説明

バーナ装置及びガスタービンエンジン及びコジェネレーションシステム

【課題】メイン燃焼用流路A1及びパイロット燃焼用流路A2に燃料ガスGを供給して燃焼させるバーナ装置において、燃料ガスGを供給するガス供給手段を大掛かりにする必要もなく、簡便な装置としながら燃料ガスGを確実に混合させることができ、NOx発生量を少なくすることを目的とする。
【解決手段】メイン燃焼用流路A1内に燃料ガスGを供給するための第1供給口5が、メイン燃焼用流路A1において、酸素含有ガスAの流れ方向に直交する方向よりも酸素含有ガス流れ方向の上流側に向かって燃料ガスGを噴出する姿勢に設けてある。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、第2流路を規定する内筒と、前記内筒を外囲する第1流路を規定する外筒とを備え、前記第1流路及び前記第2流路に空気(酸素含有ガスの代表例)を供給するための空気供給手段(酸素含有ガス供給手段の代表例)と、前記第1流路及び前記第2流路にガス流路の燃料ガスを供給するガス供給手段とを備え、前記第1流路及び前記第2流路の何れか一方をメイン燃焼用流路とし、他方をパイロット燃焼用流路として、前記メイン燃焼用流路及びパイロット燃焼用流路に燃料ガスを供給して燃焼させるバーナ装置、及びそのバーナ装置を備えたガスタービンエンジン、及びそのガスタービンエンジンを備えたコジェネレーションシステムに関する。
【背景技術】
【0002】
上記のバーナ装置は、コジェネレーションシステムにおけるガスタービンエンジンのバーナ装置や、焼却炉のバーナ装置等として利用される。このバーナ装置は、燃焼負荷の増減に応じて、メイン燃焼用流路及びパイロット燃焼用流路に供給する燃料ガスの流量を、メイン燃焼用流路及びパイロット燃焼用流路における当量比を適正に保って良好な燃焼を維持するために調整するのみならず、メイン燃焼用流路及びパイロット燃焼用流路に供給する空気の流量を調整する必要がある。
従来では、そのようなメイン燃焼用流路及びパイロット燃焼用流路への燃料ガスの流量の調整を行うために、メイン燃焼用流路への燃料ガスの供給路及びパイロット燃焼用流路への燃料ガスの供給路のそれぞれに流量調整弁を設けて、メイン燃焼用流路及びパイロット燃焼用流路のそれぞれへの燃料ガス流量の調整を独立して行っていた。
しかし、上記従来の技術によれば、燃焼負荷に基づく第1流路への燃料ガスの供給流量の調整及び第2流路への燃料ガスの供給流量の調整のそれぞれを独立して行うから、調整操作がわずらわしいものであった。
【0003】
また、このようなパイロット燃焼とメイン燃焼とを行うバーナ装置では、定格燃焼負荷に対する燃焼負荷の減少に伴って、メイン燃焼用流路及びパイロット燃焼用流路への燃料ガスの供給流量を減少させるのであるが、その供給流量の減少に伴いパイロット燃焼用流路への供給流量を増やし、安定したパイロット燃焼を維持する必要がある。
さらに、このようなバーナ装置では、特に、メイン燃焼を行う第1流路の内部で燃料ガスと空気とを確実に混合させることが必要である。両者が良好に混合されない場合には、例えば、燃料ガスと空気とを混合させた混合気の当量比にばらつきが生じ、当量比の大きい領域では高温燃焼が生じてNOx発生量が増大することになるからである。
【0004】
従来のバーナ装置では、図44に示すように、燃焼用流路内に設けられ燃料ガスが供給される供給路に複数の供給口を分散形成し、複数の供給口を介して燃料ガスを燃焼用流路に噴出させる。この場合に、複数の供給口は燃焼用流路の空気の流れ方向下流側に開口させてあり、空気と同方向に燃料ガスを噴出させるものであった。このように構成することで、燃料ガスを燃焼用流路に分散させて供給して、空気と燃料ガスGとの混合程度の向上を図っていた。
【0005】
このような従来のバーナ装置では、1つの供給路に対して複数の供給口を設けて燃焼用流路への燃料ガスの供給を均一化するためには、前記供給口の設置数が多いほど好ましい。しかし、燃焼用流路に供給する燃料ガスの総流量が予め設定されているため、供給口の数を増やすほど、一つの供給口の開口面積を縮小する必要がある。
この結果、供給口において生じる圧力損失が増大し、所定の流量で燃料ガスを噴出させようとすると、供給路に対して燃料ガスを高圧で供給する必要があり、バーナ装置のガス供給手段が大掛かりなものとなる等の欠点が生じていた。
なお、前記当量比とは、燃料と燃焼用の空気とを混合させた混合気の濃度上の性質を表す量であり、以下のように定義する。
【0006】
当量比=(燃料濃度/空気濃度)/(燃料濃度/空気濃度)st
各濃度はモル数で表したものであり、(燃料濃度/空気濃度)stは、理論燃空比であり、理論燃空比とは、燃料と、その燃料が完全に酸化するのに必要な空気との濃度比である。
【発明の開示】
【発明が解決しようとする課題】
【0007】
したがって、本発明の目的は、燃料ガスを燃焼用流路に供給する際の圧力損失が小さく、燃料ガスと空気との混合性に優れたバーナ装置を提供する点にある。
【課題を解決するための手段】
【0008】
前述の目的を達成するための、本発明のバーナ装置は、第2流路を規定する内筒と、前記内筒を外囲する第1流路を規定する外筒とを備え、前記第1流路及び前記第2流路に酸素含有ガスを供給するための酸素含有ガス供給手段と、前記第1流路及び前記第2流路にガス流路の燃料ガスを供給するガス供給手段とを備え、前記第1流路及び前記第2流路の何れか一方をメイン燃焼用流路とし、他方をパイロット燃焼用流路として、前記メイン燃焼用流路及びパイロット燃焼用流路に燃料ガスを供給して燃焼させるバーナ装置であって、
前記メイン燃焼用流路内に前記燃料ガスを供給するための第1供給口が、前記メイン燃焼用流路において、前記酸素含有ガスの流れ方向に直交する方向よりも前記酸素含有ガス流れ方向の上流側に向かって燃料ガスを噴出する姿勢に設けてあることを特徴とする。
【0009】
つまり、空気の流れ方向に直交する方向よりも空気の流れ方向の上流側に向けて燃料ガスを噴出できるように第1供給口を形成することで、メイン燃焼用流路において、燃料ガスは空気の流れに逆行して噴出されることになる。この結果、燃料ガスと空気とが衝突して燃料ガスが空気中で自然に攪拌混合され、メイン燃焼用流路の径方向及び周方向に分散する。
【0010】
このように、本構成のバーナ装置であれば、燃料を均一に噴出させるために小径の第1供給口を多数設ける必要がなく、第1供給口の開口径を大きく設定することができる。よって、燃料の供給に際して大きな圧力損失を伴うことがなく、空気の流れを利用して燃料ガスと空気との混合程度を高めることができる。
【0011】
しかも、前記第1供給口から燃料ガスを噴出させるためには、流通する空気の圧力を上回る圧力を燃料ガスに付与すればよいが、当該空気の圧力は、燃料ガスを噴出するのにほとんど影響を与えない程度のものである。よって、燃料ガスを供給するガス供給手段を大掛かりにする必要もなく、簡便な装置としながら燃料ガスを確実に混合させることができ、NOx発生量の少ないバーナ装置を提供することができる。
【0012】
更に、本発明のバーナ装置は、前記第1供給口が、前記メイン燃焼用流路において、前記空気の流れ方向に対して逆方向に前記燃料ガスを噴出する姿勢に設けてあることを特徴とする。
【0013】
つまり、本構成のように、第1供給口が、空気の流れ方向とは逆方向に燃料ガスを噴出させるものであれば、噴出する燃料ガスと空気との相対速度が最大となるため、メイン燃焼用流路における燃料ガスの混合程度を最も高めることができる。
【0014】
さらに、本発明のバーナ装置は、前記第1流路を前記メイン燃焼用流路とし、前記第2流路を前記パイロット燃焼用流路としたことを特徴とする。
【0015】
前述の目的を達成するための、本発明のバーナ装置は、前記メイン燃焼用流路内に前記燃料ガスを供給するための第1供給口と、前記第1供給口に前記ガス流路内の前記燃料ガスを供給するための供給路と、前記供給路に前記ガス流路からの前記燃料ガスの総供給流量の増加に伴い前記第1供給口側への前記燃料ガスの分配比率を増加させ、逆に、前記総供給流量の減少に伴い前記第1供給口側への前記燃料ガスの分配比率を減少させるように前記パイロット燃焼用流路内に前記燃料ガスを分配供給する分配手段とを有する流体分配器の複数個を、前記メイン燃焼用流路及びパイロット燃焼用流路の周方向に分散配置して前記ガス供給手段を構成してあることを特徴とする。
【0016】
つまり、メイン燃焼用流路としての第1流路には、空気供給手段により空気が供給されるとともに、ガス供給手段を介してガス流路内の燃料ガスが供給されることにより、空気と燃料ガスとの混合気が生成されて、この混合気に点火すると着火して混合気がメイン燃焼する。他方、パイロット燃焼用流路としての第2流路には、空気供給手段により空気が供給されるとともに、ガス供給手段を介してガス流路内の燃料ガスが供給されることにより、空気と燃料ガスとの混合気が生成されて、この混合気に点火すると着火して混合気がパイロット燃焼する。
【0017】
そして、ガス供給手段は、メイン燃焼用流路及びパイロット燃焼用流路に燃料ガスを供給すると共に、ガス流路内の燃料ガスをメイン燃焼用流路及びパイロット燃焼用流路に分配供給する流体分配器として構成されている。即ち、流体分配器は、ガス流路内の燃料ガスをメイン燃焼用流路に第1供給口を介して供給するための供給路に分配手段を備えることにより、メイン燃焼用流路とパイロット燃焼用流路に燃料ガスを分配供給するとともに、ガス流路からの燃料ガスの総供給流量の増加に伴い第1供給口側への燃料ガスの分配比率を増加させ、燃料ガスの総供給流量の減少に伴い第1供給口側への燃料ガスの分配比率を減少させるように構成されている。
【0018】
従って、メイン燃焼用流路への燃料ガスの供給流量及びパイロット燃焼用流路への燃料ガスの供給流量のそれぞれを各別に調整する必要がなくて、燃料ガス流路への燃料ガスの総供給流量を調整するだけで、燃焼負荷変動等に基づくメイン燃焼用流路及びパイロット燃焼用流路へ燃料ガスの分配比率を容易に調整することができ、しかも、本発明のバーナ装置は、低燃焼負荷時における燃料ガス総供給流量の減少に伴いパイロット燃焼用流路への燃料ガスの供給流量を増加させ、パイロット燃焼を安定したものとしながらも、定格燃焼負荷時における燃料ガス総供給流量の増加に伴いメイン燃焼用流路への燃料ガスの供給流量を増加させ、燃料ガスをメイン燃焼用流路及びパイロット燃焼用流路全体に均一に供給して、希薄混合気による低NOx燃焼を実現でき、簡単な構成で、広い燃焼負荷範囲において高効率化を図ることができる。
【0019】
そのうえ、メイン燃焼用流路及びパイロット燃焼用流路に燃料ガスを供給する流体分配器の複数をメイン燃焼用流路及びパイロット燃焼用流路の周方向に分散配置してあるから、メイン燃焼用流路及びパイロット燃焼用流路内に燃料ガスを周方向で分散供給してメイン燃焼用流路及びパイロット燃焼用流路内での燃料ガスと空気との混合性を良好なものにできることで混合気の均一化を図ることができる。
【0020】
また、本発明のバーナ装置は、外側の第1流路及び内側の第2流路において、何れの燃焼用流路をメイン燃焼用流路としても構わないが、外側の第1流路をメイン燃焼用流路とし、内側の第2流路をパイロット燃焼用流路とすることができ、このように構成することで、パイロット燃焼用流路への燃料ガスの分配比率を増加させる低燃焼負荷時において、燃料ガスを内側のパイロット燃焼用流路に集めて、パイロット燃焼用流路におけるパイロット燃焼を安定したものとすることができる。
【0021】
さらに、このように外側の第1流路をメイン燃焼用流路とし、内側の第2流路をパイロット燃焼用流路とした場合、前記ガス流路を規定するガス筒をパイロット燃焼用流路としての第2流路を規定する内筒に内挿して備えて、ガス流路及びパイロット燃焼用流路及びメイン燃焼用流路を内側から外側に向けて順に形成することができ、メイン燃焼用流路の第1供給口にガス流路の燃料ガスを供給する供給路はパイロット燃焼用流路を横断するものとなるので、その供給路のパイロット燃焼用流路を横断する部位において簡単に前記分配手段を構成することができる。
【0022】
また、外側の第1流路をパイロット燃焼用流路とし、内側の第2流路をメイン燃焼用流路とした場合は、外部から前記パイロット燃焼用流路に挿入される点火栓が短くてすむ。なお、上記の内筒及び外筒としては、勿論、断面形状が円形の円柱筒を利用できるが、別に断面形状が多角形の角筒等も利用できる。
【0023】
また、これまで説明してきた、広い燃焼負荷範囲において低NOx且つ高効率を図ることができる本発明のバーナ装置は、単独で焼却炉用などのバーナ装置として利用することができるが、特に、ガスタービンエンジンのバーナ装置として利用することが有効であり、このようなガスタービンエンジンは、低NOx且つ高効率を保ちながら、広い運転負荷範囲で運転することができる。
【0024】
また、本発明の流体分配器及びバーナ装置を備えたガスタービンエンジンを備え、排ガスの熱回収を行う熱回収装置を備えたコジェネレーションシステムは、ガスタービンエンジンから排出される排ガスが低NOxであるため、脱硝装置等を小型化又は省略することができ、低コスト且つ小型化を実現することができる。
【図面の簡単な説明】
【0025】
【図1】流体分配器を備えたバーナ装置の第1参考例を示す縦断側面図である。
【図2】図1に示すバーナ装置の横断正面図である。
【図3】図1に示す流体分配器の要部の縦断側面図である。
【図4】図3に示す流体分配器の要部の斜視図である。
