説明

リン酸塩結合剤としての、混合または硫酸金属塩化合物

【課題】本発明は、アルミニウムを含有せず、pH2〜8の範囲にわたって存在するリン酸塩の総重量の少なくとも30重量%のリン酸塩結合能を有する混合金属化合物を含有する医薬組成物、並びに該混合金属化合物を含有するリン酸塩と結合するための薬剤を提供することを目的とする。
【解決手段】本発明は、アルミニウムを含有せず、金属鉄(III)並びにマグネシウム、カルシウム、ランタンおよびセリウムのうちの少なくとも1つを含み、そしてヒドロキシルアニオンおよび炭酸アニオンの少なくとも1つを含む混合金属化合物、を含有する医薬組成物に関する。本発明はまた、アルミニウムを含有せず、金属鉄(III)並びにマグネシウム、カルシウム、ランタンおよびセリウムのうちの少なくとも1つを含み、そしてヒドロキシルアニオンおよび炭酸アニオンの少なくとも1つを含む混合金属化合物、を含有するリン酸塩と結合するための薬剤に関する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、医薬的利用のための、特にリン酸塩結合剤としての金属化合物、特にアルミニウムを含有しない金属化合物に関連する。
【背景技術】
【0002】
広範囲にわたる医薬的利用において使用するためのカルシウムおよび硫酸塩を含有する混合物または錯体が開示されている(例えば、特許文献1参照)。該混合物または錯体は、水溶液または合成シンゲナイト(CaSO・KSO・HO)物質の形態である泥炭由来の無機組成物である。それらがリン酸塩と結合する能力に関する言及はない。
【0003】
【特許文献1】国際公開第94/09798号パンフレット
【0004】
血液透析している腎臓障害を持つ患者(世界中に6,000,000人)では、血漿中のリン酸塩の濃度は劇的に上昇し、そういった高リン酸塩血症のため軟部組織中にリン酸カルシウム塩の蓄積を生じ得る。現在では、血漿のリン酸塩レベルを無機および有機のリン酸塩結合剤を経口摂取することによって低下させる。英国における最も一般的な処置としては、不溶性のリン酸アルミニウムを形成する水酸化アルミニウムゲルの使用(「アルドロックス(Aludrox)」を4g/日)が挙げられる。しかしながら、このものは、Alの蓄積に起因した更なる毒性の合併症(例、ヘモグロビン産生の低下、骨の自然修復や形成の欠落、および神経学的機能/認識機能の欠陥の可能性)を引き起こす。水酸化アルミニウムゲルと比較してリン酸塩を結合する能力の改善が、他のアルミニウム化合物(例えば、微結晶性のオキシヒドロキシアルミニウム(ベーム石))を用いて達成されており、またあるハイドロタルク石が調製されている(例えば、非特許文献1参照)。しかしながら、そういった化合物により、腎臓障害を持つ患者において許容できない量のアルミニウムが蓄積するようになる。pHが6〜9の時に溶解性に乏しいカルシウム化合物(例、炭酸カルシウム、水酸化カルシウム、酸化カルシウムおよび/または硫酸カルシウム)を胃液に対して耐性である薬剤の形態で使用することが知られている。しかしながら、例えば炭酸カルシウムを用いた場合、リン酸塩を除去するインビボ能力が比較的低いために多くの用量が必要であることが知られているが、そのような多くの用量はまた投与することが困難である。更に、このことはカルシウム摂取が高いことに関係する合併症を起こし得る。経口摂取されたリン酸塩を例えば、酸化第二鉄、オキシヒドロキシ第二鉄およびヒドロキシ第二鉄から選ばれるオキシ鉄化合物と接触させることで、高リン酸塩血症を患いまたは素質がある患者の血清リン酸塩レベルを調節することが提案されている(例えば、特許文献2参照)。同様に、スペングラー等は、オキシヒドロキシ鉄(III)で修飾したデキストラン錯体を使用した高リン酸塩血症の処置を提案している(例えば、非特許文献2参照)。しかしながら、行なわれた試験では、動物に対して極端に高い用量を与えている。その上、多くの無機製剤は、限られたpHの範囲、特に約3〜5の酸性のpHの範囲でのみ有効なリン酸塩結合剤である。pHが3の時に有効なそういった現在のリン酸塩結合剤は、より下流の菅(例えば、十二指腸およびその下部)でみられかつそこでもリン酸塩との結合が少なくともある程度に起こり得るようなより高いpH(例、≧7)で、必ずしも同じ位有効に結合するとは限らない。その上、特にアルカリ性の結合剤は、それらがリン酸塩と結合する能力を有しない高レベルにまで、胃のpHを緩衝化し得る。
【0005】
【特許文献2】国際公開第92/01458号パンフレット
【非特許文献1】オオクボ(Ookubo)等著、ジャーナル・ファーマシューティカル・サイエンス(Journal Pharmaceutical Sciences)、1992年11月、81(11)、p.1139−1140
【非特許文献2】スペングラー(Spengler)等著、ネフロール・ディアル・トランスプラント(Nephrol. Dial. Transplant.)、1996年、11巻、p.808−812
【0006】
従って、血流中にアルミニウムを遊離せず、長期にわたり副作用がなく、比較的低い用量で投与可能であり、かついわゆるpHが2〜8の広範囲にわたって有効であるといったリン酸塩結合剤が緊急にかつ広範囲にわたって必要とされている。
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の目的は、血流中にアルミニウムを遊離せず、長期にわたり副作用がなく、比較的低い用量で投与可能であり、かついわゆるpHが2〜8の広範囲にわたって有効であるといった、医薬組成物およびリン酸塩結合剤を提供することにある。
【課題を解決するための手段】
【0008】
本発明者は、驚くべきことにアルミニウムを含有しない特定の混合金属化合物が、pHが2〜8の範囲にわたって、存在するリン酸塩の総重量の少なくとも30重量%を結合し得ることを見出した。
【発明の効果】
【0009】
本発明の混合金属化合物は、アルミニウムを含有せず、pH2〜8の範囲にわたって、存在するリン酸塩の総重量の少なくとも30重量%のリン酸塩結合能を有するため、該混合金属化合物を有効成分とする、新規な医薬組成物の提供を期待することができる。さらに、本発明は、該混合金属化合物を有効成分とする、新規なリン酸塩と結合するための薬剤の提供をも期待することができる。
【発明を実施するための最良の形態】
【0010】
従って、第1の態様によれば、本発明はアルミニウムを含有せず、かつpHが2〜8の範囲にわたって、存在するリン酸塩の総重量の少なくとも30重量%の、リン酸塩を結合する能力を有する医薬に使用するための混合金属化合物を提供する。
【0011】
第2の態様によれば、本発明は、高リン酸塩血症を処置するための薬剤の製造において、アルミニウムを含有せず、かつpHが2〜8の範囲にわたって、存在するリン酸塩の総重量の少なくとも30重量%の、リン酸塩を結合する能力を有する混合金属化合物の使用を提供する。
【0012】
そのような混合金属化合物は鉄(III)並びにマグネシウム、カルシウム、ランタンおよびセリウムのうちの少なくとも1つを含有し得る。
【0013】
好ましくは、該混合金属化合物は、ヒドロキシルアニオンおよび炭酸イオンの少なくとも1つを含有し、更に硫酸塩、塩化物および酸化物のうちの少なくとも1つを場合により含有する。
【0014】
マグネシウムおよび鉄の各々を含有する混合金属ヒドロキシ炭酸塩はハイドロタルク石構造であることが好ましいと考えられる。そのような混合金属化合物としては、乾燥操作を行なっていないエージングしていないハイドロタルク石を使用することが一般的に好ましい。
【0015】
しかしながら、エージングの有無に関わらず等しく効果的であると思われる混合のカルシウム/鉄(III)の混合金属化合物を使用することがより一層好ましい。
【0016】
Ca2+:Fe3+の比率は少なくとも2:1が好ましく、少なくとも3:1であることがより一層好ましい。
【0017】
別の好ましい化合物はCa2+、Mg2+およびFe3+を3:3:2の比率で含有することがより好ましい。
【0018】
本発明者は、カルシウムがリッチな化合物について更に調べたところ、例えば無水硫酸カルシウムは不十分なリン酸塩結合剤であるが、硫酸カルシウム(例えば、無水硫酸カルシウム)をアルカリ物質で処理した後では、それらは非常に有効なリン酸塩結合剤となることを見出した。この結果は特に驚くべきことである。
【0019】
我々はまた、硫酸ランタンおよび硫酸セリウムの各々も同様に挙動すると考える。
【0020】
従って、別の態様によれば、本発明は、薬剤として使用するための硫酸金属塩物質であって、該硫酸金属塩物質がアルカリ溶液(水酸化アルカリ水溶液が好ましく、水酸化ナトリウムがより好ましい)で処理した硫酸カルシウム化合物、硫酸ランタン化合物および硫酸セリウム化合物のうちの少なくとも1つから選ばれ、該物質が固体の物質(特に、固体物質または液体(特に、水性、媒体)中の固体物質の懸濁液)を含む硫酸金属塩物質を提供する。
【0021】
更に本発明の別の態様によれば、高リン酸塩高血症の処置のための薬剤を製造する方法における、アルカリ溶液で処理した、硫酸金属塩(このものは、硫酸カルシウム化合物、硫酸ランタン化合物および硫酸セリウム化合物のうちの少なくとも1つから選ばれる)の使用を提供する。
【0022】
更に別の態様によれば、本発明は、硫酸金属塩物質を製造するための方法であって、該方法が硫酸金属塩(このものは、硫酸カルシウム、硫酸タンタルおよび硫酸セリウムのうちの少なくとも1個から選ばれる)をアルカリ溶液で処理することを含む方法を提供する。
【0023】
本発明の好ましい実施態様については、ここで下記の実施例(比較試験をも含む)およびグラフ表現により詳細に記載する。
【実施例1】
【0024】
予備的調査
有効なリン酸塩結合剤として知られる下記の表1に示す化合物を、調査の対象として選んだ。表1中、値はpH3、pH7およびpH8の各々でのリン酸塩と結合する能力のそれぞれのパーセンテージを、nは各化合物について行なった試験回数を示す。表中、CT100は Crosfield Limited社 (UK)から商業的に入手可能な、式がAlMg(OH)16・CO・4HOのハイドロタルク石であり、またCT2000は乾燥していないスラリー形態であるCT100化合物である。
【0025】
それら化合物(3.2mmol)をリン酸塩緩衝液(20mmoll−1、25mL)と25℃で30分間混合することによって、リン酸塩と結合する能力を測定した。CT2000以外の乾燥粉末の全化合物については、単に該化合物を計量し、調薬した。CT2000については、重量が一定になるまで40℃で乾燥した粉末の1gと等量となるような量で、該スラリーを調薬した。リン酸ナトリウムおよびリン酸水素ナトリウムを混合して、pH3、7および8(HClを加えてpH3とする)での各リン酸塩溶液を得た。該結合剤を遠心分離(5分間、3000rpm)により溶液から分離し、フィルター(0.22μm)を通してろ過して上清液を得、次いでそのうちのリン酸塩含有物をベーリンガー・マンハイム・ケミストリー(Boehringer Mannheim chemistry)を備えた911日立自動分析を用いて測定した。該結果はを表1中に示すが、ここでnは観察回数を意味し、値は溶液から沈殿したリン酸塩について下記の通り計算した、計算値(%)を示す。
100−[(x/y)100]
(式中、x= 沈殿後の溶液中のリン酸塩(mmol);および
y= 沈殿させない場合の溶液中のリン酸塩(mmol))
【表1】

