいは説明しているが、これらは夫々種々組合せ可能であり、これらの説明順序・表現等によって、構成・作用等が限定されるものではなく、また、相乗効果を奏する場合も勿論存在する。
【0015】
図1は、蓄圧式燃料噴射装置の全体構成図である。蓄圧式燃料噴射装置は、例えば、多気筒ディーゼル機関に適用されるものであるが、ガソリン機関でもよい。そして、蓄圧式燃料噴射装置は、噴射圧力に相当する高圧燃料を蓄圧するコモンレール1と、このコモンレール1に取り付けられる圧力センサ2と、燃料タンク3より汲み上げた燃料を加圧してコモンレール1に圧送する高圧ポンプ4と、コモンレール1に蓄圧された高圧燃料をエンジンEのシリンダー5内に噴射する燃料噴射ノズル6と、前記高圧ポンプ4と燃料噴射ノズル6等の動作を制御する制御装置(ECU)等から構成される。ECUとは、エンジンコントロールユニットの略称である。
【0016】
このように、コモンレール1は、エンジンEの各シリンダー5へ燃料を噴射するものであり、燃料供給を要求された圧力とするものである。
【0017】
前記燃料タンク3内の燃料は吸入通路により燃料フィルタ7を介してエンジンEで駆動される高圧ポンプ4に吸入され、この高圧ポンプ4によって加圧された高圧燃料は吐出通路8によりコモンレール1に導かれて蓄えられる。
【0018】
コモンレール1内の高圧燃料は各高圧燃料供給通路9により気筒数分の燃料噴射ノズル6に供給され、ECU100からの指令に基づき、各シリンダーに燃料噴射ノズル6が作動して、高圧燃料がエンジンEの各シルンダー5室内に噴射供給され、各燃料噴射ノズル6での余剰燃料(リターン燃料)は各リターン通路10により共通のリターン通路10へ導かれ、このリターン通路10によって燃料タンク3へ戻される。
【0019】
また、コモンレール1内の燃料圧力(コモンレール圧)を制御するため高圧ポンプ4に圧力制御弁11が設けられており、この圧力制御弁11はECU100からのデューティ信号によって、高圧ポンプ4から燃料タンク3への余剰燃料のリターン通路10の流路面積を調整するものであり、これによりコモンレール1側への燃料吐出量を調整してコモンレール圧を制御することができる。
【0020】
具体的には、エンジン運転条件に応じて目標コモンレール圧を設定し、レール圧力センサ2により検出されるコモンレール圧が目標コモンレール圧と一致するよう、圧力制御弁11を介してコモンレール圧をフィードバック制御する構成としている。
【0021】
作業車(農作業機)におけるコモンレール1を有するディーゼルエンジンEのECU100は、図2に示すように、回転数と出力トルクの関係において走行モードAと通常作業モードB及び重作業モードCの三種類の制御モードを有する構成としている。
【0022】
走行モードAは、エンジン回転数の変動で出力も変動するドループ制御である。農作業を行わず移動走行する場合に使用するものである。例えば、ブレーキを掛けて走行速度を減速したり停止したりすると、この走行負荷の増大に伴ってエンジン回転数が低下するため走行速度の減速や停止を安全に行うことができるものである。
【0023】
通常作業モードBは、負荷が変動してもエンジン回転数が一定で出力を負荷に応じて変更するアイソクロナス制御である。通常の農作業を行う場合に使用するものである。例えば、トラクターであれば耕耘作業時に耕地が固く耕耘刃に抵抗が掛かるときであり、コンバインであれば収穫作業時に収穫物が多く負荷が増大したときでも、出力が変動して回転数を維持するときである。
【0024】
重作業モードCは、通常作業モードBと同様に負荷が変動してもエンジン回転数一定で出力を負荷に応じて変更するアイソクロナス制御に加え、負荷限界近くになると回転数を上昇させて出力を上げる重負荷制御を加えた制御である。特に、負荷限界近くで農作業を行う場合に使用するものである。例えば、トラクターで耕耘作業を行っている際に、特に、固い耕地に遭遇してもエンジン出力が通常の限界を越えて増大するので作業を中断することがなく、効率の良い作業が可能となる。
【0025】
これらの作業モードA,B,Cは、各作業モードA,B,Cを切り替え可能な作業モード切替スイッチの操作、又は農作業車(トラクター、コンバイン、田植機等)の走行変速レバーの変速操作、又は作業クラッチ(トラクターであればロータリであり、コンバインであれば刈取部、脱穀部である)の入り切り操作等によって切り替わるように構成する。
【0026】