【図5】流体分配器を備えたバーナ装置の第2参考例を示す縦断側面図である。
【図6】流体分配器を備えたバーナ装置の第3参考例を示す縦断側面図である。
【図7】図6に示すバーナ装置の横断正面図である。
【図8】第3参考例に関連するバーナ装置の縦断側面図である。
【図9】流体分配器を備えたバーナ装置の第4参考例を示す縦断側面図である。
【図10】図9に示すバーナ装置の横断正面図である。
【図11】図10に示す流体分配器の要部の縦断側面図である。
【図12】図10に示す流体分配器の要部の横断正面図
【図13】本発明に係る流体分配器を備えたバーナ装置の第1実施形態を示す縦断側面図である。
【図14】図13に示すバーナ装置の関連する参考例を示す縦断側面図である。
【図15】図14に示すバーナ装置の横断正面図である。
【図16】本発明に係る流体分配器を備えたバーナ装置の第5参考例を示す縦断側面図である。
【図17】図16に示すバーナ装置の横断正面図である。
【図18】図16に示すバーナ装置の関連する参考例を示す縦断部分側面図である。
【図19】本発明に係る流体分配器を備えたバーナ装置の第6参考例を示す縦断側面図である。
【図20】図19に示すバーナ装置の関連する参考例を示す縦断部分側面図である。
【図21】本発明に係る流体分配器を備えたバーナ装置の第7参考例を示す縦断側面図である。
【図22】図21に示すバーナ装置の横断正面図である。
【図23】ガス供給手段の第1供給口部の拡大側面図である。
【図24】ガス供給手段の第1供給口部の拡大平面図である。
【図25】各第1供給口における総燃料ガス供給流量に対する燃料ガス噴出量の変化を示す図である。
【図26】第7参考例の関連する参考例であるガス供給手段の第1供給口部の拡大側面図である。
【図27】第7参考例の関連する参考例であるガス供給手段の第1供給口部の拡大側面図である。
【図28】図27のガス供給手段の第1供給口部の拡大横断正面図である。
【図29】第7参考例の関連する参考例であるガス供給手段の第1供給口部の拡大側面図である。
【図30】本発明に係る流体分配器を備えたバーナ装置の第8参考例を示す縦断側面図である。
【図31】図30に示すバーナ装置の横断正面図である。
【図32】図30に示す第1遮断体の設置態様を示す説明図である。
【図33】図30に示すバーナ装置の関連する参考例を示す縦断側面図である。
【図34】バーナ装置に設けられる燃料供給部材の斜視図
【図35】第8参考例の関連する参考例であるガス供給手段の第1供給口部の側面図である。
【図36】流体分配器を備えたバーナ装置の第9参考例を示す縦断側面図である。
【図37】図36に示すバーナ装置の横断正面図である。
【図38】バーナ装置の第9参考例を示す縦断側面図である。
【図39】図38に示すバーナ装置の横断正面図である。
【図40】本発明に係る流体分配器を備えたバーナ装置の第10参考例を示す縦断側面図である。
【図41】図40に示すバーナ装置の横断正面図である。
【図42】第10参考例の関連する参考例であるバーナ装置の縦断側面図である。
【図43】本発明に係る流体分配器を備えたバーナ装置の第11参考例を示す縦断側面図である。
【図44】比較例としての従来のバーナ装置の部分断面図である。
【発明を実施するための形態】
【0026】
(第1参考例)
本発明に係るバーナ装置の第1参考例について以下に説明する。
ガスタービンエンジンや焼却炉等に用いられるバーナ装置は、図1、図2に示すように、ガス流路A3を規定するガス筒1と、このガス筒1を外囲するパイロット燃焼用流路である第2流路A2を規定する内筒2と、この内筒2を外囲するメイン燃焼用流路である第1流路A1を規定する外筒3と、前記第1流路A1及び第2流路A2に第1流体である空気A(酸素含有ガスの一例)を供給するための空気供給手段(酸素含有ガス供給手段の一例)と、前記第1流路A1及び第2流路A2に第2流体である燃料ガスGを供給するためのガス供給手段とを設けて構成されており、これらメイン燃焼用流路及びパイロット燃焼用流路に対して燃料ガスG及び燃焼用の空気Aを供給し、両者を流路内において混合して混合気を形成し、燃焼室15において燃焼させる。
【0027】
前記ガス筒1と内筒2と外筒3とは同心状に配置されている。つまり、第1流路A1、第2流路A2、ガス流路A3は並設されている。
【0028】
前記空気供給手段は、図示しない圧縮機や送風機等により、第1流路A1及び第2流路A2に一端開口から空気Aを押し込む手段である。
【0029】
前記ガス供給手段は、燃料ガスGを蓄えた図示しないガス供給源から図示しない導管を介してガス流路A3に燃料ガスGを供給し、このガス流路A3内の燃料ガスGを前記第1流路A1及び第2流路A2に分配供給する手段である。つまり、前記ガス流路A3に燃料ガスGを供給する手段を設けるとともに、このガス流路A3内の燃料ガスGを第1流路A1及び第2流路A2に分配供給する分配手段を設けて構成されている。
【0030】
前記分配手段は、前記第1流路A1と第2流路A2と、ガス流路A3との3者の間にわたって、ガス流路A3内の燃料ガスGを第1流路A1と第2流路A2とに分配供給する複数の流体分配器4を周方向に分散配置する状態で設けて構成されている。
【0031】
前記流体分配器4は、図3、図4にも示すように、前記第1流路A1内に燃料ガスGを供給するための複数の第1供給口5を設け、これら複数の第1供給口5のそれぞれに独立に前記ガス流路A3内の燃料ガスGを供給するための各別の供給路6を設け、前記第2流路A2内に燃料ガスGを分配供給するとともに、前記ガス流路A3から第1流路A1及び第2流路A2への燃料ガスGの供給流量の増加に伴い前記第1供給口5側への燃料ガスGの分配比率を増加させ、逆に、燃料ガスGの総供給流量の減少に伴い第1供給口5側への燃料ガスの分配比率を減少させるように第1流路A2内に燃料ガスGを分配供給する分配手段を前記各供給路6に設けて構成されている。
【0032】
前記分配手段は、前記第2流路A2内にその第2流路A2内の空気Aの流れ方向に直交する方向でガス流路A3から燃料ガスGを噴出する第2供給口7を有するノズル16と、この第2供給口7からの噴出燃料ガスGを受け入れて前記第1供給口5に導く連通路8とを供給路6に備えさせるとともに、前記第2供給口7の噴出方向で設定間隔を隔てて対向する箇所に前記第2供給口7に向かって開放する状態に前記連通路8の受入れ口9を配置して構成されている。
【0033】
前記各流体分配器4の複数の第1供給口5は、前記第1流路A1に空気Aの流れる方向に沿わせて配設した板状体10の端面に、同一方向に開口する状態で空気Aの流れ方向に適宜間隔を隔てて形成されており、供給路6のうち各連通路8は、前記板状体10内に形成されている。
【0034】
前記板状体10の端面は、空気Aの流れ方向において下流側ほど第2流路A2側から離間位置する姿勢に配置されている。つまり、前記各流体分配器4の複数の第1供給口5は、空気Aの流れの上流側方向の同一方向に開口している状態で、且つ第2流路A2から離間する方向である第1流路A1幅方向(径方向)に分散配置していることになる。
【0035】
したがって、この流体分配手段によるときは、ガス流路A3内の燃料ガスGの供給流量が多くなると、第1供給口5側への燃料ガスGの分配比率が大きくなって、第1流路A1に多くの燃料ガスGが供給される。そして、複数の流体分配器4が周方向に分散配置するとともに、各流体分配器4の複数の第1供給口5が第1流路幅方向に分散配置していることにより、燃料ガスGを第1流路A1内に第1流路A1の幅方向及び周方向に分散させて供給することができるのである。
【0036】
更に、第1供給口5が板状体10の空気Aの流れの上流側に対向する端面に形成されているので、第1供給口5から第1流路A1に供給された燃料ガスGは、空気Aの流れによってその端面に衝突して拡散し、第1流路A1における均一混合性を良好にすることができる。
【0037】
そして、前記第1流路A1の流体分配器4よりも下流側の部位には、前記空気Aと燃料ガスGとの混合気に、旋回力を付与する第1スワラー11が配置されている。
また、前記第2流路A2のうち流れ方向の中間部位には、この第2流路A2内に流れてきた空気Aと燃料ガスGとの混合気に旋回力を付与する第2スワラー12が配置されている。
【0038】
このスワラー11,12によって、パイロット燃焼の火炎によるメイン燃焼の保炎性を向上することができる。すなわち、第2スワラー12で旋回力を付与されると同時に混合された混合気に図示しない点火装置で点火することにより、この混合気が着火燃焼して、パイロット燃焼が起こり、このパイロット燃焼の炎が、第1流路A1を流れてきた混合気に火移りすることで混合気が着火燃焼して、メイン燃焼が起こる。
【0039】
更に、前記内筒2の下流側端部近くには、第1流路A1を流れてきた混合気の一部を、第2流路A2を流れてきた混合気に合流混合させるエアステージリング13が配置されている。
【0040】
図中Sは、周方向に分散位置して外筒3に内筒2を支持させるストラットである。
更に、ノズル16は、第2流路A2における供給路6の第2供給口7から受入れ口9までの燃料ガスGが噴出される第2ガス供給領域の径方向の一部を外囲する筒状の部材であり、空気Aの流れの上流側からその第2ガス供給領域へ空気Aが流入するのを抑制して空気Aの流入量を好ましいものに調整する第2遮断体として作用する。
【0041】
すなわち、第2流路A2のノズル16の端部と受入れ口9との間に、第2流路A2に噴出された燃料ガスGが空気Aの流れに暴露されるスリット状の空間が形成されることになり、ノズルの高さを調整してそのスリット空間の幅を好ましいものとすることで、燃料ガスGがスリット空間に流入する空気Aを貫流して受入れ口9へ流入する比率を好ましいものに調整し、第1流路A1への燃料ガスの分配比率をバーナ装置の運転状態にあったものに調整することができる。
【0042】
よって、燃焼負荷変動等に伴う第1流路A1及び第2流路A2への燃料ガスGの分配比率を、容易に調整することができる。
【0043】
また、ノズル16によって、第2流路A2の燃料ガスGが噴出される第2ガス供給領域に空気Aが流入するのが抑制されるので、供給路6の径を拡大して、燃料ガスGの噴出速度を遅く調整して、ガス供給手段における燃料ガスの圧力損失を低下させることができる。
また、ノズル16は、円筒状のもの以外に、楕円若しくは長円筒状のもの、又は、断面形状が半円、半楕円、三角若しくは四角等の筒状のもの等あらゆる形状の筒状の部材を利用することができる。
【0044】
また、ノズル16の代わりに、第2ガス供給領域の空気Aの流れの上流側の少なくとも一部に渡って設けられた部材として、第2供給口7の空気Aの流れの上流側のガス筒1から内筒2側の方向へ延出して、空気Aの流れ方向である軸芯方向と直交する面を板面とする板状の部材、空気Aの流れの直交方向から傾斜した面を板面とする板状の部材、又は、上記の筒状の部材を筒軸方向に割った形状であり、少なくとも第2供給口7の上流側を包囲する円弧、楕円弧、コの字、若しくはハの字状等の断面形状を内筒2側の方向へ延出させた湾曲若しくは屈折板状の部材等を設けることもできる。
【0045】
また、板状の部材を設ける場合は、その板状の部材に複数の開口を穿設して、空気Aのガス領域への流入状態として流入量や流入する空気Aの分布を調整することもできる。また、この開口の形状としては、円若しくは半円形状、楕円若しくは半楕円形、スリット状、若しくはその他の多角形状等を採用することができ、コスト面や性能面等を考慮して形状を決定することができる。
【0046】
また、第2供給口7における燃料ガスGの噴出方向を、前記第2流路A2内にその第2流路A2内の空気Aの流れ方向に直交する方向でガス流路A3から燃料ガスGを噴出するように構成したが、この噴出方向は本発明を限定する構成ではなく、また、第2供給口7を、第2流路A2内の空気Aの流れ方向に対して受入れ口9側に20ー傾斜した方向から、空気Aの流れの逆方向に対して受入れ口9側に20ー傾斜した方向までの範囲内で、燃料ガスGを前記第2流路A2内に噴出するように構成することが好ましい。
【0047】
(第2参考例)
上記第1参考例に対して、前記流体分配器4が異なる第2参考例を以下に説明する。
上記第2参考例のバーナ装置は、第1供給口5を板状体10の空気Aの流れの上流側に対向する端面に形成することで、燃料ガスGの第1流路A1における均一混合性を向上する構成であったが、別に、前記板状体10の第1供給口5が形成される端面を、空気Aの流れる方向で下流側ほど第2流路A2側から離間位置する姿勢に配置するのではなく、図5に示すように、第1参考例とは逆に、空気Aの流れる方向で下流側ほど第2流路A2側から近接位置する姿勢に配置して、第1供給口5を板状体10の空気Aの流れの下流側に対向する端面に形成しても構わない。
【0048】
このように構成することでも、本願の目的である、ガス流路A3内の燃料ガスGの供給流量調整によって、第1流路A1と第2流路A2とに所定の分配比で燃料ガスGを供給することができる。
【0049】
(第3参考例)
つぎに、第1及び第2参考例に対する第3参考例について、図6〜図8に基づいて以下に説明する。
図6及び図7に示すバーナ装置は、図1及び図2等に示す第1参考例のバーナ装置との構成にくわえて、流体分配器4の第1供給口5から噴出された燃料ガスGが内筒2から離間する方向に衝突し、衝突した燃料ガスGをメイン燃焼用流路としての第1流路A1において拡散させる5つの混合促進部材36を備えている。更に、この混合促進部材36は、第1流路A1の周方向に渡って設けられ、周方向に分散配置されて内筒2からの距離が同じである複数の第1供給口5の燃料ガスGの噴出方向に板面を有するリング状の部材である。