【0026】
表1から明らかな通り、ハイドロタルク石様の各物質はより広範囲なpHにわたってかなり高いリン酸塩との結合能力を有していた。
【0027】
pH3、5および7でのCT化合物とAl(OH)についての用量関係の曲線は、CT化合物が等量のAl(OH)と比べて少なくとも2倍以上のリン酸塩と結合することを示した。
【0028】
Al(OH)はAl3+を20,000〜41,000μgl−1量だけ遊離した。その上、CT化合物はかなり少ない量(17〜66μgl−1)を遊離するが、この遊離のためになお長時間にわたり量を摂取した場合に副作用を生じることとなる。
【0029】
それにも関わらず、オオクボ(Ookubo)(上述)によって示唆されている通り、リン酸塩と結合する化合物の構造中にAl3+を含有することが必要であると未だ考えられている。しかしながら、上記に記載の試験と同様の試験において、等量のFe3+で置換する以外はCT100を製造するのに用いるのと同様な様式で製造した化合物(下記の実施例3を参照)が、特にpH3でリン酸塩と結合する優れた能力を与えることから、アルミニウムを遊離する危険がなくて〜70%のリン酸塩と結合する能力を達成可能となった。
【実施例2】
【0030】
混合金属のヒドロキシ炭酸塩の比較実験
試験した化合物は以下の通りである:
(1) Mg:Fe(比率は2:1)を含有するヒドロキシ炭酸塩
(2) Mg:Fe(比率は3:1)を含有するヒドロキシ炭酸塩
(3) Ca:Fe(比率は3:1)を含有するヒドロキシ炭酸塩
(4) Ca:Mg:Fe(比率は3:3:2)を含有するヒドロキシ炭酸塩
(5) CT100、すなわち式がAlMg(OH)16・CO・4HOのハイドロタルク石(Crosfield Limited社から商業的に入手可能)
(6) テルル鉛こう、すなわち水性のスラリー形態のCT100と同じ式のハイドロタルク石(ルーセル(Roussell)より商業的に入手可能)
(7) 水酸化マグネシウム
(8) 水酸化アルミニウム。
【0031】
リン酸塩と結合する能力の測定方法
下記に示す通り、リン酸塩と結合する能力を測定する下記の方法を採用した:
方法1
下記の実施例3に記載の通り、リン酸塩結合剤化合物の各々1グラムを(湿性ケーキ化合物の水和を考慮する)を、pH3、pH5またはpH7に調節したリン酸ナトリウム緩衝液(25mL、40mmoll−1)中に加えた。均一となるように試料を渦巻き混合し、室温で30分間静かに撹拌した。遠心分離(3000rpm)を5分間行なった後、上清液を0.22μmミリポアフィルターを通してろ過した。該上清液中の可溶なリン酸塩を測定した。ハイドロタルク石によって結合したリン酸塩のパーセンテージを計算した。
【0032】
方法2
リン酸塩緩衝液(20mmoll-1)を使用する以外は方法1と同様である。
【0033】
方法3
ミルク(250ml)、コーンフレーク(50g)、パン(2切れ)およびマーマイト(marmite)(5g)をHCl(0.01M)(胃のなかの条件をシミュレートする目的)を入れた胸衣中で30分間混合した。食物の一部(20mL)を取り出し、遠心分離を行なった。上清液中のリン酸塩を測定した。2gのリン酸塩結合剤の化合物を該食物のバルクスラリーに加え、更に30分間混合した。該食物の一部を取りだし、遠心分離後の上清液中のリン酸塩を測定した。更に30分および90分間撹拌後、更に一部を取り出した。
【0034】
上記の各方法において、乾燥粉末である各化合物(1)〜(4)をリン酸塩結合剤として調合し、重量が一定になるまで40℃で乾燥後に測定したある用量について、結合したリン酸塩を測定した。湿性のケーキを調薬する(またはテルル鉛鉱(Altacite)(6)を加えた)場合、40℃でのある一定の乾燥重量に対する等量を使用した。公知の商業的に入手可能な結合剤については、供給物質のある重量を使用した。
【0035】
結果
実施例1:混合金属化合物がリン酸塩と結合するパーセンテージにおよぼすpHおよびエージングの効果
リン酸塩と結合する化合物を湿性スラリーの形態で製造した。非エージングの試料については該湿性スラリーをろ過および洗浄することにより湿性ケーキを形成させることで得、一方エージング試料については該ケーキをろ過する前に該湿性スラリーを80℃まで2時間加熱することによって得、次いでこのものについて試験した。pHが3〜7の範囲にわたって、エージングまたは非エージングの場合の該化合物がリン酸塩と結合するパーセンテージをこの方法で調べた。
【0036】
方法1はリン酸塩と結合する能力を測定するのに使用した。その結果を図1に示す。
【0037】
Ca:Fe(3:1)化合物(3)は、pHと無関係にほとんど100%のリン酸塩と結合した。エージング化合物と非エージング化合物の間には差異はなかった。
【0038】
比率が2:1(製法1)および3:1(製法2)のMg:Fe化合物(1)および(2)は、pHが3〜7の範囲であることとは無関係に別個にリン酸塩と結合した。非エージング化合物は、pHが3〜7の時にエージング化合物よりも良好なリン酸塩結合剤であった。
【0039】
Ca:Mg:Fe化合物(4)もまたpHとは無関係にリン酸塩と結合した;再び、非エージング化合物はエージング化合物よりも良好であった。
【0040】
実施例2:混合金属化合物がリン酸塩と結合するパーセンテージにおよぼすpHおよび乾燥の効果
pHが3〜7の範囲にわたって、乾燥粉末または湿性(ケーキ)形態で使用した化合物がリン酸塩と結合するパーセンテージを調べた。
【0041】
方法1はリン酸塩と結合する能力を測定するのに使用した。その結果を図2に示す。
【0042】
非エージング化合物について、湿性(ケーキ)形態または重量が一定になるまで乾燥後のものについて比較した。各化合物の1グラム重量を比較実験に使用した(例えば、ハイドロタルク石が20%の乾燥重量(40℃での一定の乾燥重量を基準に計算)であるならば、湿性(ケーキ)化合物の水和を考慮して、5gを使用した)。
【0043】
差異がないCa:Fe(3:1)化合物(3)以外の全ての場合において、化合物の湿性(ケーキ)形態は乾燥粉末形態よりも良好なリン酸塩結合剤であった。湿性または乾燥形態であることに関わらず、化合物(1)〜(4)の全てはpHと無関係にリン酸塩と結合した。湿性化合物が乾燥粉末化合物よりも多くのリン酸塩と結合するようなエージング化合物を使用した場合、同様な結果を得た。
【0044】
実施例3:pH3で様々な化合物がリン酸塩と結合するパーセンテージにおよぼす、リン酸塩結合剤の化合物の重量を増加した場合の効果
方法2はリン酸塩と結合する能力を測定するのに使用した。結果を図3に示す。pH3では、Mg(OH)である化合物(7)は最も良いリン酸塩結合剤であった。しかしながら、他の研究では、pH8でリン酸塩とほとんど結合せずに、この結合がpHに依存することを示した。したがって、そのものはインビボでは使用が限られる。
【0045】
Mg:Fe(2:1)(1)、Ca:Fe(3:1)(3)およびCT100(5)の全化合物は、リン酸塩の60〜70%まで結合した。興味深いことに、CT100は、同一の分子式にも関わらず、いずれの重量でもテルル鉛こう(6)よりも〜50%より強く結合した。
【0046】
Al(OH)、すなわち血清リン酸塩レベルをコントロールするのに使用されることが多いリン酸塩結合剤は、試験した重量の範囲では比較的有効ではなかった。
【0047】
実施例4:pH7で様々な結合剤がリン酸塩と結合するパーセンテージに及ぼす、リン酸塩と結合する化合物の量を増加した場合の効果