ディーゼルエンジンEでは、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、着火遅れを短縮してディーゼルエンジンE特有のノック音を低減し、騒音を低減することが可能な構成としている。
【0027】
このパイロット噴射は、メイン噴射の前に1回又は2回に限定して行われるものであったが、前記コモンレール1の蓄圧式燃料噴射装置を用いることで、エンジンEの状況に応じてパイロット噴射の状態を変化させ、騒音の低減や不完全燃焼による白煙又は黒煙の発生を抑制できるようになる。また、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、排ガス中の窒素酸化物の量が減少するようになる。
【0028】
図3は、前述のようなコモンレール1を有するディーゼルエンジンを搭載したトラクターの側面図を示し、図4はその平面図を示している。平面図においては、図3に示すキャビン14を省いた状態を示している。
【0029】
トラクターは、機体の前後部に前輪12、12と後輪13、13を備え、機体の前部に搭載したエンジンEの回転動力をトランスミッションケースT内の変速装置によって適宜減速して、これら前輪12、12と後輪13、13に伝えるように構成している。
【0030】
機体中央であってキャビン14内のハンドルポスト15にはステアリングハンドル16が支持され、その後方にはシート17が設けられている。ステアリングハンドル16の下方には、機体の進行方向を前後方向に切り換える前後進レバー18が設けられている。この前後進レバー18を前側に移動させると機体は前進し、後方へ移動させると後進する構成である。
【0031】
また、ハンドルポスト15を挟んで前後進レバー18の反対側にはエンジン回転数を調節するアクセルレバー25が設けられ、またステップフロア19の右コーナー部には、同様にエンジン回転数を調節するアクセルペダル23と、左右の後輪13、13にブレーキを作動させる左右のブレーキペダル24L、24Rが設けられている。ステップフロア19の左コーナー部にはクラッチペダル20が設けられている構成である。
【0032】
また、主変速レバー26はシート17の左前方部にあり、低速、中速、高速及び中立のいずれかの位置を選択できる副変速レバー27はその後方にあり、さらにその右側にPTO変速レバー28を設けている。さらに、シート17の右側には作業機21(ロータリ等)の高さを設定するポジションレバー29と圃場の耕耘深さを自動的に設定する自動耕深レバー30、これらのレバーの後に作業機21の右上げスイッチ31と右下げスイッチ32が配置され、さらにその後に作業機21の自動水平スイッチ33とバックアップスイッチ34が配置されている。バックアップスイッチ34は、機体が後進時において、作業機21を自動的に上昇させるものである。作業機21は、機体の後方にリンク22で連結されている構成である。トラクターは作業機21を駆動させて機体を走行させることで、圃場内の耕耘等の作業を行なうものである。21aは作業機21を昇降する油圧シリンダーである。
【0033】
図5はエンジンのシリンダー5内への吸気と排気の模式図であり、4サイクルのディーゼルエンジンの実施例である。過給器TBの吸気タービン36により過給された空気は、エアクリーナー35から吸気タービン36、インタークーラー37を通過して吸気マニホールド38からシリンダー5内へ送られる構成である。39は吸気バルブであり、40はピストンである。48はカムでありロッカーアーム49を介して吸排気バルブ39、41を開閉させるものである。
【0034】
シリンダー5内で燃焼した排ガスは、排気バルブ41から排気マニホールド42を通過した後、過給器TBの排気タービン45で過給器TBを駆動して排出される構成である。
【0035】
このディーゼルエンジンは、排気ガスの一部を吸気側に混入させるためのEGR(排気再循環装置)回路44を有している。EGR回路で排気ガスの一部を吸気側に混入させることで酸素量(O2)を減らして、窒素酸化物Noxの発生を低減させるように構成している。ただし、EGR率が上昇しすぎると、逆に酸素量が少なくなって不完全燃焼になるので、燃焼状態によりEGR率を調節する必要がある。この調節は、EGRバルブ43にて行う。EGR回路44は、後述する後処理装置46下流側の排気管55と過給器TBの吸気タービン36上流側の吸入管56との間を接続している。また、EGR回路44の途中にはEGRクーラ57を設ける構成としている。このEGRバルブ43の開閉具合でシリンダー5内への排気ガスの還元量が変化する。
【0036】