【0050】
このような混合促進部材36を設けることで、第1供給口5から噴出された燃料ガスGを、混合促進部材36に衝突させて拡散させ、第1流路A1において、燃料ガスGを空気Aに対して均一に供給することができる。
【0051】
また、混合促進部材36は、第1流路A1の周方向に渡って設けられたリング状の部材であるので、周方向に複数設けられた第1供給口5から噴出された燃料ガスGを、このリング状の混合促進部材36の板面に衝突させることで、少なくとも第1流路A1の周方向に燃料ガスGを拡散させることができる。
【0052】
そして、第1流路A1に混合促進部材36を設けることにより、大きな圧力損失を伴うことがなく、第1流路A1に燃料ガスGを均一に供給することができ、第1供給口5の圧力損失が低減されることで、第2供給口7から第2流路A2内に噴出された燃料ガスGを、受入れ口9に良好に受け入れることができる分配手段を構成することができる。
【0053】
また、図8に示すように、図5に示す第2参考例のバーナ装置に上記のリング状の混合促進部材36を設けることもできる。
【0054】
なお、このリング状の混合促進部材36は、複数の第1供給口5に対して間欠的に設けても構わない。すなわち、混合促進部材36を第1供給口5の付近のみに板面を有するリング状の部材として構成することもでき、更に、夫々の板面の形状等は、燃料ガスの拡散状態を考慮した形状に形成することもでき、更に周方向においてその形状が同じである必要はない。
【0055】
(第4参考例)
上記参考例に対して、前記流体分配器4が異なる第4参考例を以下に説明する。
図9〜図12に示すように、板状体10の端面に第1供給口5を形成するのではなく、両板面のうち一方に、板面に対して直交する方向に燃料ガスGを噴出するための複数の第1供給口5を第1流路A1の幅方向及び空気Aの流れ方向に分散形成し、他方の板面のうち各第1供給口5に板厚方向で対向する部分のそれぞれにも板面に対して直交する方向に燃料ガスGを噴出するための第1供給口5を形成し、前記第2流路A2からの距離が同じで対向する二つの第1供給口5に対して一つの割合で、ガス流路A3からそれぞれ独立に複数の第1供給口5に燃料ガスGを導く複数の供給路6(連通路8)を板状体10内に形成してある。
【0056】
そして、複数の板状体10を、夫々の板面を第1流路A1の螺旋方向に沿わせる姿勢で配置して、第1流路A1に供給される空気Aに旋回力を付与するスワラー11のフィン11aのうち周方向で一つ置きに位置するものを前記板状体10から構成してある。
【0057】
(第1実施形態)
本発明のバーナ装置の第1実施形態について、図13〜15を参照しながら説明する。
図13に示すバーナ装置は、ガス供給手段として前述の第1参考例等の前記流体分配器4(例えば図3参照)の代わりに、2つのガス流路A3のうち、一方のガス流路A3を第2流路A2に燃料ガスGを供給する第2供給口7に連通させ、他方を第1流路A1に燃料ガスGを供給する第1供給口5に供給路6を介して連通させている。そして、このように構成することでも、2つのガス流路A3への燃料ガスGの供給流量調整によって、メイン燃焼用流路としての第1流路A1とパイロット燃焼用流路としての第2流路A2とに所定の分配比で燃料ガスGを供給することができる。
【0058】
そして、本実施形態では、燃料ガスGを前記第1流路A1での空気Aの流れ方向Xに直交する方向よりも前記空気A流れ方向Xの上流側に向かって噴出するように前記第1供給口5を形成する。そのために本実施形態では、前記供給路6の端部を所定の方向に曲げた構成にしてある。
【0059】
特に、本実施形態では、前記第1供給口5を前記空気Aの流通方向に対して180度対向させた方向に設定してある。この場合には、空気Aと燃料ガスGとの相対速度を最大に設定することができ、燃焼ガスの混合程度を高めることができるからである。
【0060】
なお、第1供給口5の開口方向は、必ずしも上記のように空気Aと逆方向に設定しなければならないものではなく、空気Aの流れ方向Xに対して、上流側から80度の範囲内で設定するのが望ましい。この場合にも空気Aと燃料ガスGとの相対速度を比較的大きく設定できるので、混合程度の良好な混合気を得ることができる。
【0061】
以上のように、本実施形態のバーナ装置では、一つの供給路6に対して第1流路A1の径方向Yに小径の噴出口を複数設ける必要がない。つまり、ガス供給手段の供給圧力を高める必要がない。この結果、少なくとも空気Aの圧力に負けない程度の圧力で燃料ガスGを噴射すればよいから、燃料ガスGの噴出圧力あるいは噴出流速を低く設定することができ、燃料ガスGの供給に際して圧力損失を小さくすることができる。
【0062】
図13に示すバーナ装置を用いて、試験圧力119kPa(abs)(1.21kgf/cm2(abs))として燃焼評価試験を行った。なお、この試験においては、燃料ガスGを空気Aの流れ方向の上流側に向けて噴出する第1供給口5の効果である、第1流路A1への燃料ガスGの供給にかかる圧力損失低減効果と第1流路A1における均一混合による低NOx効果を確認するために、第1供給口5とガス流路A3とを直接接続して燃焼ガスGを第1供給口5に供給し、第2流路A2への燃料ガスGの供給は別に行う図13に示すバーナ装置を利用している。なお、前記第1供給口5の内径を2.6mmφとし、8箇所の第1供給口5から第1流路A1へ燃料ガスGを供給する。
【0063】
結果、NOx発生量が、酸素0%換算で10ppm以下となった。燃焼効率は99%以上、第1流路A1への燃料供給の最大圧損は56kPa(0.57kgf/cm2)であった。
【0064】
比較例である図44のバーナ装置は、この場合にも管部材41は第1流路A1の周方向に8本設けられているから、噴出口30は合計で24個となる。一つの噴出口30の内径は0.7mmφである。
【0065】
図44のバーナ装置においては、NOx発生量が、酸素0%換算で13ppm以下であった。燃焼効率は99%以上であったが、第1流路A1への燃料供給の最大圧損は250kPa(2.55kgf/cm2)であり、図13のバーナ装置に比べて圧損がかなり大きいことがわかり、本発明のバーナ装置は、均一混合をたもちながら圧力損失低下効果を発揮していることが判る。
【0066】
なお、上記の燃焼評価試験の条件は、空気Aの温度を350℃とし、空気Aに対する燃料ガスGの当量比を0.35とし、第2流路A2への燃料供給流量を2.6m3/h(Normal)、第1流路A1への燃料供給流量を23.6m3/h(Normal)、TIT(燃焼器出口部(タービン入口部)の平均温度)を1000℃とする条件である。
【0067】
つぎに、このようなガス供給手段を、流体分配器4と組み合わせる場合について説明する。
【0068】
すなわち、図14に示すバーナ装置は、前述の参考例又は実施形態と同様に、ガス供給手段としての前記流体分配器4が、第2供給口7から前記第2流路A2に供給される燃料ガスGの少なくとも一部を、前記第2流路A2から受け入れて前記第1流路A1に供給するよう構成されている。
【0069】
すなわち、前述の参考例又は実施形態と同様に、単一のガス流路A3を前記第2供給口7にのみ連通させる。当該第2供給口7は、第2流路A2に開口する。前記第2供給口7からの燃料ガスGの噴出方向を前記空気Aの流れに対して略直角となるように構成してある。
【0070】
そして、前記第2供給口7に対向する位置であって、前記内筒2には第1流路A1に設けられた第1供給口5に連通する受入れ口9を設けてある。前記第2供給口7及び前記第1供給口5は何れもバーナ装置の周方向Zに沿って8個所に分散配置してある。また、前記第1流路A1の径方向Yにおける第1供給口5の位置は、第1流路A1の幅の中央とする。
【0071】
よって、極めて簡便な構成でありながら、第2流路A2におけるパイロット燃焼の燃焼状態と第1流路A1におけるメイン燃焼の燃焼状態とを適切に設定することができる。
図15に示すように、本実施形態では、8本の供給路6を前記第1流路A1の周方向Zに沿って均等配置する。一本の供給路6から噴出させる燃料ガスGは、空気Aと衝突し、前記第1供給口5を中心にして外側に拡散する。この結果、燃料ガスGが、第1流路A1の略全域に分散されつつ混合され、混合気の当量比が略一定値となる。
【0072】
(第5参考例)
つぎに、第1実施形態に対する別の第5参考例について、図16〜図18に基づいて以下に説明する。
【0073】
図16及び図17に示すバーナ装置は、図14から図15に示す第1実施形態のバーナ装置との構成にくわえて、流体分配器4の第1供給口5から噴出された燃料ガスGが第1流路A1の空気Aの流れの逆方向に衝突し、衝突した燃料ガスGをメイン燃焼用流路としての第1流路A1において拡散させる混合促進部材36を備えている。更に、この混合促進部材36は、第1流路A1の周方向に渡って設けられ、周方向に分散配置され、複数の第1供給口5の燃料ガスGの噴出方向に板面を有するリング状の部材である。
【0074】
このような混合促進部材36を設けることで、第1供給口5から噴出された燃料ガスGを、混合促進部材36に衝突させて少なくとも第1流路A1の周方向に拡散させ、第1流路A1において、燃料ガスGを空気Aに対して均一に供給することができる。
【0075】
そして、第1流路A1に混合促進部材36を設けることにより、大きな圧力損失を伴うことがなく、第1流路A1に燃料ガスGを均一に供給することができ、第1供給口5の圧力損失が低減されることで、第2供給口7から第2流路A2内に噴出された燃料ガスGを、受入れ口9に良好に受け入れることができる分配手段を構成することができる。
【0076】
また、図18に示すように、第1供給口5の開口方向を、空気Aの流れ方向Xの逆方向に対して傾斜させて設定する場合、その第1供給口5から噴出される燃料ガスGが衝突するように、第1供給口5側に向けられた板面を有するリング状の混合促進部材36を設けることができる。
【0077】
また、このような拡散部材36は、上記の流体分配器4を設けたバーナ装置以外に、図13に示すバーナ装置の第1供給口5や第2供給口7に対して設けることもできる。
【0078】
(第6参考例)
つぎに、混合促進部材36の別の参考例について、図19〜図20に基づいて以下に説明する。
図19に示すバーナ装置は、第1流路A1に燃料ガスを供給する第1供給口5の開口方向が、第1流路A1の空気Aの流れ方向に直角の内筒2から外筒3側へ離間する方向に設定されている。
【0079】
そして、このようなバーナ装置においては、混合促進部材36として、第1供給口5から外筒3側へ離間した板面を有し、第1流路A1の周方向に渡って設けられたリング状の部材を用いることができ、第1供給口5から噴出された燃料ガスGを混合促進部材36に衝突させて燃料ガスGを少なくとも第1流路A1の周方向において拡散させて供給することができる。
【0080】
また、図20に示すように、燃料ガスGが衝突する板面を、第1流路A1の空気Aの流れ方向の上流側に向けたリング状の部材である混合促進部材36を用いることができ、混合促進部材36に衝突した燃料ガスGは、第1流路A1の周方向において拡散しながら空気Aの流れに対して逆方向に向けられ、空気Aの流れによって第1流路A1全体に拡散されるので、第1流路A1に一層均一に燃料ガスGを供給することができる
【0081】
(第7参考例)
本発明のバーナ装置の第7参考例について、図21〜図29を参照しながら説明する。
図21〜図24に示すバーナ装置は、前述の参考例又は実施形態と同様に、前記流体分配器4が、第2供給口7から前記第2流路A2に供給される燃料ガスGの少なくとも一部を、前記第2流路A2から受け入れて前記第1流路A1に供給するよう構成されている。
【0082】
即ち、流体分配器4は、第1流路A1内に燃料ガスを供給するための5個の第1供給口5a,5b,5c,5d,5eを第1流路A1の幅方向(第2流路A2から離間する方向)に分散させて設けられている。これら5個の第1供給口5のそれぞれに独立にガス流路A3内の燃料ガスGを供給するための各別の供給路6が設けられ、第2流路A2内に燃料ガスを分配供給すると共に、ガス流路A3から第1流路A1及び第2流路A2への燃料ガスGの総供給流量の増加に伴って第1供給口5側への燃料ガスの分配比率を増加させ、逆に燃料ガスGの総供給流量の減少に伴って第2流路A2側への燃料ガスの分配比率を増加させるように各供給路6が構成されている。
【0083】
すなわち、第2流路A2内にその第2流路A2内の空気Aの流れと直交する方向でガス流路A3から燃料ガスGを噴出する第2供給口7を有するノズル16と、この第2供給口7からの噴出燃料ガスGを受け入れて第1供給口5に導く連通路8とを供給路6に備えさせるとともに、第2供給口7の噴出方向で設定間隔を隔てて対向する箇所に第2供給口7に向かって開放する状態に連通路8の受入れ口9を配置して構成されている。
【0084】
更に、流体分配器4は、夫々の第1供給口5a,5b,5c,5d,5eにおける空気Aの流通による燃料ガスGの噴出抵抗が、第2流路A2から離間するにしたがって増加させて設定されている。
【0085】
