説明

不純物除去装置及び分光分析装置

【課題】反応槽内で生じ得る気体又は固体の不純物を光学プローブから良好に除去することができる不純物除去装置、及び当該装置を備える分光分析装置を提供する。
【解決手段】不純物除去装置20は、反応槽Cに収容される溶液Sに浸漬される光学プローブ11から気体又は固体の不純物を除去する装置であり、一端21aが反応槽C内の溶液Sに浸漬した状態で光学プローブ11に向けて配されたチューブ21と、チューブ21の他端21bに接続されて、一端21aを介した反応槽C内の溶液Sの吸入及び排出を行うポンプ22と、光学プローブ11を介した検出光から求められるスペクトルの特定波数成分が予め設定された閾値よりも小さくなった場合にポンプ22を動作させる制御部23とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学プローブから不純物を除去する不純物除去装置、及び該装置を備える分光分析装置に関する。
【背景技術】
【0002】
分光分析装置は、近赤外光(波長0.7〜2.5[μm])や赤外光(波長2.5〜25[μm])をサンプルに照射して得られるスペクトルからサンプルの特性(含有成分等)を分析する装置である。この分光分析装置は、サンプルを破壊することなく迅速に分析を行うことができることから、農業や食品、石油化学、医薬品、ファインケミカル等の様々な分野において成分分析や品質管理に利用されている。例えば、反応生成物が生成される反応プロセスでは、反応槽内に光学プローブを浸漬させた状態で反応槽内の成分を分析し、その分析結果に基づいて反応槽内で生じている反応をモニタリングし、或いはその反応の制御に利用される。
【0003】
ここで、上述の反応プロセスにおいて、原料として気体成分を用いている場合、反応によって気体成分が生成される場合、或いは反応溶液中に気体成分が溶解している場合には、反応槽内で気泡が発生することがある。また、上述の反応プロセスにおいては、反応によって副生成物が析出したり、外部から反応槽にゴミが混入することもある。これら気泡、副生成物、ゴミ等の不純物が光学プローブの光路上に存在すると、本来分析すべき成分を正確に分析することができなくなる。
【0004】
以下の非特許文献1には、近赤外分光分析に用いられる様々な光学プローブが開示されている。また、以下の特許文献1には、反応槽に対して脱泡機能を備えた測定セル(脱泡測定セル)を並設し、その脱泡測定セル内でサンプルを加圧して脱泡した状態でサンプルの測定を行う反応プロセス装置が開示されている。以下の特許文献2には、光学プローブに溝を施し、サンプル中に存在する気泡をその溝に通させて、光路に気泡が入り込まないようにする技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001−9268号公報
【特許文献2】特表2008−544274号公報
【非特許文献】
【0006】
【非特許文献1】Katherine A. Bakeev,“Process Analytical Technology”,Wiley-Blackwell,2005
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、上述した特許文献1に開示された技術は、サンプルから気泡を取り除くことは可能であるものの、サンプルを加圧して脱泡を行う脱泡測定セルを反応槽に並設しなければならない。このため、構成が複雑になるとともに、装置のコストが大幅に上昇してしまうという問題がある。また、特許文献1では、気泡を取り除くことが可能ではあるが、分析に影響を及ぼす可能性のある気泡以外の不純物(例えば、反応によって析出する副生成物や外部からのゴミ)を取り除くことはできないという問題がある。
【0008】
上述した特許文献2に開示された技術は、いわば気泡の逃げ道を作って気泡を除去しているだけであるため、気泡を積極適時取り除くことはできないという問題がある。また、上述した特許文献2に開示された技術は、特許文献1と同様に、分析に影響を及ぼす可能性のある気泡以外の不純物を取り除くことは困難であるという問題もある。
【0009】