方法2はリン酸塩と結合する能力を測定するのに使用した。該結果を図4に示す。
【0048】
pH7で、Ca:Fe(3:1)化合物(3)は研究した重量の範囲で最も良いリン酸塩結合剤であった。CT100(5)は、研究したいずれの重量においてもテルル鉛鉱(6)よりも少なくとも2倍以上の量のリン酸塩と結合した。
【0049】
実施例5:食物中のリン酸塩の結合
方法3はリン酸塩と結合する能力を測定するのに使用した。該結果を図5に示す。
【0050】
該結果は、食物中でCT100(5)は最も良いリン酸塩結合剤であり、Mg:Fe(2:1)化合物(1)が2番目であることを示した。再び、水酸化アルミニウム(8)は有効でなかった。興味深いことに、pH3で最も良いリン酸塩結合剤である水酸化マグネシウム(7)は、食物中で使用した場合、一番良いわけではない。このことは、おそらく食物の緩衝効果、つまりスラリーの開始時のpHが〜5であることに起因するであろう。したがって、そのことはリン酸塩結合剤として水酸化マグネシウムを使用することがpHに依存することを示している。
【0051】
要約
結局、下記の結果が実証された:
Mg:FeおよびCa:Fe化合物(1)〜(4)は胃腸菅中で見られるpHの範囲にわたって、有効なリン酸塩結合剤であった。
CaFe化合物(3)以外の、MgFeおよびMgCaFe化合物(1)、(2)および(4)によるリン酸塩との結合は、化合物をエージングすることによって減少した。
CaFe化合物(3)以外の、MgFeおよびMgCaFe化合物(1)、(2)および(4)は乾燥することにより、それらのリン酸塩との結合が減少した。
公知のハイドロタルク石化合物であるCT100(5)は、インビトロ研究において食物中のリン酸塩と結合した。正常な個体にインビボで与えた際、尿のリン酸塩排出量も減少した。しかしながら、新規な化合物(1)〜(4)が水中で、CT100(5)と少なくとも同じ位、かつAl(OH)(8)よりも数倍良く結合したので、我々はそれらがインビボでリン酸塩と結合することも期待する。これら化合物はアルミニウムを遊離しないという別の利点を有する。
これら新規化合物(1)〜(4)は、末期の腎臓障害を持つ患者の血清リン酸塩レベルの制御において治療学的な潜在能力を有する。
【実施例3】
【0052】
リン酸塩と結合する能力の更なる検証
製造方法および測定方法
下記の実験において、全化学品はBDHから入手したGPRグレードであった。ミリポアフィルターをAmicon, High Wycombeから入手した。
【0053】
M1. 金属共沈物の製造
下記の方法を使用して全製剤を製造した。その方法では、個々のカチオンM2+:M3+としてMg2+:Al3+の比率が3:1の場合、ハイドロタルク石であるAlMg(OH)16・CO・4HOを生成した。
【0054】
2+カチオンとしてカルシウムまたはマグネシウム、およびM3+カチオンとして鉄(III)イオンを使用することにより、種々の上記の課題の変更を達成できた。M2+:M3+カチオンの比を1:1、2:1、3:1および5:1に変えることによって、異なる組成の物質を製造可能であった。しかしながら、全化合物は交換可能なアニオンとしてCO2−を有していた。
【0055】
2+:M3+の比率が3:1の場合、M3+(2mol)を含有する塩およびM2+(6mol)を含有する塩を、脱イオン水(4L)中に溶解した。別の4L中に、NaOH(16mol)およびNaCO(5mol)を溶解した。両方の溶液をぜん動ポンプを用いて〜2Lの流量でフラスコ中にポンプで加え、常に混合した。溶液を添加する速度は、混合した溶液のpHが10.0〜10.5となるようにした。定常状態を確立するまでの最初の1Lを廃棄した後、溢出スラリー(3〜4L)を集めた。次いで、このものをブフナーを用いて真空ろ過し、脱イオン水で洗浄、再びろ過することによって湿性の「ケーキ」が残存した。
【0056】
それらの製造に使用した製剤名および溶液/懸濁液の組成を表2に示す。M2+塩として使用した硫酸カルシウムが不溶であるために、沈降を防止するために常に撹拌を要した。
【0057】
M2. 金属沈殿物の混合物の製造
表1に記載した溶液/懸濁液中の金属を、水酸化ナトリウムを添加することによって同時に沈殿させた。水酸化ナトリウムを用いてカルシウムおよび鉄を別々に沈殿させることによっても製剤を調剤し、次いで該沈殿物を混合した。このため、Fe(SO)(1mol)およびNaOH(6mol)を脱イオン水(4L)中で混合した。別の水(4L)中で、CaSO(6mol)、NaOH(12mol)およびNaCO(5mol)を混合した。次いで、これら2個の懸濁液を〜2Lの流量でフラスコ中に送り、常に混合した。
【0058】
沈殿懸濁液を添加する速度を変え、混合物のpHを10.0〜10.5とすることは不可能であることが分かった。該混合物のpHは〜11.5と12.5の間を上下した。最初の1Lを廃棄した後、溢出スラリー(3〜4L)を集めた。次いで、このものをブフナーを用いて真空ろ過し、脱イオン水で洗浄、および再びろ過することによって湿性の「ケーキ」が残存した。
【0059】
M3. 金属組成の測定
製剤を洗浄し、乾燥機中〜40℃で乾燥重量が一定になるまで乾燥した。常にpHが1となるまで、1グラムを1MのHClに対して滴定した。溶液中のM2+およびM3+イオンの濃度を測定した。鉄およびカルシウムについては、ベーリンガー・マンハイム・ケミストリーを備えた日立911自動分析を使用し、一方マグネシウムについては炎光原子吸光スペクトル分析を使用した。
【0060】
注意. ここで採用した分析方法は高い精度を有するが、サンプリングの方法は実際の組成の最初のおよその評価を得るようにした;下記に示す結果において、出発物質の割合から予想される比率(収率100%を仮定する)とこの方法で測定された最終製剤の比率とを比較する。
【0061】
M4. リン酸塩との結合の測定
乾燥粉末として調薬する場合の、上記で製造した化合物のリン酸塩との結合を、各場合について1.0グラムの乾燥重量(40℃で重量が一定になるまで乾燥することによって決定した)の用量で測定した。湿性のケーキを調薬した場合、1gの乾燥重量の等量を加えた。従来の結合剤である水酸化マグネシウム、水酸化アルミニウムおよび炭酸カリウムのリン酸塩との結合についても、供する物質を1gだけ用いて測定した。
【0062】
リン酸塩と結合する能力を、pHが3〜8の範囲で、すなわち正常な胃腸管で見られるおよそのpHの範囲にわたって決定した。pH5、pH7およびpH8でのリン酸ナトリウム緩衝液(40mmoll−1)を、適量のNaHPO(40mmoll−1)溶液および適量のNaHPO(40mmoll−1)溶液を混合することによって製造した。NaHPO溶液(40mmoll−1)に1M HClを添加することによって、pH3のリン酸塩溶液を調製した。
【0063】
製剤をリン酸塩緩衝液(40mmoll−1、25mL)中に懸濁し、均一となるように渦巻き混合した。次いで、本懸濁液を室温で30分間穏やかに撹拌し、続いて遠心分離(3000rpm)を5分間行なった。該上清液を0.22μmのミリポアフィルターを通してろ過後、可溶なリン酸塩についてベーリンガー・マンハイム・ケミストリーを備えた911日立自動分析を用いて測定した。
【0064】
結合したリン酸塩について、元の溶液中に存在するリン酸塩のパーセンテージとして計算した。
【0065】
金属共沈物の製剤を製造するのに使用する溶液の組成を下記の表2に示す。
【表2】