つまり、図23及び図24に示すように、第1流路A1において第2流路A2に最も近接している第1供給口5aの開口方向を空気Aの流れ方向に対して直角方向とし、第2流路A2から離間するほど第1供給口5の開口方向が順に空気Aの流れの上流側方向に方向付けられるように構成し、第2流路A2に最も離れている第1供給口5eの開口方向を空気Aの流れの上流側方向としている。すなわち、流体分配器4は、第1流路A1の空気Aの流れの上流側方向に対する夫々の第1供給口5の燃料ガスの噴出角度を、第2流路A2から離間するにしたがって減少させて設定して構成されており、夫々の第1供給口5における空気Aの流通による燃料ガスGの噴出抵抗を、第2流路A2から離間するにしたがって増加させて設定する。
【0086】
よって、図25に示すように、ガス流路A3からの燃料ガス供給流量を減少させて低負荷燃焼を行う場合、夫々の第1供給口5のうち、第2流路A2から離れている第1供給口5d,5eにおいては、燃料ガスGの噴出抵抗が大きいため、燃料ガスGを噴出させることができず、第2流路A2に近く燃料ガスGの噴出抵抗が小さい第1供給口5a,5b,5cにおいてのみ燃料ガスGを第1流路A1に噴出することができるので、メイン燃焼用の第1流路A1に流通する燃料ガスGを、第2流路A2の下流側端部のパイロット燃焼に近づけて、好ましい着火状態で燃焼させることができるのである。
【0087】
つぎに、流体分配器4の構成において、上記の第7参考例と関連する参考例について説明する。
図26に示す流体分配器4は、5個の第1供給口5a,5b,5c,5d,5eの燃料ガスGの噴出方向を第1流路A1の空気Aの流れの上流側方向に設定すると共に、夫々の第1供給口5a,5b,5c,5d,5eの開口面積を、第2流路A2から離間するにしたがって拡大して設定している。
【0088】
夫々の第1供給口5において、空気Aの流れ方向に逆らって燃料ガスを噴出することで発生する燃料ガスGの噴出抵抗は、第2流路A2に対して近くに配設された供給口5aから第2流路A2に対して離間して配設された第1供給口5eにいくにつれて大きくなり、上記第7参考例と同様に低燃焼負荷時における燃焼安定性を向上することができる。
【0089】
つぎに、流体分配器4の構成において、上記の第7参考例と関連する参考例について説明する。
【0090】
図27に示す流体分配器4は、5個の第1供給口5a,5b,5c,5d,5eが、第1流路A1に空気Aの流れる方向に沿わせて配設した板状体10の外面に開口する状態で空気Aの流れ方向に適宜間隔を隔てて形成されており、連通路8は、板状体10内に形成されている。
【0091】
また、第1供給口5において、第1流路に近接した側から説明すると、第1供給口5aは、板状体10の空気Aの流れ方向下流側において下流側ほど第2流路A2に近接する端面10aに形成されており、端面10aは空気Aの流れ方向下流側に面しているので、供給口5aにおいて燃料ガスGは空気Aの流れによって第1流路A1側へ吸い出されることになり、燃料ガスGの噴出抵抗としては負の値となる。
【0092】
また、次の第1供給口5bは、図28に示すように、板状体10の空気Aの流れに沿った側面10bに形成されており、燃料ガスGの噴出抵抗としては空気Aの静圧のみとなり、第1供給口5aよりも燃料ガスGの噴出抵抗が大きくなる。
【0093】
また、第1供給口5cは、空気Aの流れる方向で下流側ほど第2流路A2側から離間位置する姿勢に配置される板状体10の端面10cに形成されており、第1供給口5c付近の連通路8の形状により燃料ガスGを空気Aの流れ方向と直角方向に噴出する。この第1供給口5cにおいては、端面10cが空気Aの流れ方向の上流側に面していることから、第1供給口5bよりも燃料ガスGの噴出抵抗が大きくなる。
【0094】
また、第1供給口5d,5eは、上記第1供給口5cと同じく端面10cに形成されているが、連通路8の形状により燃料ガスGを空気Aの流れに逆らって噴出させるので、第1供給口5cよりも燃料ガスGの噴出抵抗が大きくなる。よって、各供給口5における燃料ガスGの噴出抵抗を第2流路A2から離間するにしたがって増加させて設定するのことができ、上記参考例又は実施形態と同様に低燃焼負荷時における燃焼安定性を向上することができる。
【0095】
つぎに、流体分配器4の構成において、上記の第7参考例と関連する参考例について説明する。
図29に示す流体分配器4は、第1流路A1においてガス流路A3から燃料ガスを供給される連通路8を有する筒状体を設け、その筒状体の側面に第1供給口5a,5b,5c,5d,5eを形成し、各第1供給口5における燃料ガスGの噴出抵抗を第2流路A2から離間するにしたがって増加させて設定するに、第1流路A1において第2流路A2に近接している第1供給口5a,5bの開口方向を空気Aの流れ方向に対して直角方向とし、第2流路A2から離間している第1供給口5c,5d,5eの開口方向を空気Aの流れの上流側方向としている。
【0096】
本参考例のバーナ装置についても、ガス供給手段として前記流体分配器4の代わりに、ガス流路A3からの第1供給口及び第2供給口への燃料ガスの供給を各別に行い、夫々の供給口への燃料ガスGの供給流量調整によって、メイン燃焼用流路としての第1流路A1とパイロット燃焼用流路としての第2流路A2とに所定の分配比で燃料ガスGを供給することもできる。
【0097】
(第8参考例)
本発明のバーナ装置の第8参考例について、図30〜図35を参照しながら説明する。
図30〜図32に示すバーナ装置は、前述の参考例又は実施形態と同様に、前記流体分配器4が、第2供給口7から前記第2流路A2に供給される燃料ガスGの少なくとも一部を、前記第2流路A2から受け入れて前記第1流路A1に供給するよう構成されている。
【0098】
すなわち、単一のガス流路A3を前記第2供給口7にのみ連通する。当該第2供給口7は、第2流路A2に開口する。前記第2供給口7からの燃料ガスGの噴出方向を前記空気Aの流れに対して略直角となるように構成してある。
【0099】
そして、前記第2供給口7に対向する位置であって、前記内筒2には第1流路A1に設けられた第1供給口5に連通する受入れ口9を設けてある。前記第2供給口7及び前記第1供給口5は何れもバーナ装置の周方向Zに沿って分散配置してある。
【0100】
よって、極めて簡便な構成でありながら、第2流路A2におけるパイロット燃焼の燃焼状態と第1流路A1におけるメイン燃焼の燃焼状態とを適切に設定することができる。
【0101】
前記空気Aの流れ方向に沿って、前記第1供給口5の上流側には前記空気Aの流れを遮断する第1遮断体29を設けてある。前記空気Aの流れを遮断することで、前記第1流路A1への燃料ガスGの拡散程度を向上させるのである。すなわち、図30において、前記第1供給口5から第1流路A1に噴出された燃料ガスGは、当初は第1流路A1の径方向Yに沿って外方に流通する。しかし、仮に当該燃料ガスGに対して側方から空気Aの流れが衝突すると、燃料ガスGは第1流路A1の下流側に偏向し、燃料ガスGの噴出速度が小さい場合等には第1流路A1の外周部にまで十分に拡散されないおそれがある。そこで、前記第1供給口5の上流側に前記第1遮断体29を設けるのである。
【0102】
本参考例では、図30及び図31に示すように、前記第1遮断体29として第1流路A1の径方向Yに沿って延出した板状の部材を用いる。
【0103】
前記第1遮断体29は、例えば図32に示すように、前記軸心方向Xに沿って規定する前記第1供給口5の開口中央部と前記第1遮断体29との距離cと、同方向において規定する前記第1供給口5の開口幅eとの比c/eが、0.5以上1.5以下であるように構成する。
【0104】
すなわち、c/eが0.5の場合、前記第1遮断体29に対して前記第1供給口5が接した状態となる。一方、c/eが1.5である場合、前記第1遮断体29と前記第1供給口5の縁部との距離が、前記開口幅eと等しくなる。
【0105】
このように、第1供給口5と前記第1遮断体29との距離を設定することで、前記第1供給口5から噴出された燃料ガスGに対して、空気Aが直に衝突するのを確実に防止することができ、空気Aによって燃料ガスGが不必要に下流側に流されるのを防止することができる。よって、第1流路A1の最外方に対しても燃料ガスGを確実に拡散させることができ、第1流路A1における燃料ガスGと空気Aとの当量比を一定として、低NOx燃焼を実現することができる。
【0106】
一方、前記第1遮断体29の延出方向に沿った前記第1遮断体29の形状は、例えば図32に示すごとく構成する。
前記第1遮断体29の両端部のうち、前記第1供給口5に近接した側の端部を第1端部30とし、前記第1供給口5から離間した側の端部を第2端部31とする。第1端部30の前記軸心方向Xに対する周方向Zに沿った幅をaとする。同時に、第2端部31の前記周方向Zに沿った幅をbとする。そして、前記周方向Zに沿った前記第1供給口5の幅dに対して、前記幅aと前記幅dとの比a/dが1以上3以下となり、前記幅bと前記幅dとの比b/dが0以上2以下となるように第1遮断体29を構成する。
【0107】
このように、第1流路A1の周方向Zにおける第1端部30の幅aを、同方向における前記第1供給口5の開口幅dの1倍から3倍と規定し、第1端部30の幅aを第1供給口5の幅d以上とすることで、第1供給口5から噴出された燃料ガスGに空気Aが直に衝突するのを防止するのである。これにより、噴出された燃料ガスGが有する速度のうち、特に、前記径方向Yの速度成分が良好に維持されて、径方向Yへの燃料ガスGの均一混合効果が向上する。
【0108】
一方、前記周方向Zに沿った前記第2端部31の幅bは、同方向における第1供給口5の開口幅dに対して0以上2倍以下に設定する。第1供給口5から噴出された燃料ガスGは、ある程度の拡散を伴いながら径方向Yの外方に流通する。しかし、燃料ガスGの噴出速度、あるいは、第1流路A1の径方向Yの寸法等種々の条件によって、前記第2端部31の近傍に到達した燃料ガスGの拡散状態には差が生じる。すなわち、当該拡散の程度に応じて燃料ガスGに衝突させる空気Aの量を加減し、第1流路A1の全体において混合気の当量比が一定となるようにするのである。
【0109】
すなわち、第2端部31の近傍において、燃料ガスGの均一混合効果を向上させたい場合には、空気Aを大量に衝突させるように、第2端部31の幅をゼロに設定する。逆に、第2端部31の近傍において既に燃料ガスGの拡散が進んでいるような場合であって、空気Aの流れを直に衝突させたのでは第1流路A1の最外方まで燃料ガスGを拡散させることが困難であるような場合には、前記第2端部31の幅bを、例えば第1供給口5の幅dの2倍に設定するなど幅広の形状にするのである。
【0110】
本構成であれば、第1流路A1の径方向Yにおける燃料ガスGの拡散程度を加減することができるため、第1流路A1における混合気の当量比を均一化することができ、流体分配器4であるガス供給手段を圧力損失の小さな手段としながら、低NOx燃焼を実現することができる。
【0111】
以上のように、第1遮断体29を備えて、燃料ガスGが供給される第1ガス供給領域32に対して、第1流路A1の軸心方向Xに沿った上流側から燃焼用の空気Aが流入するのを防止する構成とすれば、前記内筒2から離間する方向に沿って供給された燃料ガスGは、前記空気Aの流れの影響を受け難くなって、第1流路A1の外方まで拡散し易いものとなる。このため、第1流路A1の内部における燃料ガスGと空気Aとの混合が均一化され、低NOx燃焼を実現することができる。
【0112】
更に、前記第1供給口5の下流側近傍に、内筒2から第1流路A1側へ突出する突出部38が設けてある。第1供給口5から噴出された燃料ガスの直進性を向上することで、第1供給口5から第1流路A1内に噴出された燃料ガスGが、一層前記空気Aの流れの影響を受け難くなって、燃料ガスGと空気Aとの混合がより均一化され、低NOx化の効果を向上することができる。
【0113】
また、上記のように燃料ガスGを第1流路A1の外方まで容易に拡散させ得るものであれば、前記第1供給口5における燃料ガスGの噴出速度を遅くすることができ。そのためには、例えば、第1流路A1に対する燃料ガスGの供給圧力を低減することができる。この結果、流体分配器4の圧力損失が小さくなり、ガス供給手段等の装置をコンパクト化することができる。
【0114】
更に、第1流路A1への燃料ガスGの拡散が確実に行われることとなれば、第1流路A1の何れの場所においても燃料ガスGと空気Aとの当量比が一定となり、この結果、局所的に高温燃焼が生じる等の不都合が生じることがなく、NOx発生量の少ない燃焼が可能となる。
【0115】
つぎに、第1遮断体29及び第1供給口5の具体的な寸法についての参考例と、そのときの第1流路A1への燃料ガスGの供給にかかる圧力損失について以下に説明する。
【0116】
なお、この試験においては、第1遮断体29による効果である、第1流路A1への燃料ガスGの供給にかかる圧力損失低減効果及び第1流路A1における均一混合による低NOx効果を確認するために、図33に示すように、本発明のバーナ装置を、ガス供給手段として前述の参考例又は実施形態の前記流体分配器4の代わりに、2つのガス流路A3のうち、一方のガス流路A3を第2流路A2に燃料ガスGを供給する第2供給口7に連通させ、他方を第1流路A1に燃料ガスGを供給する第1供給口5に供給路6を介して連通させて構成し、このバーナ装置を試験に利用した。
【0117】
また、前記第1遮断体29及び前記第1供給口5の寸法として、第1端部30の幅aを4.0mmとし、第2端部31の幅bを2.6mm、前記第1遮断体29と前記第1供給口5の中心との間隔cを1.3mm、周方向Z及び軸心方向Xにおける第1供給口5の開口幅d,eをともに2.6mmとした。すなわち、第1供給口5が前記第1遮断体29に接した状態である。
【0118】