本発明は上記事情に鑑みてなされたものであり、反応槽内で生じ得る気体又は固体の不純物を光学プローブから良好に除去することができる不純物除去装置、及び当該装置を備える分光分析装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明の不純物除去装置は、反応槽(C)に収容される溶液(S)に浸漬される光学プローブ(11)から気体又は固体の不純物を除去する不純物除去装置(20、30)であって、一端(21a、31a)が前記反応槽内の溶液に浸漬した状態で前記光学プローブに向けて配された配管(21、31)と、前記配管の他端(21b、31b)に接続されて、前記一端を介した前記反応槽内の溶液の吸入及び排出を行うポンプ(22、32)と、前記光学プローブを介した検出光(L)から求められるスペクトルの特定波数成分が予め設定された閾値(TH)よりも小さくなった場合に前記ポンプを動作させる制御部(23)とを備えることを特徴としている。
この発明によると、光学プローブを介した検出光から求められるスペクトルの特定波数成分が予め設定された閾値よりも小さくなった場合に、制御部によってポンプが動作されて配管の一端を介した反応槽内の溶液の吸入及び排出が行われる。
また、本発明の不純物除去装置は、前記光学プローブが、前記反応槽内の溶液で満たされるとともに、軸方向に沿って前記検出光が通過するように形成された切欠部(K1、K2)を胴体側面に有しており、前記配管が、前記一端が前記光学プローブの前記切欠部に向くように配されていることを特徴としている。
また、本発明の不純物除去装置は、前記配管が、前記一端から排出される溶液の流線(FL)が、前記光学プローブに形成された前記切欠部の壁面(W10〜W12、W20〜W22)と平行となるように配されていることを特徴としている。
また、本発明の不純物除去装置は、前記ポンプが、前記配管の他端に接続されるシリンジ(41)と、前記シリンジ内において、バネ(43)の作用によって前記溶液を吸入する方向に摺動するとともに、外部から供給されるガスの作用によって前記溶液を排出する方向に摺動するプランジャ(42)と、前記シリンジに連通しており、前記プランジャによって吸入した溶液に含まれる気泡を排出するために設けられる排出管(44)とを備えることを特徴としている。
また、本発明の不純物除去装置は、前記制御部が、前記ポンプを動作させる場合には、前記プランジャを摺動させるガスを前記シリンジ内に供給する制御を行うことを特徴としている。
本発明の分光分析装置は、反応槽(C)に収容される溶液(S)を介した近赤外光又は赤外光から得られるスペクトルを用いて前記溶液の特性を分析する分光分析装置(1、2)において、前記反応槽に収容される溶液に浸漬され、前記近赤外光又は赤外光を検出光(L)として前記溶液内に導く光学プローブ(11)と、前記光学プローブを介した前記検出光から前記スペクトルを求める分光分析部(13、14)と、前記分光分析部で求められる前記スペクトルに応じて、前記光学プローブから不純物を除去する上記の何れかに記載の不純物除去装置(20、30)とを備えることを特徴としている。
【発明の効果】
【0011】
本発明によれば、光学プローブを介した検出光から求められるスペクトルの特定波数成分が予め設定された閾値よりも小さくなった場合に、制御部がポンプを動作させて配管の一端を介した反応槽内の溶液の吸入及び排出を行うようにしているため、反応槽内で生じ得る気体又は固体の不純物を光学プローブから良好に除去することができるという効果がある。
【図面の簡単な説明】
【0012】
【図1】本発明の第1実施形態による不純物除去装置及び分光分析装置の要部構成を示すブロック図である。
【図2】本発明の第1実施形態における光学プローブを例示する図である。
【図3】本発明の第1実施形態における光学プローブを例示する図である。
【図4】本発明の第1実施形態による分光分析装置で求められるスペクトルの一例を示す図である。
【図5】本発明の第1実施形態による分光分析装置の動作を示すフローチャートである。