排気タービン45を通過後の排気ガスは、後処理装置46を通過してマフラー50から大気中に排出される。後処理装置46は、酸化触媒(DOC)46aとディーゼルパティキュレートフィルター(DPF)46bとから構成されている。
【0037】
酸化触媒(DOC)は不燃物室を燃焼させるものであり、ディーゼルパティキュレートフィルター(DPF)は粒状化物質(PM)を捕集するためのものである。前記EGRバルブ43と絞り弁47については、ECU100により制御される構成である。後処理装置46はディーゼルパティキュレートフィルター(DPF)46bのみで構成してもよい、酸化触媒(DOC)を設けると不燃物質が燃焼するので、よりクリーンな排気ガスとなる。
【0038】
DPF46bは、排気ガスの温度が低い状態(低負荷)が長時間続くと、PMが溜まってきて能力の低下が懸念される。そこで、後処理装置46の下手側に絞り弁47を設け、この絞り弁47を絞るとDPF46b内の圧力が高く保持されるので温度も高くなる。これにより、高い温度の影響により、DPF46bの再生が可能となる。即ち、高い温度の排気ガスがDPF46bを通過すると、DPF46b内に存在しているPMが焼き飛ばされることでDPF46bが再生される。
【0039】
DPF46bを再生させるためのDPF再生運転としては、EGRバルブ43と絞り弁47の両方を絞る。そして、燃料噴射タイミングのリタード(遅角)と合わせてDPF46b内のガス温度を上昇させ、DPF46bが再生に入るようにする。これにより、燃料のアフター噴射(排気ガス温度を上昇させるため)が不要となったり、アフター噴射の回数を減らすことができるようになるので、燃料消費量を抑制できて環境にもよい。
【0040】
このようなDPF再生運転を行うための条件としては、後処理装置46の上手側に圧力センサ52を設け、後処理装置46の下手側にも圧力センサ53を設け、この圧力差が所定値以上になるとDPF46b内にPMが蓄積して抵抗となっている状態なので、DPF再生運転を行うようにする。また、圧力センサ52の替わりにDOC46aとDPF46bとの間に圧力センサ58を設ける構成としてもよい。
【0041】
また、DPF再生運転に入った状態が長時間続くと、過熱状態となってしまいDPF46bが損傷してしまう。そこで、後処理装置46の下手側に温度センサ59を設け、この温度センサ59の値が所定値を超えるとDPF再生運転を止めて通常運転に戻るようにする。
【0042】
通常の運転は、EGRバルブ43と絞り弁47を同時に制御してEGR量を適宜コントロールするようにする。特に、絞り弁47を有することで、DPF46b内のガス温度を高く保持することができるようになる。
【0043】
前述のような構成としたことで、吸気スロットルが不要となる。即ち、過給器付き機関では吸気側圧力が高いので、EGRガス量を確保するために排気絞り弁または吸気スロットルを設け、EGRバルブと連動した制御が必要となるが、このようなシステムが不要となる。
【0044】
また、DPF46b下流の排気ガスを取り出すために、過給器TBの汚れに伴う性能劣化を生じることを防止できるようになる。そして、EGRガスはEGRクーラ57で冷却されるため、NOx低減に対して効果が大きくなる。
【0045】
前述したように、DPFの再生運転を行なうDPF強制再生モードにおいては、排気絞り弁47を絞り、ON−OFF制御によってEGRバルブ43を全閉とするように構成する。したがって、排気ガスの還元が行なわれないのでNOが増加し、このNOが酸化触媒(DOC)46aによってNO2に転換され、DPF46bの再生が促進されるようになる。
【0046】
また、DPF46bの強制再生中において、エンジン回転がローアイドルに移行した場合は、前記EGRバルブ43を全開とする。DPF46bの下流側には温度センサ59を設けているので、この温度センサ59による検出値が所定値以上に上昇したことも条件に加えるようにしてもよい。
【0047】
前記絞り弁47を絞ってDPF46bの強制再生を行なう場合において、エンジン回転数を低い回転数にして供給酸素量を増加させるとともに、排気ガス流速が減少することで温度を上昇しやすくしていた。ところが、再生中にエンジン回転数がローアイドルまたはその近傍に変更された場合、供給酸素量の増加と流速の減少により、煤が急速に燃焼してしまう。その結果、温度が急速に上昇してDPF46bが損傷してしまう可能性がある。そこで、最高温度が許容温度を超えないようにする煤を管理する必要がある。
【0048】