【表3】

【0066】
結果
下記の結果を得た。
R1. 製剤中の金属組成の予想値および測定値
元の溶液中の金属イオンの比率が最終製剤中に存在するかどうかをも決定するために、全物質を1M HClを用いて加水分解し、溶液の金属イオン濃度を測定した。結果は下記の表3に示す。これらの結果は上記で製造した化合物が実際の混合金属化合物であると示している。
【表4】

【0067】
R2. リン酸塩との結合
R2.1 カルシウムおよび鉄(III)を含有する製剤
鉄(III)に対して異なる比率のカルシウムを含有する製剤について、それらのリン酸塩と結合する能力を調べた。
【0068】
結果の再現性をCa2+:Fe3+の3:1の予想比に関して実証し、これを下記の表4に示し、異なる比率の場合に得られた結果を下記の図6および表5に示す。
【0069】
図6に示すグラフ中、プロットした値は2個の別々の実験の平均値である。
【0070】
(i)予想比が3:1のCa2+:Fe3+
予想比が3:1である、2個の異なるカルシウム鉄(III)製剤を製造した。製剤2を加水分解した場合、元素分析により、鉄(III)に対するカルシウムの測定比が2.6:1であると分かった。不十分な製剤1の試料しか、加水分解反応用に利用できなかった。
【0071】
各製剤によるリン酸塩結合をpHが3〜8の範囲にわたる2個の別々の実験について調べた。結合は各pHでの両方の製剤について再現された(表4)。溶液中に存在する少なくとも96%のリン酸塩は各pHでの各製剤によって結合した(図5、表4)。
【表5】

【0072】
(ii)Ca2+:Fe3+の予想比が1:1である場合
予想比が1:1である1つのカルシウム鉄(III)製剤を製造した。加水分解した該物質の元素分析により、鉄(III)に対するカルシウムの測定比が1.3:1であることが分かった。
【0073】
溶液中に存在する50%以上のリン酸塩がpHが3〜8で製剤に結合した(図6、表5)。リン酸塩との結合はpHに依存した。該物質はpH3よりもpH8で28%だけ少なくリン酸塩と結合した。
【0074】
(iii)Ca2+:Fe3+の予想比が2:1である場合
予想比が2:1である1つのカルシウム鉄(III)製剤を製造した。加水分解した該物質の元素分析により、鉄(III)に対するカルシウムの測定比が1.6:1であることが分かった。
【0075】
溶液中に存在する少なくとも97%のリン酸塩がpHが3〜8の範囲で結合した(図6、表5)。この場合の結合はpHに依存しなかった。
【0076】
(iv)Ca2+:Fe3+の予想比が5:1である場合
予想比が5:1である1つのカルシウム鉄(III)製剤を製造した。加水分解した該物質の元素分析により、鉄(III)に対するカルシウムの測定比が1.3:1であることが分かった。
【0077】
溶液中に存在する少なくとも95%のリン酸塩がpHが3〜8の範囲で結合した(図6、表5)。この場合の結合はpHに依存しなかった。
【0078】
(v)金属塩化物塩を用いて調剤した、Ca2+:Fe3+の予想比が3:1である場合
硫酸カルシウムが不溶であるために、可溶な塩である塩化カルシウムを用いて、製剤を調剤した。予想比が3:1である1つのカルシウム鉄(III)製剤を製造した。加水分解した該物質の元素分析により、鉄(III)に対するカルシウムの測定比が1.4:1であることが分かった。
【0079】
溶液中に存在する60%以上のリン酸塩がpH3〜8の範囲で結合した(図6、表5)。pH3よりもpH8で31%だけ少なく沈殿して、リン酸塩との結合はpHに依存した。
【0080】
(vi)混合する前に、カルシウムおよび鉄を沈殿することによって調剤した、Ca2+:Fe3+の予想比が3:1である場合
混合前に、カルシウムおよび鉄(III)をそれらの硫酸塩から沈殿させることによってリン酸塩と結合する物質が得られるかどうかを決定する目的で、製剤を調剤した。本化合物はM2の方法のようにして製造した。鉄(III)に対するカルシウムの予想比は3:1であるが、酸での加水分解後の測定比は1.1:1であった。
【0081】
溶液中に存在する75%以上のリン酸塩がpHが3〜8の範囲で結合した(図6、表5)。pH3よりもpH8で8%だけ少なくリン酸塩と結合して、この場合の結合は若干程度pHに依存した。
【表6】