【図6】本発明の第2実施形態による不純物除去装置及び分光分析装置の要部構成を示すブロック図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して本発明の実施形態による不純物除去装置及び分光分析装置について詳細に説明する。
【0014】
〔第1実施形態〕
図1は、本発明の第1実施形態による不純物除去装置及び分光分析装置の要部構成を示すブロック図である。図1に示す通り、本実施形態の分光分析装置1は、光学プローブ11、光導波路12、測定部13(分光分析部)、及びデータ処理部14(分光分析部)と、不純物除去装置20とを備えており、反応槽Cに収容される溶液Sに近赤外光又は赤外光を検出光として照射して得られるスペクトルを用いて溶液Sの特性(含有成分等)を分析する。
【0015】
尚、反応槽Cに収容される溶液Sは任意の溶液であって良いが、本実施形態では、理解を容易にするために、アルコール発酵が行われる溶液(例えば、グルコース、フルクトース、ショ糖等の糖と酵母との混合溶液)が反応槽Cに収容されているとする。つまり、アルコール発酵によって炭酸ガス(CO)が発生し得る溶液が溶液Sとして反応槽Cに収容されているとする。
【0016】
光学プローブ11は、先端部(或いは、先端部から中央部にかかる部分)が反応槽Cに収容される溶液Sに浸漬され、検出光(近赤外光又は赤外光)を溶液S内に導くものである。つまり、溶液Sに対して検出光を照射するとともに、溶液Sを介した検出光が入射されるものである。尚、光学プローブ11の詳細については後述する。光導波路12は、測定部13からの検出光を光学プローブ11に導くとともに、光学プローブ11からの検出光(溶液Sを介した検出光)を測定部13に導くものであり、例えば光ファイバで実現される。
【0017】
測定部13は、検出光を光導波路12に向けて射出する光源部と、光導波路12からの検出光を受光する受光部(何れも図示省略)を備えており、光学プローブ11を介した検出光(溶液Sを介した検出光)の測定を行う。尚、測定部13が備える光源部からは、波長が連続的に変化する検出光が射出され、測定部13が備える受光部では、検出光の各々の波長における強度が測定される。
【0018】
データ処理部14は、測定部13の測定結果をディジタル信号に変換するとともに、変換したディジタル信号に対して例えばFFT(Fast Fourier Transform:高速フーリエ変換)を行い、溶液Sを介した検出光のスペクトルを求める。また、データ処理部14は、スペクトルを求めた場合に、そのスペクトルの特定波数成分と予め設定された閾値とを比較しており、特定波数成分が閾値よりも小さくなった場合に、その旨を示す検出信号D1を出力する。この閾値は、不純物の有無を判断するために用いる閾値である。
【0019】
不純物除去装置20は、チューブ21(配管)、ポンプ22、及び制御部23を備えており、反応層Cに収容される溶液Sに浸漬される光学プローブ11から気体の不純物(例えば、気泡)や固体の不純物(例えば、反応によって析出する副生成物や外部からのゴミ)を除去する。チューブ21は、金属又は有機材料若しくは無機材料等によって形成された円環状の配管であり、光学プローブ11に付着する気泡、副生成物、ゴミ等の不純物を除去するために、光学プローブ11に向けた溶液Sの吹きつけを行うために設けられるものである。このチューブ21は、一端21aが反応槽C内の溶液Sに浸漬した状態で光学プローブ11の近傍において光学プローブ11に向けて配されており、他端21bはポンプ22に接続されている。
【0020】
ポンプ22は、制御部23の制御の下で動作し、反応槽C内の溶液Sをチューブ21の一端21aを介してチューブ21内に吸入するとともに、チューブ21内に吸入されている溶液Sをチューブ21の一端21aを介してチューブ21外に排出するために設けられる。制御部23は、分光分析装置1に設けられるデータ処理部14から、スペクトルの特定波数成分が閾値よりも小さくなった旨を示す検出信号D1が出力された場合にポンプ22を動作させる。
【0021】