このために、温度センサ59が所定値を超えると、エンジン回転数を中速域まで上昇させるように構成する。これにより、排気ガスの流速が速くなるので最高温度が下がり、DPF46bの損傷を防止できるようになる。また、前記温度センサ59の所定値の値を限界値近傍で制御すると、DPF46bの再生を効率よく行なうことができるようになる。
【0049】
前記エンジン回転数を中速域まで上昇させるにあたり、一旦最高回転数まで上昇させ、その後中速域まで減速させるように構成してもよい、これにより、一旦排気ガスが最高速度で流れるので、予熱などでDPF46bが加熱されてしまって閾値の温度を超えてしまうことを防止できるようになる。
【0050】
また、DPF46bの強制再生中において、前述のようにエンジン回転数をローアイドルに移行するときにおいて、ポスト噴射を中断し、その後エンジン回転数を最高回転数まで上昇させ、中速域に移行する段階でポスト噴射を再開する構成とする。これにより、排気ガス温度の急激な上昇が抑制できるので、DPF46bの損傷を防止できるようになる。
【0051】
DPF46b前後の差圧が所定値以上になった場合、作業後に運転者がDPF46bの再生モードを選択スイッチ67で選択することで、自動でDPF46bの再生を行い、DPF46b再生後は自動でエンジンを停止するように構成する。DPF46b前後の差圧を圧力センサ58、53で監視する。エンジン停止直前のDPF46b前後差圧が所定値以上であると、警告ランプやアラームで報知し、運転者は自らDPF46bの再生を行なうスイッチ(図示せず)を操作する。
【0052】
そして、エンジンキーが切りの位置になっても、前記再生モードを選択していることで、エンジンはアイドリング状態で回転を維持し、DPF46bの再生を実行する。DPF46b前後の差圧が所定値以下になると、エンジンを自動で停止する。
【0053】
これにより、作業終了後であっても自動でDPF46bの再生、エンジン停止が可能となるために、運転者は本機から離れて他の作業ができるようになる。
【0054】
DPF46bの再生を行なうときには、図5に示すように、吸気側の空気を管路61からDPF46bの上流側に送るように構成してもよい。即ち、DPF46bの再生を行なうときには、バルブ60を開いて酸素量の多い過給器TB上流側の吸気側の空気をDPF46bの上流側に送るように構成してもよい。これにより、再生効率が向上するようになる。
【0055】
また、DPF46bの温度を温度センサ62、59で監視し、3段階のステップで再生時の昇温を確認するようにしてもよい。まず、吸気の絞り(図示せず)を行い、この吸気の絞り状態での昇温確認を行う。次に、第一ポスト噴射を行って昇温を確認する。この時点で、DPF46bの前後温度が250度に達していなければ第二ポスト噴射を行っても更なる温度上昇は見込めないので、一旦再生を中断するようにする。もちろん、250度以上であれば第二ポスト噴射を行ってDPF46bの再生を行なうようにする。
【0056】
図5に示しているように、DPF46bの下流側には空燃比センサ63を設けている。ポスト噴射を行なってDPF46bの再生を行なう場合、燃料噴射量が多くなりすぎると燃費が悪化し、少ないと温度が上昇しなくて再生ができなくなる。そこで、空燃比センサ63の値をECU100にフィードバックして噴射量を決める構成とする。これにより、適切な燃費となるとともに、DPF46bが再生可能となる。また、前記空燃比センサ63の替わりに吸気マニホールド内の圧力値をフィードバックするように構成してもよい。
【0057】
図6に示すように、ECU100内にはDPF46b内のPM堆積量を予測するPM堆積第1予測手段L1を備えている。これは、燃料噴射量(エンジン回転数)と経過時間からDPF46b内に堆積するPMの量を予測するものである。しかしながら、この第1予測手段L1は正確ではなく、エンジン負荷変動等により誤差が生じてくる。
【0058】
そこで、燃料を噴射しない状態(エンジンを意図的に始動しない状態)でエンジンをクランキングし、このときのDPF46b前後の圧力を圧力センサ58,53で検出して差圧を求める。エンジン回転数が安定すると、この差圧からDPF46b内に堆積しているPM量を求める。このPM量の値は、今現在の差圧を検出しているので前記第1予測手段L1から求めるよりも正確である。
【0059】
具体的な求め方としては、横軸を差圧とし、縦軸をPM量とした第2予測手段L2をECU100内に記憶させており、この第2予測手段L2から求める。この第2予測手段L2から求めた値と前記第1予測手段L1から求めた値とを比較し、略同じであるときには、第2予測手段L2又は第1予測手段L1のいずれかの値を制御等に用いる。