【0082】
R2.2 マグネシウムおよび鉄(III)を含有する製剤
鉄(III)に対して異なる比率のマグネシウムを含有する多数の製剤について、それらのリン酸塩と結合する能力について調べた。
【0083】
結果の再現性を各場合について実証し、これら結果を表6〜8に示し、結果の比較について図7に示す。
【0084】
(i)Mg2+:Fe3+の予想比が3:1である場合
予想比が3:1である4つのマグネシウム鉄(III)の製剤を製造した。製剤1はMg2+:Fe3+の実際の比が2.4:1であった。製剤2、3および4は、Mg2+:Fe3+の測定比がそれぞれ2.2:1、2.2:1および2.3:1であった。
【0085】
製剤1はpHが3〜7の範囲で少なくとも60%のリン酸塩と結合した。製剤2、3および4はpHが3〜8の範囲でそれぞれ少なくとも40%、50%および30%のリン酸塩と結合した(図7、表6)。製剤4によるリン酸塩結合は再現性があった(表6)。製剤1、2および3に関する結合実験を意図する物質の量が不足のため、実験は1回だけ行なった。
【0086】
pHが3〜8の全範囲にわたって研究した3個の製剤は、それらのリン酸塩との結合に関してpHに依存することを示した。製剤2および3は、pH3よりもpH8でそれぞれ44%および29%だけ少なくリン酸塩と結合した。製剤4はpH3よりもpH8で平均21%だけ少なくリン酸塩と結合した。
【表7】

【0087】
(i)Mg2+:Fe3+の予想比が2:1である場合
予想比が2:1である2つのマグネシウム鉄(III)製剤を製造した。加水分解後の製剤2の元素分析により、鉄(III)に対するマグネシウムの測定比が1.7:1であることが分かった。製剤1の元素組成を研究するには、試料が不十分であった。
【0088】
製剤1は、pHが3〜7の範囲にわたって60%以上のリン酸塩と結合した。製剤2はpHが3〜8の範囲にわたって30%以上のリン酸塩と再現性をもって結合した(表7、図7)。pH3よりもpH8で平均27%だけ少なくリン酸塩と結合し、この結合はpHに依存していた。
【表8】

【0089】
R2.3 マグネシウム、カルシウムおよび鉄(III)を含有する製剤
(i) Ca2+:Mg2+:Fe3+の予想比が3:3:2である場合
予想比が3:3:2である1つのカルシウム・マグネシウム・鉄(III)製剤を製造した。このものを加水分解した場合、元素分析によりカルシウム:マグネシウム:鉄(III)の測定比が2.9:2.3:2であることが分かった。
【0090】
本化合物は、pHが3〜8にわたる範囲で溶液中の45%以上のリン酸塩と結合した(図7)。2つの別々の実験により、リン酸塩との結合が再現性であることが分かった(表8)。pH3よりもpH8で平均36%だけ低くリン酸塩と沈殿して、結合はpHに依存した。
【表9】

【0091】
R2.4 従来の化合物によるリン酸塩との結合
水酸化アルミニウム、水酸化マグネシウムおよび炭酸カルシウム化合物をも、それらのリン酸塩の結合する能力について調べた。該方法についてはM4中で上述した。
【0092】
全化合物について研究したpHの範囲にわたって2回調べると、再現的なリン酸塩との結合を示し、その結果を下記の図8および表9に示す。図8中、プロットした値は各化合物に関する2個の別々の実験の平均値である。
【0093】
明らかに、リン酸塩との結合はpH8と比べてpH3で、Al(OH)による結合において平均2.4倍増加し、pHに依存した。Mg(OH)はpH8よりもpH3でリン酸塩と平均3.7倍だけ多く結合した。CaCOはpH8よりもpH3でリン酸塩と平均5.9倍だけ多く結合した。
【表10】

【実施例4】
【0094】
リン酸塩結合剤としての硫酸カルシウム
下記の化合物をリン酸塩結合剤として調べた:
1. 水酸化ナトリウムで処理した無水硫酸カルシウム
2. 無水硫酸カルシウム
3. CaSO・2H
4. 鉄(II)/鉄(III)共沈物
5. 鉄(III)沈殿物。
【0095】
1. 水酸化ナトリウムで処理した無水硫酸カルシウム
脱イオン水(100mL)中、室温で30分間、無水硫酸カルシウム(CaSO)(0.1mol)および水酸化ナトリウム(NaOH)(0.2mol)を混合することによって、本製剤を製造した。該混合物を遠心分離(3000rpm)を2分間行ない、上清液を廃棄した。残渣を水(100mL)と5分間混合し、続いて遠心分離(3000rpm)を2分間行なった。該上清液を廃棄し、該洗浄操作を更に3回繰り返した。結果として生じた固体を乾燥重量が一定になるまで60℃で加熱した。
【0096】
2. 無水硫酸カルシウム
商業的に入手可能な無水硫酸カルシウムの粉末を使用した。
【0097】
3. 硫酸カルシウム・二水和物
商業的に入手可能な硫酸カルシウム・二水和物の粉末を使用した。
【0098】
4. 鉄(II)/鉄(III)共沈物
硫酸鉄(II)(FeSO)および硫酸鉄(III)(Fe(SO))を水酸化ナトリウムで共沈させることによって、本製剤を製造して、酸化鉄の水和化合物を得た。Fe2+:Fe3+の予想比は3:1であった。
【0099】
5. 鉄(III)沈殿物
脱イオン水(100mL)中、室温で30分間、硫酸鉄(III)(Fe(SO))(0.1mol)を水酸化ナトリウム(NaOH)(0.3mol)と混合することによって、本製剤を製造した。
【0100】
該混合物について、遠心分離(3000rpm)を5分間行なって、上清液を廃棄した。
【0101】
該沈殿物を水(100mL)と5分間混合することで洗浄し、続いて遠心分離(3000rpm)を5分間行なった。上清液を廃棄し、該洗浄操作を更に3回繰り返した。
【0102】
乾燥重量が一定になるまで、該沈殿物を60℃で加熱した。
【0103】
リン酸塩との結合
上記の物質のそれぞれのリン酸塩と結合する能力を、pH3〜8でリン酸塩溶液(40mmoll−1、25mL)中、各化合物(1g)を用いて、上記実施例3に記載の通り測定した。
【0104】
該結果を下記の表10に示す。
【表11】