次に、分光分析装置1に設けられる光学プローブ11と、不純物除去装置20のチューブ21との関係について説明する。図2,図3は、本発明の第1実施形態における光学プローブを例示する図であって、(a)は光学プローブの側面図であり、(b)は(a)中のA−A線断面矢視図である。尚、図2に示す光学プローブ11は、検出光が溶液S中を1回だけ通過する透過型のものであり、図3に示す光学プローブ11は、検出光が溶液S中を2回通過する透過反射型のものである。
【0022】
図2,図3に示す光学プローブ11は、何れも有底の円筒形状の筐体を備えており、その先端部(下端部)にはコーナーキューブ等の反射鏡Mが収容されている。この反射鏡Mによって、光学プローブ11の内部を軸方向に沿って下向き(上端部から下端部への向き)に進む検出光Lが反射され、軸方向に直交する方向に光路がずらされて、軸方向に沿って上向き(下端部から上端部への向き)に進む検出光Lにされる。つまり、図2,図3に示す光学プローブ11は何れも、検出光Lが内部を往復するように構成されている。
【0023】
図2に示す透過型の光学プローブ11は、筐体の一側面(胴体側面)から筐体の中央部に至る切欠K1が形成されている。この切欠K1は、平面視形状が半円形状であり、その側面W10は筐体と同じ材質の壁面とされており、上面及び下面は平面視形状が半円形状の透明板W11,W12をそれぞれ取り付けた透明の壁面とされている。このため、光学プローブ11が反応槽C内の溶液Sに浸漬されれば、図2に示す通り、切欠部K1が溶液Sで満たされるとともに、上向きに進む検出光Lが、透明板W11,W12の間において溶液S内を1回だけ通過することになる。
【0024】
図2に示す通り、チューブ21は、一端21aが光学プローブ11の切欠部K1に向くように配されている。具体的には、チューブ21の一端21aから排出される溶液Sの流線FLが、光学プローブ11に形成された切欠部K1の壁面(側面W10、透明板W11,W12)と平行になるように配されている。かかる配置にするのは、チューブ21の一端21aから排出される溶液Sを層流又は層流に近い流れ(以下、このような溶液Sの流れを単に「層流」という)にして、気泡Bの発生を防止しつつ既に存在している気泡B等の不純物を効果的に除去するためである。
【0025】
ここで、チューブ21の一端21aから光学プローブ11の切欠K1に向けて溶液Sを排出すれば、排出された溶液Sが乱流になったとしても既に存在する気泡Bを除去することはできると考えられる。しかしながら、チューブ21の一端21aから排出された溶液Sが乱流になってしまうと、新たな気泡Bを発生させる可能性があり、既に存在する気泡Bを全て除去できたとしても、新たに発生した気泡Bが残存することが考えられる。そこで、チューブ21の一端21aから排出される溶液Sが層流になるように、チューブ21を上述の通りの配置としている。
【0026】
次に、図3に示す透過反射型の光学プローブ11は、筐体の一側面(胴体側面)から筐体の中央部を介して筐体の他側面に至る切欠K2が形成されている。この切欠K2は、光学プローブ11の軸方向と直交する方向に延びる貫通孔であり、その両側面W20は筐体と同じ材質の壁面とされており、上面及び下面は平面視形状が略円形形状の透明板W21,W22をそれぞれ取り付けた透明の壁面とされている。このため、光学プローブ11が反応槽C内の溶液Sに浸漬されれば、図3に示す通り、切欠部K2が溶液Sで満たされるとともに、上向きに進む検出光Lと下向きに進む検出光Lとが、透明板W21,W22の間において溶液S内をそれぞれ1回ずつ通過することになる。
【0027】
図3に示す通り、チューブ21は、一端21aが光学プローブ11の切欠部K2に向くように配されている。具体的には、図2に示すチューブ21と同様に、チューブ21の一端21aから排出される溶液Sの流線FLが、光学プローブ11に形成された切欠部K2の壁面(側面W20、透明板W21,W22)と平行になるように配されている。このような配置にするのは、チューブ21の一端21aから排出される溶液Sを層流にして、気泡Bの発生を防止しつつ既に存在している気泡B等の不純物を効果的に除去するためである。
【0028】