一方、前記第1供給口5の内径を2.6mmφとし、8箇所の第1供給口5から第1流路A1へ第2の燃料ガスGを供給する。
【0119】
当該バーナ装置を用いて、試験圧力119kPa(abs)(1.21kgf/cm2(abs))として燃焼評価試験を行った。結果、図33のバーナ装置においては、NOx発生量が、酸素0%換算で13ppm以下となった。燃焼効率は99%以上、第1流路A1への燃料供給の最大圧損は51kPa(0.52kgf/cm2)であった。
【0120】
なお、上記の燃焼評価試験の条件は、空気Aの温度を350℃とし、空気Aに対する燃料ガスGの当量比を0.35とし、第2流路A2への燃料供給流量を2.6m3/h(Normal)、第1流路A1への燃料供給流量を23.6m3/h(Normal)、TIT(燃焼器出口部(タービン入口部)の平均温度)を1000℃とする条件である。
【0121】
本参考例のバーナ装置は、図34に示すように、多孔質の壁部37aを有する中空筒状の燃料供給部材37を、第1供給口5に取り付けて構成することができる。
【0122】
当該燃料供給部材37は、壁部37aの多孔を介して燃料ガスGを分散供給し得るものである。本構成のように、多孔質の燃料供給部材37を前記第1供給口5に取り付けておけば、燃料ガスGが第1流路A1の径方向Yに沿って移動する間に、燃料供給部材37の壁部37aに形成した多孔から燃料ガスGが徐々に噴出されるから、燃料ガスGを第1流路A1の全体に均等に分散させることができる。
【0123】
ただし、本構成で用いる多孔質体は、燃料供給に際しての圧力損失を防止する必要上、粗い多孔を備えたものが好ましい。つまり、当該燃料供給部材37は、燃料ガスGが径方向Yに沿った外方に流通する際の拡散傾向をある程度抑制できるものであればよい。例えば、当該燃料供給部材37が前記空気Aの流れの中に配置された場合には、当該空気Aが燃料供給部材37の内部に容易に侵入できる程度の多孔を備えておく。
【0124】
前記燃料供給部材37としては、例えば、各種金属の焼結体や金属等の網部材、あるいは、無機質の焼結体等を利用することができる。
【0125】
このような燃料供給部材37を設けると共に、当該燃料供給部材37の上流側に前記第1遮断体29を設けることで、これら両部材が有する燃料ガスGの拡散抑制効果が相乗されて、第1流路A1の外方まで燃料ガスGを確実に拡散させることができる。
【0126】
また、上記の第1遮断体29として、上記の空気Aの流れ方向である軸芯方向と直交する面を板面とする板状の部材のほかに、空気Aの流れの直交方向から傾斜した面を板面とする板状の部材、又は、上記の筒状の部材を筒軸方向に割った形状であり、少なくとも第1供給口5の上流側を包囲する円弧、楕円弧、コの字、若しくはハの字状等の断面形状を内筒3側の方向へ延出させた湾曲若しくは屈折板状の部材等をを利用することができ、第1供給口5を外囲する筒状の部材を利用することもできる。
【0127】
また、このように板状の第1遮断体29の代わりに筒状の部材を利用する場合、図35に示すように、第2流路A2における第2遮断体としてのノズルと、第1流路A1における第1遮断体としての筒状の部材とを一体型構造とした筒状の部材34を利用することができる。
【0128】
(第9参考例)
本発明のバーナ装置の第9参考例について、図36〜図39を参照しながら説明する。
図36及び図37に示すバーナ装置は、外筒3の外側に、燃焼室15の燃焼ガスの流れ方向と逆方向に空気Aが供給される空気流路50が設けられ、前記空気流路50から前記第1流路A1及び第2流路A2に空気Aを供給する、所謂逆流形のバーナ装置である。
さらに、前記流体分配器4が、メイン燃焼用流路としての第1流路A1に設けられ、外表面部に第1供給口5が形成されていると共に、内部に供給路6と空気流路50から供給される空気Aをパイロット燃焼用流路としての第2流路A2に導く空気導入路53とが形成された分配部材51により構成されており、分配手段が、分配部材51内において、空気導入路53内の空気Aの流れ方向に交差する方向で空気導入路53内に燃料ガスGを噴出する第2供給口7と、第2供給口7からの噴出した燃料ガスGを受け入れて第1供給口5に導く連通路8とを供給路6に備えると共に、第2供給口7の噴出方向で設定間隔を隔てて対向する箇所に第2供給口7に向かって開放する状態に連通路8の受入れ口9を配置して構成されている。
【0129】
また、分配部材51は、板面を第1流路A1の空気Aの流れ方向に沿わせる姿勢で第1流路A1内に配置した板状の部材であり、この板状の分配部材51は、図39に示すように、第1流路A1の周方向において8箇所に等間隔に配置されており、第1流路に供給された空気Aは、殆ど乱れることなく分配部材51の外表面を通過することになる。
【0130】
以上のように流体分配器4を構成することで、第2供給口7から分配部材51内の空気導入路53において噴出された燃料ガスGが存在するガス供給領域において、空気導入路53を横断する燃料ガスGの一部が空気導入路53の空気Aの流れにさらわれて、第2流路A2側に流れるが、残部が空気導入路53の空気Aの流れを貫流して、受入れ口9を介して第1供給口5に到達し、第1流路A1へ供給されることになる。即ち、第2供給口7から空気導入路53内に噴出された燃料ガスGのうち受入れ口9から連通路8内に移入した燃料ガスGは、連通路8を介して第1供給口5に導かれて第1流路A1に供給される一方、受入れ口9に移入しなかった燃料ガスGは、空気導入路53から第2流路A2に供給される。そして、第2供給口7から噴出された燃料ガスGの供給流量が多くて流速が速いほど、噴出された燃料ガスGが受入れ口9に移入する比率が多くなり、その結果、燃料ガスGの供給流量が多いほど、第1供給口5側、つまり、第1流路A1側への燃料ガスGの分配比率が大きくなり、逆に、燃料ガスGの供給流量が少ないほど、メイン燃焼用流路側への燃料ガスの分配比率が小さくなるのである。
【0131】
さらに、第1供給口5は、前記第1流路の空気Aの流れ方向と逆方向に開口した状態で、分配部材51の外表面に形成されているので、前述の第1実施形態と同様に、ガス供給手段の供給圧力を高める必要がなく、少なくとも空気Aの圧力に負けない程度の圧力で燃料ガスGを噴射すればよいから、燃料ガスGの噴出圧力あるいは噴出流速を低く設定することができ、燃料ガスGの供給に際して圧力損失を小さくすることができる。
また、板状の部材51は、前記板状の部材以外に、第1流路A1の空気の流れをあまり乱さない形状のものとして構成することができ、たとえば、第1流路A1の径方向を高さ方向とした柱状の部材とし、その柱状の部材の断面形状を、円形状、空気Aの流れ方向を長手方向とする楕円形状、空気Aの流れの上流側に頂点を有する三角形形状、又は空気Aの流れ方向に副った流線形状とすることで、空気Aの流れをあまり乱さないように、分配部材51を構成することができる。
【0132】
次に、第9参考例に関連する参考例ついて、図38及び図39に示すバーナ装置について説明する。
このバーナ装置は、これまで説明してきたバーナ装置とは逆に、第1流路A1をパイロット燃焼用流路とし、第2流路をメイン燃焼用流路としたバーナ装置である。
空気供給手段から供給される空気Aは、まず第2流路A2に供給され、メイン燃焼用流路としての第2流路A2に供給された空気Aの一部が、後述する分散部材51内に形成された空気導入路53を介してパイロット燃焼用流路としての第1流路A1に供給される。即ち、分配部材51は、メイン燃焼用流路としての第2流路A2に設けられており、図39に示すように、その中心部に空気導入路53の入口部が空気Aの流れと逆方向に開口しており、中心部から前記内筒2に向かって放射状に延出した部位の内部に、前記空気導入路53が形成されており、空気導入路53に流入した空気Aは第1流路A1に供給されるように構成されている。
【0133】
そして、この分配部材51において、空気導入路53内の空気Aの流れ方向に交差する方向で空気導入路53内に燃料ガスGを噴出する第2供給口7と、第2供給口7からの噴出した燃料ガスGを受け入れて第1供給口5に導く連通路8とを供給路6に備えると共に、第2供給口7の噴出方向で設定間隔を隔てて対向する箇所に第2供給口7に向かって開放する状態に連通路8の受入れ口9を配置して分配手段が構成されており、燃料ガスを第1流路A1及び第2流路A2に分配比率調整を伴って分配供給することができる。
【0134】
(第10参考例)
本発明のバーナ装置の第10参考例について、図40〜図42を参照しながら説明する。
図40及び図41に示すバーナ装置は、前記の参考例又は実施形態と同様に、ガス筒1に供給口46(共通供給口の一例)が備えられているが、内筒2の空気Aの流れの上流側の端部が、空気Aの流れ方向における供給口46の終端部の位置となっており、その上流側に形成された共通流路47へ供給された空気Aが供給口46の下流側で第1の流路1及び第2の流路2に分割されて流れ、燃料ガスGは、供給口46から燃料ガスGが共通流路47の幅方向に延出するガス領域に噴出される。
【0135】
即ち、供給口46からのガス領域に噴出された燃料ガスGは、共通流路47において、一部が空気Aの流れにさらわれて第2流路A2供給されるが、残部が空気Aの流れに打ち勝って、後に説明する板状の部材55と内筒2の空気Aの流れの上流側の端部に形成される隙間57を介して、第1流路A1の上流側の共通流路47に到達し、第1流路A1へ供給されることになるので、1つの燃料ガス供給手段で、第1流路A1及び第2流路A2へ燃料ガスGを分配供給することができ、更に、ガス流路A3から第1流路A1及び第2流路A2への燃料ガスGの総供給流量の増加に伴って第2流路2側への燃料ガスの分配比率を増加させ、逆に燃料ガスGの総供給流量の減少に伴って第2流路A2側への燃料ガスの分配比率を増加させることができる。
【0136】
また、本参考例のバーナ装置は、そのガス領域の空気Aの流れの上流側に設けられ、空気Aの流れ方向と直交する面を板面とする板状の部材55(共通遮断体の一例)が設けられており、板状の部材55は、燃料ガスGが噴出されるガス領域に空気Aが流入するのを抑制して空気Aの流入量を好ましいものに調整する。
【0137】
この板状の部材55によって、上記の参考例又は実施形態と同様に、第1流路A1及び第2流路A2に流入する燃料ガスGの分配比率を好ましいものに調整し、燃料ガスGの分配比率をバーナ装置の運転状態にあったものに調整することができる。
【0138】
更に、燃料ガスGが噴出されるガス領域への空気Aの流入状態を調整するために、上記の板状の部材55に複数の開口55aを設けることができ、燃料ガスGの分配比率をより好ましいものとすることができる。また、この開口55aの形状としては、円若しくは半円形状、楕円若しくは半楕円形、スリット状、若しくはその他の多角形状等を採用することができ、コスト面や性能面等を考慮して形状を決定することができる。
【0139】
また、板状の部材55として、上記の空気Aの流れ方向である軸芯方向と直交する面を板面とする板状の部材の他に、空気Aの流れの直交方向から傾斜した面を板面とする板状の部材、又は、上記の筒状の部材を筒軸方向に割った形状であり、少なくとも供給口46の上流側を包囲する円弧、楕円弧、コの字、若しくはハの字状等の断面形状を外筒4側の方向へ延出させた湾曲若しくは屈折板状の部材等をまた、図42に示すように、第2流路A2の上流側の共通流路47において、ガス筒1の供給口46を外周から内筒2の上流側の端部の手前まで延出する筒状の部材11を設けて、本発明のバーナ装置を構成することもできる。
【0140】
(第11参考例)
本発明のバーナ装置の第11参考例について、図43を参照しながら説明する。
図43に示すバーナ装置は、空気Aの流れに沿って複数の位置に、第2供給口7a,7b,7cと第1供給口5a,5b,5cとを設けることもでき、夫々の第2の供給口7a,7b,7cに対して、例えば筒状のノズル16a,16b,16cを設けることができる。また、この場合、夫々のノズル16a,16b,16cの高さ(第2流路A2への突出量)を、例えば空気Aの流れに沿って短くなるように調整することもでき、夫々の第2供給口7a,7b,7cから第1供給口5a,5b,5cへの燃料ガスGの分配状態を変化させて、第1の流路1及び第2の流路2において燃料ガスGを広範囲で供給することができる。
【0141】
上記参考例において、一般的な例として、燃料の燃焼のための酸素含有ガスとして空気を利用したものを説明したが、空気の以外の燃焼用酸素含有ガスとしては、例えば、酸素成分含有量が空気に対して高い酸素富化ガス等を利用することが可能である。
【0142】
本発明に係るバーナ装置は、メイン及びパイロット燃焼用流路に供給される空気の流れ方向と、燃焼室15における燃焼ガスの流れ方向が同方向である直流形のバーナ装置や、空気が外筒3の外側を燃焼室15における燃焼ガスの流れ方向とは逆方向に流れ、夫々の燃焼用流路に供給される逆流形のバーナ装置として構成することができる。
【0143】
以下に、本願の参考例を示す。
本発明の参考例としてのバーナ装置は、前記メイン燃焼用流路内に前記燃料ガスを供給するための第1供給口と、前記第1供給口に前記ガス流路内の前記燃料ガスを供給するための供給路と、前記供給路に前記ガス流路からの前記燃料ガスの総供給流量の増加に伴い前記第1供給口側への前記燃料ガスの分配比率を増加させ、逆に、前記総供給流量の減少に伴い前記第1供給口側への前記燃料ガスの分配比率を減少させるように前記パイロット燃焼用流路内に前記燃料ガスを分配供給する分配手段とを有する流体分配器の複数個を、前記メイン燃焼用流路及びパイロット燃焼用流路の周方向に分散配置して前記ガス供給手段を構成することができる。