【0105】
上記の結果から、第一に、混合金属化合物(各々、鉄(III)カチオン、およびマグネシウムカチオン、ランタンカチオンおよびセリウムカチオンのうちの少なくとも1つを含有し、並びにヒドロキシルアニオンおよび炭酸アニオンのうちの少なくとも1つおよび、場合により硫酸塩、塩化物および酸化物のうちの少なくとも1つを任意に含有することが好ましい)が胃腸菅中の生理学的条件に相当する緩衝液のpHで優れたリン酸塩と結合する能力を有する事が分かる。
【0106】
特に、それらはpHが2〜8、特に3〜7の範囲にわたって優れたリン酸塩と結合する能力を示し、したがってpHが正常には約3〜4、すなわち7以下である(結合剤自身のpHに依存する)胃の領域中(上方の菅)で、およびpHが≧7である下方の菅(例、十二指腸または空腸)中でも優れたリン酸塩と結合する能力を示す。
【0107】
この高い結合する能力を考慮すると、より低い用量が可能である。
【0108】
その上、リン酸塩と結合する化合物が同じ重量であれば、混合カルシウム/鉄(III)化合物は鉄のみを含有する対応する化合物よりも鉄(III)イオンを含有する量は少ない。このために、鉄の少量のインビボ用量で少なくとも同程度のリン酸塩と結合する能力が可能となり、したがって与えた用量まで患者の耐性が上昇するであろう。
【0109】
混合マグネシウム/鉄(III)化合物のリン酸塩と結合する能力も、水酸化マグネシウムと比べてpHに依存する程度はかなり低い。その上、該マグネシウムは安定化する傾向にあり、そのためにインビボ投与の際にマグネシウムの遊離はより低いと予想され、高マグネシウム血症などの副作用の軽減が予想される。同様に、該鉄は安定化する傾向にあり、そのためにインビボでの鉄の遊離はより低いと予想され、インビボでFe3+イオンと衝突することが多いフリーラジカルの形成が低下すると予想され、従って膜組織の損傷は軽減される。
【0110】
特に驚くべきことに、上記結果はアルカリ溶液を用いて処理後の、硫酸カルシウムにも適用されることを見出した。
【実施例5】
【0111】
ラットのインビボ研究における、リン酸塩結合剤としての混合金属のヒドロキシ炭酸塩
物質および方法
特に指示しなければ、下記の化学品:CaSO、Fe(SO)・xHO(工業的グレード)、MgSO、CaCO、NaOH、70%硝酸(再蒸留、純度が99.99%)はBDH/メルク(Poole、UK)から入手のGPRグレードであった。Al(OH)およびMg(OH)をシグマ(Poole UK)から入手した。CT100はCrosfield社(Warrington、UK)から入手した。
【0112】
リリコ(Lilico)社(Betchworth, Surrey UK)から入手した標準的なラットのダイエット食であるラット/マウスの維持No1食物中に、リン酸塩結合剤を混合した。
【0113】
CT化合物の製造
CTFeCaおよびCTFeMgは、Mg2+またはCa2+:Fe3+の予想比が3:1であり、実施例3(M1)に記載の混合金属のヒドロキシ炭酸塩製剤に関する標準的な実験室の操作に従って製造した混合金属のハイドロタルク石であった。この金属2+硫酸塩(6モル)および金属3+硫酸塩(2モル)を脱イオン水(4L)中に溶解した。別々のフラスコ中で、NaOH(16モル)およびNaCO(5モル)を脱イオン水(4L)中に溶解した。該2つの溶液を〜2Lの流量でフラスコ中にぜん動ポンプを用いてポンプで加え、溶液の添加の速度は混合した時に、結果として生成する懸濁液のpHが10.0〜10.5となるようにした。定常状態を確立するまでの時間までの最初の1Lを廃棄した後、溢出物のスラリー(3〜4L)を集めた。このものについてブフナーフラスコを用いて真空ろ過し、脱イオン水(1L)で3回洗浄した。ラットの食物中に混合可能となるように、湿性の「ケーキ」化合物を乾燥重量が一定になるまで50℃で乾燥し、モーターおよび乳棒を用いて粉にした。
【0114】
ラットにおけるインビボ研究
体重が275〜307グラムの範囲にある28匹のラット(Sprague-Dawley strain)を、各4匹の群からなる7個の群に分けた(表11〜14、n=4)。リン酸塩結合剤を1%(w/w)の濃度でラットの食物中に混合した。各群のラットに、7日間無制限にダイエット食のみを与え、かつ制限なく脱イオン水を与えた。次いで、動物の体重を計り、代謝容器(metabowl)(そこでは、コントロールされたダイエット食(18g)を与え、制限なく水を与えた)に24時間移動させた。この期間中、総計24時間の尿および糞便の製造物を集めた。該処置期間の最後には、再び動物の体重を計り、ペントバルビトンナトリウム(sodium pentobarbitone)(サガタール(Sagatal))の60mg/mL溶液を0.1mL/体重(100g)だけ用いて麻酔後、血液試料を頸動脈から得た。
【0115】
糞便および尿の生産
代謝容器のデザインのため、ラットの糞便がダイエット食由来のコントロール食物と混入することは避け難く、またわずかな量の尿も混入していた。したがって、分析前に、食物について遠心分離(1500rpm)を5分間行なうことで、尿と分離した。食物ペレットは廃棄した。混入している微粒食物を、ピンセットを用いて糞便から除き、その大便試料の重さを計った。
【0116】
各動物からの総糞便試料を均一となるように混合し、二つの1グラム部分を重量測定した。重量が一定になるまで凍結乾燥後、その大便の水和のパーセンテージを計算した。
【0117】
総糞便のリン酸塩および金属イオン含有物の測定については、凍結乾燥した糞便をモーターおよび乳棒を用いて粉にし、その200mgをポリプロピレン試験管中で濃硝酸(7mL)を用いて70℃で4時間加熱することで加水分解を行なった。該糞便消化物を、酸で洗浄したナルゲン(Nalgene)容器中で脱イオン水(50mL)に希釈した。
【0118】
可溶な糞便のリン酸塩および金属イオン含有物の測定については、大便の一部(1.5グラム)を脱イオン水(15ml)中に懸濁した。均一とし、かつ遠心分離(3000rpm)を45分間行なった後、該上清液をガラスウールを通してろ過して、混入している微粒子物を除き、−20℃で貯蔵した。
【0119】
分析法
糞便の消化溶液、尿および血清中のリン酸塩、鉄およびカルシウムについては、日立911自動分析機による標準的なベーリンガー・マンハイム・ケミストリーを用いて決定した。糞便の消化溶液、尿および血清中のマグネシウムについては、炎光原子吸光分析を用いて測定した。尿および血清のアルミニウムについては、黒鉛ファーネス(graphite furnace)原子吸光スペクトル分析を用いて測定した。
【0120】
処置する群間での差異を、スチューデントのt−検定(Students t-test)を用いて評価し、p<0.05を有意と考えた。
【0121】
操作
リン酸塩と結合する化合物を添加することで改良した食物が体重の増加に影響を及ぼさないことを確かめる目的で、研究期間中、全動物について毎日体重を計った。7日間の平衡期間中、CTFeCa、CTFeMg、Mg(OH)、CaCOまたはCT100を用いて処理した動物の群は、平均して38〜53グラムの範囲で体重の増加を示した。Al(OH)で処理したラットは平均して3グラムの体重の増加を示した。コントロール群は標準的なRMIダイエット食を食べるのに抵抗を示した(リン酸塩結合剤を添加しない場合)。4日後、それらをコントロールダイエット(リリコ)に交換する必要があった。これらコントロール動物は、この7日の期間中平均して17.5グラムの体重の減少を示した。リリコダイエット中の可溶なリン酸塩について測定を行ない、結合剤を添加しない場合のRMIダイエットの値(7.5μmolg)と同様に、6.8μmolgであることが分かった。
【0122】
その改良したダイエットを7日間与えた後、総計24時間の糞便および尿の排泄物を集めるために、動物を代謝容器に移動させた。食物に対する糞便および尿の混入量が異なる群について同様であることを確認する目的で、各動物に制限した量(18g)のコントロールダイエット(リリコ)を与えた。この期間中、コントロール動物は体重が平均して3グラム増加した。他の動物の群は平均して2〜22グラムの体重の減少を示した。
【0123】
結果
尿および糞便のリン酸塩排泄量の測定
ある量の無機化合物を食物と共に摂食した場合に達成されるリン酸塩の吸収の低下は、尿のリン酸塩含有物の低下、総糞便のリン酸塩含有物の上昇、および可溶な糞便のリン酸塩含有物の低下:総糞便のリン酸塩含有物の比率の低下によって現れてくる(表11)。
【0124】
動物群間での尿のリン酸塩濃度の差異は、尿の量の有意な差異によって説明可能である。従って、腎臓のリン酸塩の排泄量は24時間当りの総重量(μmol)として表される。Al(OH)およびCaCOで処理した動物は、各々1259±279μmolおよび879±25μmol(平均±SEM)のリン酸塩を排泄した(図9、表11)。これらの値はCTFeCa、CTMgFe、CT100またはMg(OH)で処理したラットからの値(各々、平均して71±44μmol、13±4μmol、26±11μmolおよび65±53μmolのリン酸塩)よりも有意に高かった。リン酸塩と結合する化合物で処理した群はいずれも、コントロール(平均466±188μmol)と比べて尿のリン酸塩の排泄量における有意な差異を示した。このことは、コントロール動物による食物摂取の低下によって説明でき、また研究期間中での平均体重の低下によって実証できる。
【0125】
リン酸塩結合剤がラットの胃腸菅中でリン酸塩を沈殿させるかどうかを示す目的で、総大便のリン酸塩(結合物および可溶物)および可溶な大便のリン酸塩(非結合物)を測定した。群間での糞便排出量および糞便の水和量の変化をコントロールする目的で、糞便のリン酸塩を糞便の乾燥重量(g)当りのリン酸塩(μmol)で表す。排便の乾燥重量(g)当りの総(可溶物および不溶物)リン酸塩は、処置したいずれの群の間でも有意な差異はなかった。CTFeCaで処理した動物からの糞便は、コントロール動物またはCaCOで処理した動物よりも有意に少ない量の可溶性リン酸塩を含有していた(表11)。糞便の乾燥重量(g)当りの総リン酸塩の平均量に対する、糞便の乾燥重量(g)当りの可溶なリン酸塩の平均量のパーセンテージは、CTFeCa、Mg(OH)、Al(OH)、CT100およびCTFeMgで処理した動物について各々41.9%、44.8%、55.9%、60.7%および45.0%であった。可溶なリン酸塩はコントロール群においては総計の79.0%を構成し、CaCOで処理した群においては総計の85.5%を構成していた(図10)。これらの結果は、結合剤としてのCT化合物の有効性を実証しており、コントロール動物およびCaCOで処理した動物と比べて利用できるリン酸塩の量が少ないことを示している。
【表12】