次に、上述したデータ処理部14で設定される閾値について説明する。図4は、本発明の第1実施形態による分光分析装置で求められるスペクトルの一例を示す図である。図4に示すスペクトルは、波数が7000[cm−1]付近、5200[cm−1]付近、4200[cm−1]付近、3200[cm−1]付近で大きな吸光度のピークが現れている。尚、これらのピークは何れも、検出光が水分子(HO)に吸収されることによって生ずるものである。
【0029】
ここで、図4に示す例において、吸光度のピークが特に大きな波数が5200[cm−1]付近の成分(特定波数成分)に着目する。溶液Sに気泡Bが混入していない場合、或いは、溶液Sに混入している気泡Bが検出光Lの光路上に存在しない場合には、図中破線の曲線で示す通り、特定波数成分の吸光度は「4.5」以上と極めて大きくなる。これに対し、溶液Sに混入している気泡Bが検出光Lの光路上に存在する場合には、図中実線の曲線で示す通り、特定波数成分の吸光度は「2.5」を下回って極端に小さくなる。このため、本実施形態では、検出光Lの光路上に気泡Bが存在するか否かを判定する閾値THを値「2.5」に設定している。
【0030】
次に、上記構成における分光分析装置1の動作について説明する。図5は、本発明の第1実施形態による分光分析装置の動作を示すフローチャートである。まず、作業者が光学プローブ11を反応槽C内の溶液Sに浸漬させ、検出光Lが通過する切欠部(図2に示す切欠部K1又は図3に示す切欠部K2)が溶液Sで満たされた状態にする。次いで、作業者が分光分析装置1の電源を投入して測定開始の指示を行うと、測定部13に設けられた不図示の光源部から検出光が射出されて溶液Sの測定が開始される。
【0031】
測定部13の光源部から射出された検出光は、光導波路12を介して光学プローブ11に導かれ、光学プローブ11に形成された切欠部(図2に示す切欠部K1又は図3に示す切欠部K2)を介することによって溶液Sを通過する。光学プローブ11を介した検出光L(溶液Sを通過した検出光L)は、光導波路12を介して測定部13に入力し、測定部13に設けられた不図示の受光部で強度が測定される。かかる測定が検出光Lの波長を変えつつ繰り返されて、検出光Lの各々の波長における強度が順次測定される。
【0032】
測定部13の測定結果は、データ処理部14に出力されてディジタル信号に変換される。そして、データ処理部14において、変換されたディジタル信号に対してFFT等の演算が行われ、溶液Sを介した検出光Lのスペクトルが求められる(ステップS11)。スペクトルを求めると、特定波数成分(例えば、図4に示す波数が5200[cm−1]付近の成分)の吸光度を取得し(ステップS12)、その取得した吸光度が閾値TH以上であるか否かを判断する処理がデータ処理部14で行われる(ステップS13)。
【0033】
吸光度が閾値THを下回っていると判断した場合(判断結果が「NO」の場合)には、データ処理部14から制御部23に対して検出信号D1が出力され、この検出信号D1に基づいてポンプ22が制御部23によって駆動される(ステップS14)。ポンプ22が駆動されると、反応槽C内の溶液Sがチューブ21の一端21aを介してチューブ21内に吸入されるとともに、チューブ21内に吸入された溶液Sがチューブ21の一端21aを介してチューブ21外に排出される。
【0034】
チューブ21の一端21aから排出された溶液Sは、光学プローブ11に形成された切欠部(図2に示す切欠部K1又は図3に示す切欠部K2)に対して層流として供給され、これにより光学プローブ11の切欠部に付着している気泡Bが除去される。尚、チューブ21からの溶液Sは層流として供給されるため、乱流が供給された場合に生じ得る新たな気泡Bの発生はない。ポンプ22の駆動が行われた後は、再びスペクトルの測定が行われる(ステップS11)。
【0035】
これに対し、ステップS13において、吸光度が閾値TH以上であると判断した場合(判断結果が「YES」の場合)には、データ処理部14からの検出信号D1の出力は行われない。このため、制御部23は、ポンプ22が稼働中であるか否かを判断し(ステップS15)、ポンプ22が稼働中であると判断した場合(判断結果が「YES」の場合)にはポンプ22を停止する(ステップS16)。尚、ステップS15の判断結果が「NO」である場合、或いは、ステップS16の処理が終了した後は、再びスペクトルの測定が行われる(ステップS11)。