【0144】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記第1流路を前記メイン燃焼用流路とし、前記第2流路を前記パイロット燃焼用流路とすることができる。
【0145】
つまり、メイン燃焼用流路としての第1流路には、空気供給手段により空気が供給されるとともに、ガス供給手段を介してガス流路内の燃料ガスが供給されることにより、空気と燃料ガスとの混合気が生成されて、この混合気に点火すると着火して混合気がメイン燃焼する。他方、パイロット燃焼用流路としての第2流路には、空気供給手段により空気が供給されるとともに、ガス供給手段を介してガス流路内の燃料ガスが供給されることにより、空気と燃料ガスとの混合気が生成されて、この混合気に点火すると着火して混合気がパイロット燃焼する。
【0146】
そして、参考例において、ガス供給手段は、メイン燃焼用流路及びパイロット燃焼用流路に燃料ガスを供給すると共に、ガス流路内の燃料ガスをメイン燃焼用流路及びパイロット燃焼用流路に分配供給する流体分配器として構成されている。即ち、流体分配器は、ガス流路内の燃料ガスをメイン燃焼用流路に第1供給口を介して供給するための供給路に分配手段を備えることにより、メイン燃焼用流路とパイロット燃焼用流路に燃料ガスを分配供給するとともに、ガス流路からの燃料ガスの総供給流量の増加に伴い第1供給口側への燃料ガスの分配比率を増加させ、燃料ガスの総供給流量の減少に伴い第1供給口側への燃料ガスの分配比率を減少させるように構成されている。
【0147】
従って、メイン燃焼用流路への燃料ガスの供給流量及びパイロット燃焼用流路への燃料ガスの供給流量のそれぞれを各別に調整する必要がなくて、燃料ガス流路への燃料ガスの総供給流量を調整するだけで、燃焼負荷変動等に基づくメイン燃焼用流路及びパイロット燃焼用流路へ燃料ガスの分配比率を容易に調整することができ、しかも、本発明の参考例としてのバーナ装置は、低燃焼負荷時における燃料ガス総供給流量の減少に伴いパイロット燃焼用流路への燃料ガスの供給流量を増加させ、パイロット燃焼を安定したものとしながらも、定格燃焼負荷時における燃料ガス総供給流量の増加に伴いメイン燃焼用流路への燃料ガスの供給流量を増加させ、燃料ガスをメイン燃焼用流路及びパイロット燃焼用流路全体に均一に供給して、希薄混合気による低NOx燃焼を実現でき、簡単な構成で、広い燃焼負荷範囲において高効率化を図ることができる。
【0148】
そのうえ、メイン燃焼用流路及びパイロット燃焼用流路に燃料ガスを供給する流体分配器の複数をメイン燃焼用流路及びパイロット燃焼用流路の周方向に分散配置してあるから、メイン燃焼用流路及びパイロット燃焼用流路内に燃料ガスを周方向で分散供給してメイン燃焼用流路及びパイロット燃焼用流路内での燃料ガスと空気との混合性を良好なものにできることで混合気の均一化を図ることができる。
【0149】
また、本発明の参考例としてのバーナ装置は、外側の第1流路及び内側の第2流路において、何れの燃焼用流路をメイン燃焼用流路としても構わないが、外側の第1流路をメイン燃焼用流路とし、内側の第2流路をパイロット燃焼用流路とすることができ、このように構成することで、パイロット燃焼用流路への燃料ガスの分配比率を増加させる低燃焼負荷時において、燃料ガスを内側のパイロット燃焼用流路に集めて、パイロット燃焼用流路におけるパイロット燃焼を安定したものとすることができる。
【0150】
さらに、このように外側の第1流路をメイン燃焼用流路とし、内側の第2流路をパイロット燃焼用流路とした場合、前記ガス流路を規定するガス筒をパイロット燃焼用流路としての第2流路を規定する内筒に内挿して備えて、ガス流路及びパイロット燃焼用流路及びメイン燃焼用流路を内側から外側に向けて順に形成することができ、メイン燃焼用流路の第1供給口にガス流路の燃料ガスを供給する供給路はパイロット燃焼用流路を横断するものとなるので、その供給路のパイロット燃焼用流路を横断する部位において簡単に前記分配手段を構成することができる。
【0151】
また、外側の第1流路をパイロット燃焼用流路とし、内側の第2流路をメイン燃焼用流路とした場合は、外部から前記パイロット燃焼用流路に挿入される点火栓が短くてすむ。なお、上記の内筒及び外筒としては、勿論、断面形状が円形の円柱筒を利用できるが、別に断面形状が多角形の角筒等も利用できる。
【0152】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記分配手段が、前記パイロット燃焼用流路内の前記空気の流れ方向に直交する方向で前記パイロット燃焼用流路内に前記燃料ガスを噴出する第2供給口と、前記第2供給口からの噴出した前記燃料ガスを受け入れて前記第1供給口に導く連通路とを前記供給路に備えると共に、前記第2供給口の噴出方向で設定間隔を隔てて対向する箇所に前記第2供給口に向かって開放する状態に前記連通路の受入れ口を配置して構成することができる。
【0153】
つまり、本発明の参考例としてのバーナ装置は、パイロット燃焼用流路に隣接するガス筒を設け、そのガス流路に、パイロット燃焼用流路へ燃料ガスを噴出させる第2供給口と、パイロット燃料用流路を介して第2供給口と対向し、前記燃料ガスの噴出が方向付けられる内筒の部位に、受入れ口が設けられている。
【0154】
すなわち、ガス流路内に供給された燃料ガスは、第2供給口を介してパイロット燃焼用流路に受入れ口側に向かって噴出されることになる。
そして、パイロット燃焼用流路において噴出された燃料ガスが存在する第2ガス供給領域において、パイロット燃焼用流路を横断する燃料ガスの一部がパイロット燃焼用流路の空気の流れにさらわれて、パイロット燃焼用流路の下流側に流れるが、残部がパイロット燃焼用流路の空気の流れを貫流して、受入れ口を介して第1供給口に到達し、メイン燃焼用流路へ供給されることになる。
【0155】
詳しくは、第2供給口からパイロット燃焼用流路内に噴出された燃料ガスのうち受入れ口から連通路内に移入した燃料ガスは、連通路を介して第1供給口に導かれてメイン燃焼用流路に供給される一方、受入れ口に移入しなかった燃料ガスは、パイロット燃焼用流路に供給される。そして、第2供給口から噴出された燃料ガスの供給流量が多くて流速が速いほど、噴出された燃料ガスが受入れ口に移入する比率が多くなり、その結果、燃料ガスの供給流量が多いほど、第1供給口側、つまり、メイン燃焼用流路側への燃料ガスの分配比率が大きくなり、逆に、燃料ガスの供給流量が少ないほど、メイン燃焼用流路側への燃料ガスの分配比率が小さくなる。
【0156】
したがって、バーナ装置において、第2供給口と、受入れ口を有する連通路を設けるだけで、簡単な構造で流体分配器の分配手段を構成できるようになった。
更に、パイロット燃焼用流路を流れる空気流量は、通常、所定の範囲内に収まっており、第2供給口側と受入れ口側との位置関係等が確定するため、第2供給口からの燃料ガスの供給流量を増加していくと、パイロット燃焼用流路の下流側へ流れる燃料量と、パイロット燃焼用流路へ供給される燃料量との割合を、燃料供給流量の増減に伴い可逆的に変化させるようにできる。
【0157】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記流体分配器が、前記第1供給口の複数を、前記メイン燃焼用流路の前記パイロット燃焼用流路側から離間する方向に分散配置して構成することができる。
【0158】
つまり、パイロット燃焼用流路側から離間する方向、すなわち、第1流路及び第2流路の径方向に分散させる状態で第1供給口の複数個をメイン燃焼用流路内に配置した流体分配器を用いることで、より一層混合気を均一化でき、当量比を小さくして希薄燃焼による低NOx化を図ると共に、希薄燃焼を安定させることができる。
【0159】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記複数の第1供給口のそれぞれに対応して各別に前記供給路が設けられている。
つまり、複数の第1供給口のそれぞれに対応して各別に供給路を設けてあるから、例えば、一つの供給路で複数の第1供給口に燃料ガスを供給する場合と比較して、各複数の第1供給口から均等に燃料ガスを供給するために発生する圧力損失を小さなものにできる。したがって、圧力損失を小さくしながらも、メイン燃焼用流路内での空気と燃料ガスとの均一混合性を一層優れたものにでき、低NOx性能を維持したままで、燃料ガス供給に伴う圧力損失を低減できる。
【0160】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記流体分配器が、前記複数の第1供給口に対応する前記供給路を、板面を前記空気の流れ方向に沿わせる姿勢で前記メイン燃焼用流路内に配置した板状体内に形成して構成することができる。
【0161】
つまり、空気の流れる方向に沿わせてメイン燃焼用流路内に配設される板状体内に複数の供給路を形成してあって、供給路を形成する板状体が空気の流れ方向に沿うものであるから、複数の供給路を設けながらも、そのために、空気の流れを阻害することが少ない。しかも、板状体の内部に複数の供給路を形成して、ユニット化してあるから、組み付け等の取り扱いが容易である。
【0162】
したがって、メイン燃焼用流路での空気の流れ性能を良好に維持した状態で燃料ガスを空気に対して均一に供給することができ、しかも、複数の供給路を設けながらも、保管や組み付け等の取り扱い性を優れたのにできるようになった。
【0163】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記複数の流体分配器の板状体が、夫々の板面を前記メイン燃焼用流路の螺旋方向に沿わせる姿勢で配置され、供給される空気に旋回力を付与するスワラーのフィンとして構成することができる。
【0164】
このようなバーナ装置において、スワラーによりメイン燃焼用流路に供給される空気に旋回力を付与して、空気と燃料ガスとの混合性を高めることで、希簿燃焼を良好に行うことができるのであるが、ガス流路内の燃料ガスをメイン燃焼用流路及びパイロット燃焼用流路内に分配供給するための流体分配器が、第1供給口及び供給路を形成する板状体を備えていることに着目して、板状体をメイン燃焼用流路の螺旋方向に沿わせる姿勢に配置することで、この板状体でスワラーのフィンを構成することができ、流体分配器とスワラーとの間で部材の兼用化を図ることができる。
したがって、均一混合性能を優れたものにしながらも、構造の簡素化及びコストダウンを図ることができるようになった。
【0165】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記メイン燃焼用流路において、前記第1供給口よりも前記空気の流れ方向の下流側に、前記空気と前記燃料ガスとの混合気に前記メイン燃焼用流路の螺旋方向への旋回力を付与するスワラーを配置することができる。
【0166】
本発明の参考例としてのバーナ装置において、メイン燃焼用流路における流体分配器よりも下流側の部位に、メイン燃焼用流路におけるメイン燃焼の保炎性を向上するためのスワラーを配置して、空気と燃料ガスとの混合気に旋回力を付与するように構成することができ、第1供給口の向きを単純なものとして、さらに、第1供給口における空気の流れを乱すことなく、混合気を旋回させて、メイン燃焼の安定性を高めることができる。
したがって、希薄燃焼性を優れたものにできるようになった。
【0167】
更に、本発明の参考例としてのバーナ装置は、前記第1供給口が、前記メイン燃焼用流路において、前記酸素含有ガスの流れ方向に直交する方向よりも前記酸素含有ガス流れ方向の上流側に向かって燃料ガスを噴出する姿勢に設けてある。
【0168】
つまり、空気の流れ方向に直交する方向よりも空気の流れ方向の上流側に向けて燃料ガスを噴出できるように第1供給口を形成することで、メイン燃焼用流路において、燃料ガスは空気の流れに逆行して噴出されることになる。この結果、燃料ガスと空気とが衝突して燃料ガスが空気中で自然に攪拌混合され、メイン燃焼用流路の径方向及び周方向に分散する。
【0169】
このように、本発明の参考例としてのバーナ装置であれば、燃料を均一に噴出させるために小径の第1供給口を多数設ける必要がなく、第1供給口の開口径を大きく設定することができる。よって、燃料の供給に際して大きな圧力損失を伴うことがなく、空気の流れを利用して燃料ガスと空気との混合程度を高めることができる。
【0170】
しかも、前記第1供給口から燃料ガスを噴出させるためには、流通する空気の圧力を上回る圧力を燃料ガスに付与すればよいが、当該空気の圧力は、燃料ガスを噴出するのにほとんど影響を与えない程度のものである。よって、燃料ガスを供給するガス供給手段を大掛かりにする必要もなく、簡便な装置としながら燃料ガスを確実に混合させることができ、NOx発生量の少ないバーナ装置を提供することができる。
【0171】
そして、本発明の参考例としてのガス供給手段としての流体分配器と組み合わせることで、分配手段は、燃料ガスの供給を第2供給口、パイロット燃焼用流路、受入れ口、第1供給口、メイン燃焼用流路という経路を経て燃料ガスを供給するに、上記のように第1供給口を空気の流れ方向の上流側に向けて燃料ガスを噴出するように形成して第1供給口の圧力損失を低減することで、第2供給口からパイロット燃焼用流路内に噴出された燃料ガスを、圧力損失が低減された第1供給口に連通する受入れ口に良好に受け入れることができる分配手段を構成することができ、比較的簡単な構造で、機構を構築できる。