【0126】
金属の排泄量および停留量の測定
尿のアルミニウム排泄量、血清のアルミニウム濃度
尿および血清のアルミニウム濃度を、黒鉛ファーネス(furance)原子吸光スペクトル分析を用いて測定した。Al(OH)またはCT100を摂取した動物について、平均的な血清アルミニウム濃度はコントロール動物からの血清アルミニウム濃度よりも有意に高くはなかった(表12)。驚くべきごとに、CTFeCaおよびCTFeMgで処理した動物は、Mg(OH)、Al(OH)、CaCOまたはコントロールで処理した動物よりも共に有意に高い、最大の平均血清アルミニウム濃度を示した。
【0127】
異なる動物群間で総尿量について有意な差異があるため、アルミニウムを排泄量(μg)で表した。Al(OH)で処理した動物について、尿のAl3+の平均排泄量は、他のいずれのリン酸塩結合剤で処理した動物よりも少なくとも2倍高かった(表12)。結合剤がない場合(つまり、コントロールダイエット)に処理した動物は、驚くべきごとにAl(OH)で処理した動物よりも多くのアルミニウムを排泄した。
【0128】
尿のカルシウム排泄量、血清のカルシウム濃度の測定
CaCOで処理した動物からの尿のカルシウムの総排泄量は、コントロール動物、またはCTFeCaもしくはAl(OH)で処理した動物と有意に差異はなかった。CaCOで処理した動物は、Mg(OH)、CT100またはCTFeMgで処理した動物よりも有意に多くの量を排泄した(表13)。
【0129】
コントロール動物およびAl(OH)で処理した動物は、他のいずれの処理を行なった動物よりも有意に高い血清カルシウム濃度を有していた(表13)。CaCOで処理したラットは、Mg(OH)、CT100またはCTFeCaで処理した動物よりも有意に高い血清カルシウム濃度を有していた。
【0130】
尿のマグネシウム排泄量の測定
CT100およびCTFeMg化合物で処理後の尿のマグネシウム排泄量は、コントロール動物と比較して有意ではないが、より高かった(表14)。Mg(OH)を投与後、尿のマグネシウム排泄量はコントロール群または他のいずれかの結合剤で処理した動物よりも有意に高かった。
【0131】
尿および血清の鉄濃度の測定
全ての処理した群からの全ての尿試料において、鉄濃度は用いた方法の検出の限界(>1μmoll−1)であった。
【0132】
リン酸塩結合剤からの鉄の遊離については関心を持たれており、よって血清の鉄濃度を全動物について測定した。しかしながら、いずれの処理した群間での血清の鉄濃度には有意な差異はなかった(表14)。
【表13】

【表14】

【表15】

【0133】
議論と結果
リン酸塩結合剤を長期間、比較的多くの用量で投与した場合、金属イオンの遊離、吸収および毒性が第一の関心事となる。Al(OH)またはCT100で処理した動物における血清アルミニウム濃度は他のいずれの結合剤で処理した動物よりも有意には高くなかった。このことは、ハイドロタルク石(CT100)(6g)を投与して7時間後まで測定した血清アルミニウムが増加しなかったと報告されているヒトの研究と一致する[Van der Voet および de Wolffによる, Clin. Tox.(1986〜87), 24, 545〜553]。摂食したアルミニウム用量のわずか〜0.1%だけが吸収されるので[パエル(Powell)およびトムソン(Thomson)による、Proc. Nutr. Soc., (1993) 52, 241〜253]、大量の血清中の変化を精密に測定するには限界にある。
【0134】
従って、我々は腸菅摂取の指示物質として尿のアルミニウム排泄量を測定した。Al(OH)で処理した動物は、他のいずれの結合剤で処理した動物よりも少なくとも2倍以上のアルミニウムを排泄し、またCT100で処理したラットよりも4倍以上の量を排泄した。しかしながら、アルミニウムの遊離に関するCT100の相対的な利益についての結論は、コントロールからの尿の排泄量が高いために限定される。
【0135】
体内の鉄含有物として関心が持たれている、CTFeCaおよびCTFeMg結合剤由来の鉄の遊離および吸収については、胃腸菅からの吸収によって調節される[McCance および WiddowsonによるLancet, (1937) 2, 680〜684]。そういった鉄を排泄可能であり、1日当りの損失が低く、尿が<−0.1mgであって、皮膚の損失が0.2〜0.3mgであり、かつ糞便が0.6mgであるような生理学経路は存在しない[ボスウェル(Bothwell), Nutr. Ron. (1995), 53, 237〜245]。CTFeCaまたはCTFeMgで処理した動物は、鉄を含有しない結合剤またはコントロールで処理した動物と比較して、血清の鉄の増加が見られず、尿の鉄の排泄量を検出することは全ての群において予想通り限界であった。他のいずれかの結合剤で処理した動物の場合と比較して、CTFeCaまたはCTFeMgで処理した動物における可溶な糞便の鉄はそれぞれ少なくとも66%および113%増加していた。このものが吸収可能かどうかは、複雑な要因(例、非ヘム鉄の摂取に影響を及ぼすダイエット食および鉄の貯蔵する大きさ)のために、本研究の範囲外である[ボスウェルによる上述:クック(Cook)による Am. J. Clin. Nutr. (1990), 51, 301〜308]。しかしながら、血液透析の患者の多くは貧血症であるので、鉄の量の増加は有益であり得る[レムシー(Remussi) および ロッシ(Rossi)によるThe Kidney (Brenner, BM編)中のW. B. サウンダー(Saunders)Philadelphiaによる(1996), 50章, pp 2170〜2186]。
【0136】
様々なマグネシウム塩がリン酸塩結合剤としての有効性を有することが示されている。炭酸マグネシウムは有効な結合剤であることが示されている[O'ドノバン(Donovan)らによるLancet, (1986), 51, 880〜881]が、一方で水酸化マグネシウムは有効でなかったり、あるいは耐性に乏しいことが示されている[ギロット(Guillot)らによるNephron, (1982), 30, 114〜117;オエ(Oe)らによるColin. Nephrol, (1987), 28, 180〜185]。マグネシウムの緩下剤としての効果のために、過剰な投与を避けるように注意を払わなければいけない。本研究において、Mg(OH)、CT100またはCTFeMgで処理したいずれの動物群も、コントロールと比較して糞便の水和の増加を示さず、このことは動物によって許容される用量を示唆する。尿および血清のマグネシウムはともにCTFeMgまたはCT100で処理した動物において上昇が見られず、このことはこれらの化合物からのMgの吸収が低いことを示唆した。
【0137】
要約すれば、低い用量でラットにインビボ投与した場合、CT100、CTFeMgおよびCTFeCaは全て、高い能力を有するリン酸塩結合剤である。鉄、アルミニウムおよびマグネシウムの吸収を評価するのに長期にわたる研究が必要であるが、それらの毒性が限られる傾向にあることが、本研究により示された。これらの化合物は、現在処方されているリン酸塩結合剤の有効な代替物を提供し得る。
【産業上の利用可能性】
【0138】
本発明のアルミニウムを含有せず、リン酸塩結合能を有する混合金属化合物は、医薬的利用、特にリン酸塩結合剤として有効であることを見出した。
【図面の簡単な説明】
【0139】
【図1】図1は、混合金属化合物のリン酸塩の結合のパーセンテージに及ぼすpHおよびエージングの効果を示す図面である。図1中、
【化1】