【0036】
以上の通り、本実施形態では、反応槽C内の溶液Sに浸漬された光学プローブ11に検出光を導いて溶液Sのスペクトルを求め、求めたスペクトルの特定波数成分の吸光度が予め設定された閾値THを下回った場合に、ポンプ22を駆動してチューブ21の一端21aから光学プローブ11の切欠部に向けて溶液Sを層流として供給している。このため、反応槽C内で生じ得る気泡Bを光学プローブ11から良好に除去することができる。尚、気泡B以外の不純物(例えば、反応によって析出する副生成物や外部からのゴミ等)であっても、気泡Bと同様に除去することが可能である。
【0037】
また、本実施形態では、反応槽Cに収容された溶液Sのスペクトルの測定結果を用いて不純物の除去を行っているため、溶液Sの反応を止めることなく不純物を除去することができる。また、スペクトルの測定結果を用いて不純物の除去を行うことから、不純物をモニタリングするための独立したシステムを必要とせず、既存の分光分析装置1に不純物除去装置20を追加するだけで良いため、大幅なコスト上昇を招くことなく容易に不純物の除去を行うことができる。
【0038】
また、本実施形態では、光学プローブ11を介する検出光Lの光路に不純物が存在する場合にのみ不純物除去装置20が動作するため、制御が容易であるとともに、反応槽C内における反応過程や溶液Sの動きが妨げられる事態を極力少なくすることができる。これにより、不純物除去装置20が存在しない状態とほぼ同様の状態で溶液Sの測定を行うことが可能である。
【0039】
〔第2実施形態〕
図6は、本発明の第2実施形態による不純物除去装置及び分光分析装置の要部構成を示すブロック図である。尚、図6においては、図1に示す構成と同様の構成には同一の符号を付してある。図6に示す通り、本実施形態の分光分析装置2は、図1に示す分光分析装置1の不純物除去装置20に代えて不純物除去装置30を設けた構成である。
【0040】
不純物除去装置30は、チューブ31、ポンプ32、ガス供給装置33、及びバルブ34を備える構成である。かかる構成の不純物除去装置30は、図1に示す不純物除去装置20と同様に、反応層Cに収容される溶液Sに浸漬される光学プローブ11から気体の不純物(例えば、気泡)や固体の不純物(例えば、反応によって析出する副生成物や外部からのゴミ)を除去する。
【0041】
チューブ31は、図1に示すチューブ21と同様に、光学プローブ11に付着する気泡、副生成物、ゴミ等の不純物を除去するために、光学プローブ11に向けた溶液Sの吹きつけを行うために設けられる円環状の配管である。このチューブ31は、一端31aが反応槽C内の溶液Sに浸漬した状態で光学プローブ11の近傍において光学プローブ11の切欠部(図2に示す切欠部K1又は図3に示す切欠部K2)に向けて配されており、他端31bはポンプ32に接続されている。
【0042】
ポンプ32は、シリンジ41、プランジャ42、バネ43、及び排出管44を備えており、反応槽C内の溶液Sをチューブ31の一端31aを介してチューブ31内に吸入するとともに、チューブ31内に吸入されている溶液Sをチューブ31の一端31aを介してチューブ31外に排出するためのものである。シリンジ41は、その内部にプランジャ42を摺動可能に収容する円筒形の筒部材であり、一端部がチューブ31の他端31bに接続される。
【0043】
プランジャ42は、シリンジ41内に軸方向に摺動可能に収容された円筒部材である。このプランジャ42によってシリンジ41の内部空間は、チューブ31の他端が接続されて溶液Sが吸入される空間SP1と、ガス供給装置33からのガスが供給される空間SP2とに区分される。プランジャ42は、シリンジ41内において、バネ43の作用によって溶液Sを吸入する方向(空間SP1の体積を増大させる方向)に摺動するとともに、ガス供給装置33からバルブ34を介して空間SP2に供給されるガスの作用によって溶液Sを排出する方向(空間SP1の体積を減少させる方向)に摺動する。
【0044】