【0060】
一方、第2予測手段L2から求めた値と前記第1予測手段L1から求めた値が違う(所定値以上の差)ときには、第2予測手段L2の値を使用する。
【0061】
ただし、第2予測手段L2の値はエンジンを運転しないクランキングさせたときの状態であるので、実際にエンジン運転中では判断できない。実際にエンジン運転中におけるDPF46bの自動再生実行の判断等については、第1予測手段L1で行なう。第2予測手段L2の値は、運転前や運転後においてPM量値を精度良く知りたいときに使用する。そして、手動再生実行の判断等に利用する。
【0062】
これにより、手動再生実行時における過剰な再生運転による余分な燃料消費を抑制でき、オイル希釈等の問題も少なくなる。
【0063】
前記第1予測手段L1からPM堆積量を求めるにあたり、差圧とともにエンジン温度による補正を行なう構成とする。特に、エンジン温度が高い場合には、重負荷運転後が考えられる。重負荷運転すると、排気ガス温度も上昇するので、DPF46b内のPMが焼き飛ばされており、PM堆積量は少なめになっている。そこで、温度補正手段H1で補正するが、エンジン温度が所定値以上の状態が所定時間続くことで、PM堆積量を所定割合減算することにする。これにより、PM堆積量を精度良く検出可能となるので、過剰な再生運転による余分な燃料消費やオイル希釈を防止できるようになる。
【0064】
前記第2予測手段L2からPM堆積量を求めるにあたり、エンジン回転数とDPF46b前後の圧力差圧の変動傾向(微分値)からPM堆積量を補正する構成としてもよい。
【0065】
DPF46b内の許容しうるPM堆積量の最大値は予め決められているが、アイドリング回転数を高くすることで排出ガスが多くなり、PMが燃焼することがある。そこで、アイドリング回転数を高く変更した場合には、PMの許容堆積量の上限を上げることで、DPF46bの再生頻度を下げることができる。また、アイドリング回転数を高く変更する場合においては、DPF46bの手動再生領域に入るときがよい。手動再生領域に入ると、基本的には作業を中断して再生する必要が出てくるが、アイドリング回転数を高く変更することで、作業を続行可能となる。また、作業者の好みにより、設定した閾値を超えた場合にアイドリング回転数を高く変更するように構成してもよい。
【0066】
DPF46bの前後差圧の高精度測定、即ちPM堆積量を精度良く検出する他の方法を図7で説明する。
【0067】
機体の任意の位置に空気ポンプ69を設け、この空気ポンプ69からの配管70をDPF46bの上流側に接続する構成とする。
【0068】
エンジン停止中(電源入り)において、空気ポンプ69でDPF46bの上流側に空気を送り、このときのDPF46bの前後差圧を圧力センサ58,53で測定する。このときの差圧からDPF46b内に堆積しているPM量を第3予測手段L3で予測する構成とする。この第3予測手段L3においては、実験等で予め測定したデータを記憶させておく構成とする。
【0069】
これにより、DPF46b内のPM量を精度良く検出可能となり、無駄なDPF再生と燃料消費を抑制可能となる。
【0070】
図8は横軸がエンジン回転数で縦軸が出力の性能曲線S1を示しており、この中に等燃費曲線S2と等排気温度線S3を示している。DPF46bを通常運転中に再生(自動再生)させる場合において、同じ出力を発生する運転条件でもより排気温度の高いポイントへ自動的に移行(P→Q)する構成とする。さらに、この移行時には、燃費も考慮する(等燃費曲線S2)構成とする。これにより、DPF46bの再生が効率良く可能となり、燃料消費も従来の自動再生に比べて抑制可能となる。
【0071】
図9はDPF46bの上流側に配置している酸化触媒46aを、上流側酸化触媒46a1と下流側酸化触媒46a2に分割する構成である。上流側の酸化触媒46a1に貴金属を多く担持し、活性化温度は200度Cとする。下流側の酸化触媒46a2は貴金属の担持を少なくし、活性化温度は250度Cとする。
【0072】
強制再生時、排気ガスに含まれる未燃燃料が上流側酸化触媒46a1と下流側酸化触媒46a2に付着する。排気ガス温度が200度Cになると、上流側の酸化触媒46a1内で燃料が酸化反応し、排気ガス温度を上昇させる。上流側の酸化触媒46a1の酸化熱で排気ガス温度が上昇し、これにより下流側の酸化触媒46a2が暖められ、下流側の酸化触媒46a2でも酸化反応が始まる。
【0073】