また、図1〜8のそれぞれにおいて、縦座標(y−軸)は結合したリン酸塩のパーセンテージを示し、横座標(x−軸)はpH等を示す。
【図2】図2は、混合金属化合物のリン酸塩の結合のパーセンテージに及ぼすpHおよび乾燥の効果を示す図面である。図2中、
【化2】

【図3】図3は、pH3で結合したリン酸塩のパーセンテージに及ぼす化合物の重量の増加の効果を示す図面である。図3中、
【化3】

【図4】図4は、pH7で結合したリン酸塩のパーセンテージに及ぼす化合物の重量の増加の効果を示す図面である。図4中、
【化4】

【図5】図5は、食物中で結合するリン酸塩の時間経過を示す図面である。図5中、
【化5】

【図6】図6は、pH3〜8でのカルシウム鉄(III)製剤による、リン酸塩の結合の効果を示す図面である。図6中、
【化6】

【図7】図7は、pH3〜8でのマグネシウム鉄(III)およびカルシウム・マグネシウム鉄(III)製剤による、リン酸塩の結合の効果を示す図面である。図7中、
【化7】

【図8】図8は、pH3〜8での水酸化アルミニウム、水酸化マグネシウムおよび炭酸カルシウムによる、リン酸塩の結合の効果を示す図面である。図8中、
【化8】

【図9】図9は、コントロールラットおよびリン酸塩と結合する化合物で処理したラットについての、尿のリン酸塩排泄量の個々の値および平均値(±1SEM)を示す図面である。
【化9】

各群の平均値(±SEM)を、誤差バーを伴った点で示す。*p<0.05(Al(OH)で処理した動物群との比較)。
【図10】図10は、コントロールラットおよびリン酸塩と結合する化合物で処理したラットについて、総(可溶および不溶)糞便のリン酸塩(乾燥重量、g)に対する平均の(±1SEM)可溶性糞便のリン酸塩(乾燥重量、g)のパーセンテージを示す図面である。図10において、 *p<0.05(コントロール動物およびCaCOで処理した動物との比較) Δp<0.05(CaCOで処理した動物との比較)。

【特許請求の範囲】
【請求項1】
アルミニウムカチオンを含有せず、三価カチオンとしての金属鉄(III)イオン、並びに二価カチオンとしてのマグネシウム、カルシウム、ランタンおよびセリウムのイオンのうちの少なくとも1つを含み、そしてヒドロキシルアニオンおよび炭酸アニオンの少なくとも1つを含む混合金属化合物、を含有する医薬組成物。
【請求項2】
該混合金属化合物は、以下の試験方法:
40mmol−1リン酸ナトリウム緩衝溶液(25mL)に、該混合金属化合物(1g)を加え、室温で30分間ホモジナイズおよび静かに撹拌し、3000rpmで5分間遠心分離し、0.22μmミリポアフィルターを通してろ過し、そして、そうして得られる該上清中の該可溶性リン酸塩を測定する、
による測定時に、pHの範囲が3〜7において、存在するリン酸塩の総重量の少なくとも30重量%のリン酸塩結合能力を有する、請求項1記載の医薬組成物。
【請求項3】
該混合金属化合物は、請求項2に記載の試験方法による測定時に、pHの範囲が2〜8において、存在するリン酸塩の総重量の少なくとも30重量%のリン酸塩結合能力を有する、請求項2記載の医薬組成物。
【請求項4】
該混合金属化合物は更に、硫酸塩、塩化物、および酸化物の少なくとも1つを含む、請求項1〜3のいずれか1つに記載の医薬組成物。
【請求項5】
該混合金属化合物は、マグネシウムイオンおよび鉄(III)イオンを含有しそしてハイドロタルク石構造を有するヒドロキシ炭酸塩である、請求項1〜4のいずれか1つに記載の医薬組成物。
【請求項6】
該混合金属化合物はエージングしない、請求項1〜5のいずれか1つに記載の医薬組成物。
【請求項7】
アルミニウムを含有せず、金属鉄(III)並びにマグネシウム、カルシウム、ランタンおよびセリウムのうちの少なくとも1つを含み、そしてヒドロキシルアニオンおよび炭酸アニオンの少なくとも1つを含む混合金属化合物、を含有するリン酸塩と結合するための薬剤。
【請求項8】
該混合金属化合物は、以下の試験方法:
40mmol−1リン酸ナトリウム緩衝溶液(25mL)に、該混合金属化合物(1g)を加え、室温で30分間ホモジナイズおよび静かに撹拌し、3000rpmで5分間遠心分離し、0.22μmミリポアフィルターを通してろ過し、そして、そうして得られる該上清中の該可溶性リン酸塩を測定する、
による測定時に、pHの範囲が3〜7において、存在するリン酸塩の総重量の少なくとも30重量%のリン酸塩結合能力を有する、請求項7記載の薬剤。
【請求項9】
該混合金属化合物は、請求項8に記載の試験方法による測定時に、pHの範囲が2〜8において、存在するリン酸塩の総重量の少なくとも30重量%のリン酸塩結合能力を有する、請求項8記載の薬剤。
【請求項10】
該混合金属化合物は更に、硫酸塩、塩化物、および酸化物の少なくとも1つを含む、請求項7〜9のいずれか1つに記載の薬剤。
【請求項11】
該混合金属化合物は、マグネシウムおよび鉄(III)を含有しそしてハイドロタルク石構造を有するヒドロキシ炭酸塩である、請求項7〜10のいずれか1つに記載の薬剤。
【請求項12】
該混合金属化合物はエージングしない、請求項7〜11のいずれか1つに記載の薬剤。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2008−69173(P2008−69173A)
【公開日】平成20年3月27日(2008.3.27)
【国際特許分類】
【出願番号】特願2007−296734(P2007−296734)
【出願日】平成19年11月15日(2007.11.15)
【分割の表示】特願2000−512558(P2000−512558)の分割
【原出願日】平成10年9月18日(1998.9.18)
【出願人】(301002602)イネオス・シリカス・リミテッド (2)
【Fターム(参考)】