バネ43は、シリンジ41の他端部に取り付けられた圧縮バネであり、圧縮されることによって溶液Sを吸入する方向にプランジャ42を摺動させる。排出管44は、シリンジ41の封緘SP1に連通しており、プランジャ42が摺動することによってシリンジ41の空間SP1内に吸入された溶液Sに含まれる気泡Bを排出するために設けられる配管である。
【0045】
ガス供給装置33は、シリンジ41内に吸入されている溶液Sを排出する方向にプランジャ42を摺動させるためのガスを供給する。尚、ガス供給装置33から供給されるガスは、圧縮空気、窒素ガス、不活性ガス等を用いることができる。バルブ34は、ガス供給装置33とシリンジ41の空間SP2とを接続する流路に取り付けられており、制御部23の制御の下で開状態又は閉状態になる。つまり、本実施形態では、制御部23がバルブ34を開閉して、プランジャ42を摺動させるガスの供給及び供給停止を制御することによってポンプ32の動作を制御する。
【0046】
制御部23の制御によってバルブ34が開状態になると、ガス供給装置33からのガスがポンプ32に設けられたシリンジ41の空間SP2に供給される。すると、プランジャ42は、シリンジ41の空間SP1に吸入されている溶液Sを排出する方向(空間SP1の体積を減少させる方向)に摺動する。これにより、チューブ31の一端31aから溶液Sが排出され、光学プローブ11に形成された切欠部(図2に示す切欠部K1又は図3に示す切欠部K2)に対して層流として供給されて光学プローブ11の切欠部に付着している気泡Bが除去される。
【0047】
尚、プランジャ42は、その上端部が排出管44の取り付け位置に至るまで摺動してしまうと、その位置よりも下方へは移動しなくなる状態になる。これは、ガス供給装置33から供給されるガスが、排出管44を介して外部に排出されてしまうからである。かかる状態になると、チューブ31の一端31aからの溶液Sの排出、及び、チューブ31の一端31aからの溶液Sの吸入が共に行われない。
【0048】
次に、制御部23の制御によってバルブ34が閉状態になると、バネ43の作用によってプランジャ42は、シリンジ41の空間SP1に溶液Sを吸入する方向(空間SP1の体積を増大させる方向)に摺動する。これにより、チューブ31の一端31aから溶液Sが吸入され、チューブ31を介してシリンジ41の空間SP1にも溶液Sが吸入される。シリンジ41の空間SP1に吸入された溶液Sに気泡Bが混入していた場合には、その気泡Bはシリンジ41の空間SP1に連通する排出管44を介して外部に排出される。
【0049】
尚、本実施形態の分光分析装置2は、第1実施形態の分光分析装置1とは、不純物除去装置30に設けられたポンプ32の具体的な動作が異なるだけであり、基本的には図5に示すフローチャートに従って溶液Sの測定が行われる。つまり、本実施形態においても、反応槽C内の溶液Sに浸漬された光学プローブ11に検出光を導いて溶液Sのスペクトルを求め、求めたスペクトルの特定波数成分の吸光度が予め設定された閾値THを下回った場合に、ポンプ32を駆動してチューブ31の一端31aから光学プローブ11の切欠部に向けて溶液Sを層流として供給している。このため、反応槽C内で生じ得る気泡Bを光学プローブ11から良好に除去することができる。尚、気泡B以外の不純物(例えば、反応によって析出する副生成物や外部からのゴミ等)であっても、気泡Bと同様に除去することが可能である。
【0050】
以上、本発明の実施形態による不純物除去装置及び分光分析装置について説明したが、本発明は上記実施形態に制限される訳ではなく、本発明の範囲内で自由に変更が可能である。例えば、上記実施形態では、説明を簡単にするために、波数が5200[cm−1]付近の成分を特定波数成分とした例について説明したが、特定波数成分の波数は任意の波数を選択することができ、また、特定波数成分を複数用いることも可能である。更には、ある領域に亘る波数を特定波数成分にしても良い。
【0051】