【0172】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記第1供給口が、前記メイン燃焼用流路において、前記空気の流れ方向に対して逆方向に前記燃料ガスを噴出する姿勢に設けてある。
【0173】
つまり、本構成のように、第1供給口が、空気の流れ方向とは逆方向に燃料ガスを噴出させるものであれば、噴出する燃料ガスと空気との相対速度が最大となるため、メイン燃焼用流路における燃料ガスの混合程度を最も高めることができる。
【0174】
更に、本発明の参考例としてのバーナ装置は、前記メイン燃焼用流路内に前記燃料ガスを供給するための第1供給口、又は前記パイロット燃焼用流路内に前記燃料ガスを供給するための第2供給口から噴出した前記燃料ガスが衝突し、衝突した前記燃料ガスを前記メイン燃焼用流路において拡散させる混合促進部材を、前記メイン燃焼用流路又は前記パイロット燃焼用流路に備えて構成することができる。
【0175】
また、本発明の参考例としてのガス供給手段としての流体分配器と組み合わせる場合においては、本発明の参考例としてのバーナ装置は、前記第1供給口から前記メイン燃焼用流路に噴出した前記燃料ガスが衝突し、衝突した前記燃料ガスを前記メイン燃焼用流路において拡散させる混合促進部材を備えて構成することができる。
【0176】
つまり、このような混合促進部材を設けることで、供給口から噴出された燃料ガスを、混合促進部材に衝突させて拡散させ、前記メイン燃焼用流路又はパイロット燃焼用流路において、より一層混合気を均一化できる。
【0177】
さらにまた、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記混合促進部材が、前記メイン燃焼用流路の周方向に渡って設けられ、前記周方向に分散配置されている複数の前記第1供給口又は前記第2供給口の前記燃料ガスの噴出方向に板面を有するリング状の部材として構成されている。
【0178】
つまり、前記混合促進部材を、メイン燃焼用流路又はパイロット燃焼用流路の周方向に設けられた複数の第1又は第2供給口に渡って連続的又は間欠的に設けられたリング状の部材として構成することができる。すなわち、周方向に複数設けられた供給口から噴出された燃料ガスを、このリング状の混合促進部材の板面に衝突させることで、少なくとも燃焼用流路の周方向に燃料ガスを拡散させることができる。
【0179】
また、上記のような混合促進部材と前記供給口との距離が近すぎると、燃料ガスの噴出抵抗が増加し、前記距離が遠い場合は燃料ガスの拡散を良好に行えないので、この距離は前記噴出抵抗及び拡散状態を考慮して好ましいものに設定される。
【0180】
また、本発明の参考例としてのガス供給手段としての流体分配器と組み合わせる場合においては、この混合促進部材はメイン燃焼用流路の第1供給口に対して設けられ、メイン燃焼用流路における燃料の拡散に利用される。そして、メイン燃焼用流路に混合促進部材を設けることにより、メイン燃焼用流路に燃料ガスを均一に噴出させるために小径の第1供給口を多数設ける必要がなく、第1供給口の開口径を大きく設定することができる。よって、燃料の供給に際して大きな圧力損失を伴うことがなく、空気の流れを利用して燃料ガスと空気との混合程度を高めることができ、第1供給口の圧力損失を低減することで、第2供給口からパイロット燃焼用流路内に噴出された燃料ガスを、圧力損失が低減された第1供給口に連通する受入れ口に良好に受け入れることができる分配手段を構成することができ、比較的簡単な構造で、機構を構築できる。
【0181】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記第2供給口の前記酸素含有ガスの流れ方向の上流側から、前記パイロット燃焼用流路の前記第2供給口から前記受入れ口までの前記第2ガス供給領域に対する、前記酸素含有ガスの流入量を調整する第2遮断体を備えて構成することができる。
【0182】
つまり、本発明の参考例のように、第2の流路の第2の供給口の上流側に第2遮断体を設けることで、パイロット燃焼用流路において上流側から空気が第2ガス供給領域に流入するのを抑制して、第2ガス供給領域への空気の流入量を好ましいものに調整することができるので、第2ガス供給領域において燃料ガスが第2の供給口へ到達して流入する比率を好ましいものに調整し、メイン燃焼用流路への燃料ガスの分配比率をバーナ装置の運転状態にあったものに調整することができる。
【0183】
また、この第2遮断体によって、第2ガス供給領域に流入する空気の流れの上流側から空気が流入することが抑制されるので、第2供給口の径を拡大して、燃料ガスの噴出速度を遅くさせて、第2供給口における燃料ガスの圧力損失を低下させることができる。
【0184】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記第2遮断体が、前記第2ガス供給領域の前記酸素含有ガスの流れ方向の上流側の少なくとも一部に渡って設けられた部材として構成されている。
【0185】
つまり、第2遮断体として、第2ガス供給領域の空気の流れ方向の上流側の、少なくとも一部に渡って設けられ、例えば、第2供給口の空気の流れの上流側の第2流路において、ガス流路側の壁部からメイン燃焼用流路側の壁部側に延出し、空気の流れと直交若しくは傾斜した板面を有する平板若しくは湾曲板状等の部材を利用することができる。
【0186】
このような板状の部材を設ける場合においても、パイロット燃焼用流路において燃料ガスが供給される第2ガス供給領域に対して、パイロット燃焼用流路の空気の流れ方向の上流側から空気が流入するのを抑制し、第2ガス供給領域へ流入する空気の流入量を好ましいものに調整して、メイン燃焼用流路及びパイロット燃焼用流路への燃料ガスの分配比率をバーナ装置の運転状態にあったものに調整することができる。
【0187】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記第2遮断体が、前記第2ガス供給領域の一部を外囲する筒状の部材として構成されている。
【0188】
つまり、第2遮断体を、例えば、第2供給口の外周からメイン燃焼用流路側へ延出して設けられ、第2ガス供給領域の一部を外囲する円筒若しくは角筒状の部材とすることができる。
【0189】
また、このような筒状の部材に外囲された第2ガス供給領域においては、上流側から空気が流入するのを確実に抑制することができると共に、燃料ガスの噴出方向を正確に調整することができる。更に、パイロット燃焼用流路の筒状の部材の端部には、第2ガス供給領域のパイロット燃焼用流路の空気の流れに暴露されるスリット空間が形成される。よって、この筒状の部材の第1及び第2供給口を結ぶ軸方向の高さを調整して、そのスリット空間の幅を好ましいものとすることで、スリット空間に流入する空気による燃料ガスの流れに対する影響力を好ましいものに正確に調整することができ、メイン燃焼用流路及びパイロット燃焼用流路への燃料ガスの分配比率を、よりバーナ装置の運転状態にあったものに調整することができる。
【0190】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記第2遮断体に、前記第2ガス供給領域への前記酸素含有ガスの流入状態を調整する開口を穿設して備えることができる。
【0191】
つまり、第2遮断体としての板状の部材に、本構成のように、少なくとも1つの円形状、スリット状、若しくは多角形状の開口を穿設し、空気の第2ガス供給領域への流入状態として流入量や流入する空気の分布を調整することができる。
【0192】
すなわち、空気は前記開口を介して板状の部材を貫流し、その貫流した空気が、第2ガス供給領域に流入することになる。よって、開口の穿設状態を好ましいものとすることで、燃料ガスが第2ガス供給領域を貫流して受入れ口及び第1供給口を介してメイン燃焼用流路へ流入する比率をバーナ装置の運転状態にあったものに調整することができる。
【0193】
更に、本発明の参考例としてのバーナ装置は、夫々の前記第1供給口における前記酸素含有ガスの流通による前記燃料ガスの噴出抵抗を、前記パイロット燃焼用流路側から離間するにしたがって増加させて設定されている。
【0194】
つまり、本発明の参考例のごとく、メイン燃焼用流路においてパイロット燃焼用流路側から離間する方向に分散配設した複数の燃料ガスの第1供給口を備えると共に、夫々の第1供給口における空気の流通による燃料ガスの噴出抵抗が、パイロット燃焼用流路側から離間するにつれて増加するように設定されていることで、例えば定格燃焼負荷時の燃料ガスの供給圧が高い場合においては、すべての第1供給口において燃料ガスを上記噴出抵抗に打ち勝ってメイン燃焼用流路に供給し、逆に、低燃焼負荷運転時の燃料ガスの供給圧力が低い場合においては、メイン燃焼用流路においてパイロット燃焼用流路に対して離間して配設され上記噴出抵抗が高い第1供給口においては、上記噴出抵抗により燃料ガスを噴出することができず、パイロット燃焼用流路側に近接した第1供給口のみで燃料ガスをメイン燃焼用流路に供給することになる。
【0195】
従って、定格燃焼負荷時においては、メイン燃焼用流路の幅方向(パイロット燃焼用流路側から離間する方向)全体に燃料ガスを供給して、高燃焼負荷の定格燃焼負荷運転を行うことができると共に、逆に、低燃焼負荷運転を行う場合においては、定格燃焼負荷時よりも、パイロット燃焼用流路に近接したメイン燃焼用流路の部分に燃料ガスを供給することができ、さらに本発明の参考例としてのガス供給手段としての流体分配器と組み合わせることで、好ましい状態でメイン燃焼用の燃料ガスをパイロット燃焼によって着火して燃焼させることができ、広い燃焼負荷範囲において高効率化を図ることができる。
【0196】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記燃料ガスの噴出抵抗を設定するに、前記メイン燃焼用流路の前記酸素含有ガスの流れ方向の上流側方向に対する夫々の前記第1供給口の前記燃料ガスの噴出角度を、前記パイロット燃焼用流路側から離間するにしたがって減少させて設定するように構成されている。
【0197】
つまり、本発明の参考例のように、メイン燃焼用流路の空気の流れ方向の上流側方向に対する夫々の第1供給口の燃料ガスの噴出角度を、パイロット燃焼用流路側から離間するにしたがって連続的若しくは段階的に減少させるように設定することで、パイロット燃焼用流路に近接して配設された第1供給口よりも、パイロット燃焼用流路側から離間して配設された第1供給口のほうが、空気の流れに対して対向して燃料ガスを噴出させることになり、空気の流れによる燃料ガスの噴出抵抗が大きくなる。よって、本発明の参考例のバーナ装置は、低燃焼負荷時において、定格燃焼負荷時よりも、パイロット燃焼用流路に近接した部分に燃料ガスを供給することができるので、好ましい状態でメイン燃焼用の燃料ガスをパイロット燃焼によって着火して燃焼させることができる。
【0198】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記燃料ガスの噴出抵抗を設定するに、前記複数の第1供給口の前記燃料ガスの噴出方向を、前記メイン燃焼用流路の前記酸素含有ガスの流れ方向と直交する方向よりも上流側方向に設定すると共に、夫々の前記第1供給口の開口面積を、前記パイロット燃焼用流路側から離間するにしたがって拡大して設定するように構成することができる。
【0199】
つまり、本発明の参考例のように、複数の第1供給口の燃料ガスの噴出方向をメイン燃焼用流路の空気の流れ方向と直交する方向よりも上流側の方向に設定することで、夫々の第1供給口において、空気の流れ方向に燃料ガスの噴出抵抗がかかることになり、第1供給口の開口面積が大きいほど、その燃料ガスの噴出抵抗は大きくなる。
【0200】
そこで、夫々の第1供給口の開口面積を、パイロット燃焼用流路側から離間するにしたがって連続的若しくは段階的に拡大して設定することで、パイロット燃焼用流路に近接して配設された第1供給口よりも、パイロット燃焼用流路に対して離間して配設された第1供給口のほうが、燃料ガスの噴出抵抗を大きく設定することができる。よって、本発明の参考例としてのバーナ装置は、低燃焼負荷時において、定格燃焼負荷時よりも、パイロット燃焼用流路に近接した部分に燃料ガスを供給することができるので、好ましい状態でメイン燃焼用の燃料ガスをパイロット燃焼によって着火して燃焼させることができる。
【0201】
また、本発明の参考例としてのバーナ装置は、前記第1供給口が、前記メイン燃焼用流路の前記パイロット燃焼用流路側から離間する方向に沿って前記第1流路内に前記燃料ガスを供給するものであり、前記第1供給口から供給した燃料ガスが前記メイン燃焼用流路の内部に形成する第1ガス供給領域に対して、前記第1流路の空気の流れ方向に沿った上流側から前記空気が流入するのを防止する第1遮断体を備えて構成することができる。
【0202】
つまり、本発明の参考例としてのバーナ装置に第1遮断体を設けて、メイン燃焼用流路において燃料ガスが供給されるガス供給領域に対して、メイン燃焼用流路の空気の流れ方向、すなわち内筒及び外筒の軸心方向に沿った上流側から空気が流入するのを防止する構成とすれば、内筒から外筒側に離間する方向に沿って供給された燃料ガスは、前記空気の流れの影響を受け難くなって、メイン燃焼用流路のパイロット燃焼用流路に対する外方まで拡散し易いものとなる。このため、メイン燃焼用流路の内部における燃料ガスと空気との混合が均一化され、メイン燃焼の低NOx化を実現することができる。