このように、貴金属担持量の異なる2種類の酸化触媒を配置することにより、1個の酸化触媒を配置する場合に比べて、使用する貴金属量を増やすことなく、酸化触媒の排気ガス処理性能を改善可能となる。
【0074】
図10は図9の変形例であり、矢印は排気ガスの流れを示している。上流側の酸化触媒46a1の外周に下流側の酸化触媒46a2を同軸に配置する構成とする。このような構成は、酸化触媒の長さを短くするのに有効である。
【0075】
図11の71は農業用建屋であり、屋根にソーラーパネル72を搭載している。農業用建屋71は蓄電システム73を有している。昼間に発電した電力は蓄電システム73に蓄電し、余った電力は電力会社に売電する。夜間については、蓄電システム73に蓄電した電力を利用する。例えば、農業用建屋71内で植物の栽培に必要な照明に利用する。また、トラクタ等の農業機械を農業用建屋71内に収納しているときは、蓄電システム73でヒータ74を加熱し、この熱でトラクタ等に搭載しているDPF46bを暖めて再生を行うことに利用する。これにより、低コスト農業が可能となる。
【0076】
図12のフローチャートは、DPF付きエンジンの始動時燃料噴射量制御に関するものである。始動時のエンジンの角加速度を判別して、角加速度が上昇している場合は始動時噴射量を少なくする。角加速度に変化が無い場合は、閾値まで始動時噴射量を増大する構成とする。
【0077】
これにより、始動時黒煙が減少することでPM排出量が低減し、DPFへのPM堆積量を低減可能となる。
【0078】
図13は発進時の噴射制御のフローチャートである。DPF搭載のトラクタ等の農業機械において、ローアイドル回転以下のエンジン回転数検出、あるいは一定以上のエンジン回転加速度変化を検知すると、アフター噴射を追加する。前述した、ローアイドル回転以下のエンジン回転数検出から外れたり、あるいは一定以上のエンジン回転加速度変化の検知から外れると、所定時間後(例えば5秒後)にアフター噴射を停止する構成とする。
【0079】
これにより、ローアイドル回転以下のエンジン回転数(発進時)やエンジン回転が加速される状況にある場合、排出されるPM量は急激に増加してしまうが、このときにPM低減に効果があるアフター噴射を追加することでPM排出量が低減し、DPFの早期詰まりを防止できるようになる。
【符号の説明】
【0080】
PM 粒状化物質
L1 第1予測手段
L2 第2予測手段
L3 第3予測手段
46b ディーゼルパティキュレートフィルタ(DPF)
53 後圧力センサ
58 前圧力センサ
69 空気ポンプ
70 配管
100 ECU

【特許請求の範囲】
【請求項1】
排気ガス中の粒状化物質(PM)を捕集するディーゼルパティキュレートフィルタ(46b)を備えたディーゼルエンジンを搭載したトラクタにおいて、燃料を噴射しない状態でエンジンをクランキングし、このクランキングエンジン回転数が安定するとDPF(46b)前後の圧力を圧力センサ(58,53)で検出して差圧を求め、この差圧からDPF(46b)内に堆積しているPM量を求める第2予測手段(L2)をECU(100)内に構成したことを特徴とするトラクタ。
【請求項2】
排気ガス中の粒状化物質(PM)を捕集するディーゼルパティキュレートフィルタ(46b)を備えたディーゼルエンジンを搭載したトラクタにおいて、機体の任意の位置に空気ポンプ(69)を設け、該空気ポンプ(69)からの配管(70)をDPF(46b)の上流側に接続し、電源が入り状態でエンジン停止中に前記空気ポンプ(69)でDPF(46b)の上流側に空気を送り、このときのDPF(46b)の前後の圧力を圧力センサ(58,53)で検出して差圧を求め、この差圧からDPF(46b)内に堆積しているPM量を求める第3予測手段(L3)をECU(100)内に構成したことを特徴とするトラクタ。
【請求項3】
燃料噴射量と経過時間からDPF(46b)内に堆積するPMの量を予測する第1予測手段(L1)をECU(100)内に構成したことを特徴とする請求項1又は請求項2に記載のトラクタ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2013−96294(P2013−96294A)
【公開日】平成25年5月20日(2013.5.20)
【国際特許分類】
【出願番号】特願2011−239296(P2011−239296)
【出願日】平成23年10月31日(2011.10.31)
【出願人】(000000125)井関農機株式会社 (3,813)
【Fターム(参考)】