また、上記実施形態では、分光分析装置1に設けられるデータ処理部14でスペクトルを求めるとともに、スペクトルの特定波数成分が閾値よりも小さくなったか否かの判断を行う例について説明した。しかしながら、データ処理部14ではスペクトルのみを求め、不純物除去装置20,30が備える制御部23において、データ処理部14で求められたスペクトルの特定波数成分が閾値よりも小さくなったか否かの判断を行うようにしても良い。
【0052】
また、求められたスペクトルから光学プローブ11に付着した不純物の量を推定することが可能である。例えば、予め不純物についての検量線を作成しておき、この件量線を用いて光学プローブ11に付着した不純物の量を推定する。また、上記実施形態では、光学プローブ11とは別にチューブ21,31が設けられている例について説明したが、チューブ21,31を光学プローブ11に取り付けた構成にしても良い。
【符号の説明】
【0053】
1,2 分光分析装置
11 光学プローブ
13 測定部
14 データ処理部
20,30 不純物除去装置
21,31 チューブ
21a,31a 一端
21b,31b 他端
22,32 ポンプ
23 制御部
41 シリンジ
42 プランジャ
43 バネ
44 排出管
C 反応槽
K1,K2 切欠部
L 検出光
S 溶液
TH 閾値
W10,W20 側面
W11,W12 透明板
W21,W22 透明板

【特許請求の範囲】
【請求項1】
反応槽に収容される溶液に浸漬される光学プローブから気体又は固体の不純物を除去する不純物除去装置であって、
一端が前記反応槽内の溶液に浸漬した状態で前記光学プローブに向けて配された配管と、
前記配管の他端に接続されて、前記一端を介した前記反応槽内の溶液の吸入及び排出を行うポンプと、
前記光学プローブを介した検出光から求められるスペクトルの特定波数成分が予め設定された閾値よりも小さくなった場合に前記ポンプを動作させる制御部と
を備えることを特徴とする不純物除去装置。
【請求項2】
前記光学プローブは、前記反応槽内の溶液で満たされるとともに、軸方向に沿って前記検出光が通過するように形成された切欠部を胴体側面に有しており、
前記配管は、前記一端が前記光学プローブの前記切欠部に向くように配されている
ことを特徴とする請求項1記載の不純物除去装置。
【請求項3】
前記配管は、前記一端から排出される溶液の流線が、前記光学プローブに形成された前記切欠部の壁面と平行となるように配されていることを特徴とする請求項2記載の不純物除去装置。
【請求項4】
前記ポンプは、前記配管の他端に接続されるシリンジと、
前記シリンジ内において、バネの作用によって前記溶液を吸入する方向に摺動するとともに、外部から供給されるガスの作用によって前記溶液を排出する方向に摺動するプランジャと、
前記シリンジに連通しており、前記プランジャによって吸入した溶液に含まれる気泡を排出するために設けられる排出管と
を備えることを特徴とする請求項1から請求項3の何れか一項に記載の不純物除去装置。
【請求項5】
前記制御部は、前記ポンプを動作させる場合には、前記プランジャを摺動させるガスを前記シリンジ内に供給する制御を行うことを特徴とする請求項4記載の不純物除去装置。
【請求項6】
反応槽に収容される溶液を介した近赤外光又は赤外光から得られるスペクトルを用いて前記溶液の特性を分析する分光分析装置において、
前記反応槽に収容される溶液に浸漬され、前記近赤外光又は赤外光を検出光として前記溶液内に導く光学プローブと、
前記光学プローブを介した前記検出光から前記スペクトルを求める分光分析部と、
前記分光分析部で求められる前記スペクトルに応じて、前記光学プローブから不純物を除去する請求項1から請求項5の何れか一項に記載の不純物除去装置と
を備えることを特徴とする分光分析装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−113676(P2013−113676A)
【公開日】平成25年6月10日(2013.6.10)
【国際特許分類】
【出願番号】特願2011−259219(P2011−259219)
【出願日】平成23年11月28日(2011.11.28)
【出願人】(000006507)横河電機株式会社 (4,443)
【出願人】(503092180)学校法人関西学院 (71)
【Fターム(参考)】