【0203】
このように燃料ガスをメイン燃焼用流路の外方まで容易に拡散させ得るものであれば、第1供給口における燃料ガスの噴出速度を遅くすることができ、例えば、燃料ガスの供給圧力を低減させ、ガス供給手段の圧力損失を低減させることができて、ガス供給手段等の装置をコンパクトなものにすることができる。
【0204】
そして、本発明の参考例としてのガス供給手段としての流体分配器と組み合わせることで、分配手段は、燃料ガスの供給を第2供給口、パイロット燃焼用流路、受入れ口、第1供給口、メイン燃焼用流路という経路を経て燃料ガスを供給するに、上記のように第1遮断体を設けて第1供給口の圧力損失を低減することで、第2供給口からパイロット燃焼用流路内に噴出された燃料ガスを、圧力損失が低減された第1供給口に連通する受入れ口に良好に受け入れることができる分配手段を構成することができ、ガス供給手段を極めて簡便な構成としながら、メイン燃焼用流路におけるメイン燃焼の燃焼状態とパイロット燃焼用流路におけるパイロット燃焼の燃焼状態とを適切に設定することができる。
【0205】
また、第1遮断体によりメイン燃焼用流路への燃料ガスの拡散が確実に行われることとなれば、メイン燃焼用流路の何れの場所においても空気と燃料ガスとの混合気の当量比が一定となり、この結果、局所的に高温燃焼が生じる等の不都合が生じず、NOx発生量の少ない燃焼を行わせることができる。
【0206】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記メイン燃焼用流路の空気の流れ方向に沿って規定する、前記第1供給口の開口中央部と前記第1遮断体との距離cと、同方向において規定する前記第1供給口の開口幅eとの比c/eが0.5以上1.5以下であるように構成することができる。
【0207】
つまり、第1供給口と第1遮断体との距離を一定範囲に特定する、すなわち、c/eが0.5ということは、前記遮断体に対して前記燃料ガス第1供給口が接した状態を意味する。一方、c/eが1.5である場合、第1遮断体と第1供給口の縁部との距離が、パイロット燃焼用流路の軸心方向、言い換えれば内筒及び外筒の軸心方向における燃料ガス第1供給口の開口幅と等しいことを意味する。
【0208】
このように、第1供給口と遮断体との距離を設定することで、第1供給口からメイン燃焼用流路に供給された燃料ガスに及ぼす空気の影響を最小限に止めることができる。よって、メイン燃焼用流路への燃料ガスの均一化が更に確実なものとなり、メイン燃焼の一層の低NOx化を図ることができる。
【0209】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記第1遮断体が、前記メイン燃焼用流路の前記パイロット燃焼用流路側から離間する方向に延出する部材であり、前記第1遮断体の前記第1供給口に近接した側の一方の第1端部の前記メイン燃焼用流路の周方向に沿った幅をaとすると共に、他方の第2端部の前記周方向に沿った幅をbとし、前記周方向に沿った前記第1供給口の幅dに対して、前記幅aと前記幅dとの比a/dが1以上3以下であり、前記幅bと前記幅dとの比b/dが0以上2以下であるように構成することができる。
【0210】
つまり、前記第1遮断体は、メイン燃焼用流路の内部において、パイロット燃焼用流路側から離間する方向、言い換えれば内筒及び外筒の径方向に延出するものであり、その延出方向における両端部である第1端部と第2端部を持たせてある。そして、本発明の参考例では、これら両端部の幅と第1供給口の開口幅との関係を規定するものである。
【0211】
すなわち、第1遮断体の両端部のうち、第1供給口に近接した側の端部を第1端部とし、前記第1供給口から離間した側の端部を第2端部として、メイン燃焼用流路の周方向における第1端部の幅を、同方向における前記第1供給口の開口幅の1倍から3倍と規定する。つまり、第1端部の幅を、第1供給口の幅以上として、第1供給口からメイン燃焼用流路に噴出された燃料ガスに空気が直に衝突するのを防止するのである。これにより、噴出された燃料ガスが有する速度のうち、特に、前記径方向の速度成分が良好に維持されて、径方向への燃料ガスの均一混合効果が向上する。
【0212】
一方、前記周方向に沿った前記第2端部の幅は、同方向における第1供給口の開口幅に対して0以上2倍以下に設定してある。第1供給口からメイン燃焼用流路に噴出された燃料ガスは、多少は拡散しながら径方向外方に流通する。しかし、燃料ガスの噴出速度、あるいは、メイン燃焼用流路の径方向の寸法等種々の条件によって、前記第2端部の近傍に到達した燃料ガスの拡散状態には差が生じる。すなわち、当該拡散の程度に応じて燃料ガスに衝突させる空気の量を加減し、メイン燃焼用流路の全体において混合気の当量比が一定となるようにするのである。
【0213】
勿論、第2端部の幅は、ゼロでも構わない。すなわち、第2端部の近傍において、燃料ガスに空気を大量に衝突させ、攪拌効果を増大させたい場合には、前記第2端部の幅をゼロに設定する。しかし、第2端部の近傍において既に燃料ガスの拡散が進んでいるような場合であって、空気流を直に衝突させたのではメイン燃焼用流路の最外方まで燃料ガスを拡散させることが困難であるような場合には、前記第2端部の幅を、例えば第1供給口の幅の2倍に設定するのである。
【0214】
本発明の参考例であれば、メイン燃焼用流路の径方向における燃料ガスの拡散程度を加減することができるため、メイン燃焼用流路における混合気の当量比を均一化することができ、ガス供給手段を第1供給口における圧力損失が小さな手段としながら、低NOx化を実現することができる。
【0215】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、多孔質の壁部を有する中空筒状の燃料供給部材を、前記第1供給口に取り付けて構成することができる。 つまり、本発明の参考例のように、多孔質の燃料供給部材を燃料ガスの前記第1供給口に取り付けておけば、燃料ガスがメイン燃焼用流路の径方向、言い換えればメイン燃焼用流路の流路断面方向に沿って移動する間に、燃料供給部材の壁部に形成した多孔から燃料ガスが徐々に噴出されるから、燃料ガスをメイン燃焼用流路の全体に均等に分散させることができる。
【0216】
ただし、本発明の参考例で用いる多孔質体は、燃料供給に際しての圧力損失を防止する必要上、粗い多孔を備えたものが好ましい。つまり、本発明の参考例で用いる燃料供給部材は、燃料ガスが径方向外方に流通する際に、容易に拡散してしまうのを抑制できる程度のものでよい。例えば、当該燃料供給部材が前記空気の流れの中に配置された場合には、当該空気流が燃料供給部材の内部に容易に侵入できる程度の多孔を備えておく。
【0217】
このような燃料供給部材を設けると共に、当該燃料供給部材の上流側に前記第1遮断体を設けることで、これら両部材が有する燃料ガスの拡散抑制効果が相乗されて、メイン燃焼用流路の外方まで燃料ガスを確実に拡散させることができるのである。
【0218】
更に、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記流体分配器が、前記メイン燃焼用流路に設けられ、外表面部に前記第1供給口が形成されていると共に、内部に前記供給路と前記空気供給手段から供給される空気を前記パイロット燃焼用流路に導く空気導入路(酸素含有ガス導入路の代表例)とが形成された分配部材により構成され、前記分配手段が、前記分配部材内において、前記空気導入路内の前記空気の流れ方向に交差する方向で前記空気導入路内に前記燃料ガスを噴出する第2供給口と、前記第2供給口からの噴出した前記燃料ガスを受け入れて前記第1供給口に導く連通路とを前記供給路に備えると共に、前記第2供給口の噴出方向で設定間隔を隔てて対向する箇所に前記第2供給口に向かって開放する状態に前記連通路の受入れ口を配置して構成することができる。
【0219】
つまり、メイン燃焼用流路に前記分配部材を設け、その分配部材の内部に形成され前記パイロット燃焼用流路に空気を導入するための空気導入路の壁部に、燃料ガスを空気導入路に噴出させる第2供給口と、前記空気導入路を介して第2供給口と対向し、前記燃料ガスの噴出が方向付けられる分配部材内の空気導入路の壁部に受入れ口が設けられており、その受入れ口は、分配部材の外表面に形成されている第1供給口に連通路を介して接続されている。
【0220】
すなわち、分配部材内の供給路に供給された燃料ガスは、第2供給口を介して空気導入路に受入れ口側に向かって噴出されることになる。
【0221】
そして、分配部材内の空気導入路において噴出された燃料ガスが存在するガス供給領域において、空気導入路を横断する燃料ガスの一部が空気導入路の空気の流れにさらわれて、パイロット燃焼用流路側に流れるが、残部が空気導入路の空気の流れを貫流して、受入れ口を介して第1供給口に到達し、メイン燃焼用流路へ供給されることになる。
【0222】
詳しくは、第2供給口から空気導入路内に噴出された燃料ガスのうち受入れ口から連通路内に移入した燃料ガスは、連通路を介して第1供給口に導かれてメイン燃焼用流路に供給される一方、受入れ口に移入しなかった燃料ガスは、空気導入路からパイロット燃焼用流路に供給される。そして、第2供給口から噴出された燃料ガスの供給流量が多くて流速が速いほど、噴出された燃料ガスが受入れ口に移入する比率が多くなり、その結果、燃料ガスの供給流量が多いほど、第1供給口側、つまり、メイン燃焼用流路側への燃料ガスの分配比率が大きくなり、逆に、燃料ガスの供給流量が少ないほど、メイン燃焼用流路側への燃料ガスの分配比率が小さくなる。
【0223】
したがって、バーナ装置において、簡単な構造で流体分配器の分配手段を構成できるようになった。
【0224】
さらに、本発明の参考例としてのバーナ装置は、上記のバーナ装置の構成にくわえて、前記分配部材が、板面を前記メイン燃焼用流路の前記酸素含有ガスの流れ方向に沿わせる姿勢で前記メイン燃焼用流路内に配置した板状の部材であることが好ましい。
【0225】
このように、メイン燃焼用流路に分配部材を設けると、メイン燃焼用流路内の空気の流れが乱れることがあるが、この分配部材を前記空気の流れ方向に副った板面を有する板状の部材として構成することで、メイン燃焼用流路の空気の乱れをできるだけ小さくすることができる。
【産業上の利用可能性】
【0226】
以上のように、本発明に係るバーナ装置は、特に、発電等を行うガスタービンエンジンや、このようなガスタービンエンジンを備えたコジェネレーションシステムや、焼却炉等に用いるバーナ装置に適している。

【特許請求の範囲】
【請求項1】
第2流路を規定する内筒と、前記内筒を外囲する第1流路を規定する外筒とを備え、前記第1流路及び前記第2流路に酸素含有ガスを供給するための酸素含有ガス供給手段と、前記第1流路及び前記第2流路にガス流路の燃料ガスを供給するガス供給手段とを備え、前記第1流路及び前記第2流路の何れか一方をメイン燃焼用流路とし、他方をパイロット燃焼用流路として、前記メイン燃焼用流路及びパイロット燃焼用流路に燃料ガスを供給して燃焼させるバーナ装置であって、
前記メイン燃焼用流路内に前記燃料ガスを供給するための第1供給口が、前記メイン燃焼用流路において、前記酸素含有ガスの流れ方向に直交する方向よりも前記酸素含有ガス流れ方向の上流側に向かって燃料ガスを噴出する姿勢に設けてあることを特徴とするバーナ装置。
【請求項2】
前記第1供給口が、前記メイン燃焼用流路において、前記酸素含有ガスの流れ方向に対して逆方向に前記燃料ガスを噴出する姿勢に設けてあることを特徴とする請求項1に記載のバーナ装置。
【請求項3】
前記第1流路を前記メイン燃焼用流路とし、前記第2流路を前記パイロット燃焼用流路としたことを特徴とする請求項1又は2に記載のバーナ装置。
【請求項4】
前記メイン燃焼用流路内に前記燃料ガスを供給するための第1供給口と、前記第1供給口に前記ガス流路内の前記燃料ガスを供給するための供給路と、前記供給路に前記ガス流路からの前記燃料ガスの総供給流量の増加に伴い前記第1供給口側への前記燃料ガスの分配比率を増加させ、逆に、前記総供給流量の減少に伴い前記第1供給口側への前記燃料ガスの分配比率を減少させるように前記パイロット燃焼用流路内に前記燃料ガスを分配供給する分配手段とを有する流体分配器の複数個を、前記メイン燃焼用流路及びパイロット燃焼用流路の周方向に分散配置して前記ガス供給手段を構成してあることを特徴とする請求項1又は2に記載のバーナ装置。
【請求項5】
請求項1又は2に記載のバーナ装置を備え、前記バーナ装置から排出される燃焼排ガスの運動エネルギによりタービンを回転させるガスタービンエンジン。
【請求項6】
請求項5のガスタービンエンジンを備え、前記タービンを回転させ排出された排ガスの熱を回収する熱回収装置を備えたコジェネレーションシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate


【公開番号】特開2013−32906(P2013−32906A)
【公開日】平成25年2月14日(2013.2.14)
【国際特許分類】
【出願番号】特願2012−242546(P2012−242546)
【出願日】平成24年11月2日(2012.11.2)
【分割の表示】特願2011−243969(P2011−243969)の分割
【原出願日】平成12年12月11日(2000.12.11)
【出願人】(000000284)大阪瓦斯株式会社 (2,453)
【Fターム(参考)】