説明

倒立顕微鏡

【課題】接眼光学系および双眼鏡筒を短く、軽くかつ安価に構成しながら、超広視野の観察が可能な倒立顕微鏡を提供する。
【解決手段】試料Aからの光を集光する対物光学系2と、該対物光学系2により集光された試料Aからの光を中間像として結像させる結像光学系3と、該結像光学系3により結像された試料Aの中間像Bをリレーするリレー光学系6と、該リレー光学系6からの光を分岐する双眼鏡筒5と、該双眼鏡筒5により分岐された中間像を拡大して観察者の目Eに虚像として結像させる一対の接眼光学系4とを備え、以下の条件式を満たす倒立顕微鏡1を提供する。
K=(Fntl/Ftl)×βRL (1)
Fne=Fe×K (2)
0.3<K<0.9 (3)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、倒立顕微鏡に関するものである。
【背景技術】
【0002】
従来、顕微鏡の超広視野接眼レンズが知られている(例えば、特許文献1参照。)。
この接眼レンズは、倍率10倍であって、視野数26.5レベルの超広視野接眼レンズである。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特許第3250739号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1の接眼レンズでは、レンズ径が大きく、全長が長く、レンズ枚数が多くなるため、接眼レンズ自体が大型化してしまうという不都合がある。また、視野数26.5を達成するためには、接眼レンズに接続する双眼鏡筒内のプリズムとして、光軸に直交する断面の有効範囲が直径26.5mm以上となっていなければならず、使用するプリズムは外形30mm角とならざるを得ず、双眼鏡筒も大きく、重く、高価なものとなるという不都合がある。
【0005】
本発明は、上述した事情に鑑みてなされたものであって、接眼光学系および双眼鏡筒を短く、軽くかつ安価に構成しながら、超広視野の観察を行うことができる倒立顕微鏡を提供することを目的としている。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、試料からの光を集光する対物光学系と、該対物光学系により集光された試料からの光を中間像として結像させる結像光学系と、該結像光学系により結像された前記中間像をリレーするリレー光学系と、該リレー光学系からの光を分岐する光分岐部と、該光分岐部により分岐された前記中間像を拡大して観察者の目に虚像として結像させる一対の接眼光学系とを備え、以下の条件式を満たす倒立顕微鏡を提供する。
K=(Fntl/Ftl)×βRL (1)
Fne=Fe×K (2)
0.3<K<0.9 (3)
ここで、K:係数、Fntl:前記結像光学系の焦点距離、Ftl:倍率が1倍である基準結像光学系の焦点距離、βRL:前記リレー光学系の倍率、Fne:前記接眼光学系の焦点距離、Fe:前記基準結像光学系と基準対物光学系とを備える倒立顕微鏡における基準接眼光学系の焦点距離である。
【0007】
本発明によれば、倍率1倍の基準結像光学系および基準接眼光学系を有する倒立顕微鏡と比較して、接眼光学系の焦点距離を短くして倍率が大きくなり、それと同じ割合で結像光学系とリレー光学系を含む他の光学系を総合した倍率が小さくなる。このようにすることで、倒立顕微鏡の総合倍率を変化させることなく、接眼光学系の倍率を大きくして、視野数を実質的に同じにすることができる。視野数を実質的に同じにするというのは、基準接眼光学系の倍率と接眼光学系の倍率が異なっても同じ視野であることを言う。このとき、結像光学系とリレー光学系を含む他の光学系を総合した倍率が小さくなるので、双眼鏡筒内のプリズムを通過する光束径が細くなり、プリズムを小型化し、双眼鏡筒を小型化することができる。K≦0.3では、結像光学系の焦点距離が短くなりすぎて双眼鏡筒における左右分岐前の空気換算光路長を十分に確保できなくなるか、あるいはリレー光学系の倍率が小さくなりすぎるため、設計が困難になる。Kt≧0.9では、プリズムの実質的な小型化を図ることができない。
【0008】
上記発明においては、以下の条件式を満たすことが好ましい。
15<FN<22 (4)
ここで、FN:前記接眼光学系の視野数である。
【0009】
また、上記発明においては、以下の条件式を満たすことが好ましい。
0.45<K (5)
ここで、FN:前記接眼光学系の視野数である。
このようにすることで、K≦0.45とする場合と比較して接眼光学系の焦点距離を長くすることができ、接眼光学系のコマ収差の特性が良好となる。
【0010】
また、上記発明においは、以下の条件を満たすことが好ましい。
140<Fntl<210 (6)
0.55<βRL<1.1 (7)
8<Fne<23 (8)
【発明の効果】
【0011】
本発明によれば、接眼光学系および双眼鏡筒を短く、軽くかつ安価に構成しながら、超広視野の観察が可能な倒立顕微鏡を提供することができるという効果を奏する。
【図面の簡単な説明】
【0012】
【図1】本発明の第1の実施形態に係る倒立顕微鏡を示す図である。
【図2】本発明の第1の実施形態に係る倒立顕微鏡の変形例を示す図である。
【図3】(a)本発明の第1の実施形態に係る倒立顕微鏡、(b)従来の倒立顕微鏡を示す図である。
【図4】図1の倒立顕微鏡の第1実施例に係るレンズ構成を示す図である。
【図5】図4の倒立顕微鏡の収差図である。
【図6】図1の倒立顕微鏡の第2実施例に係るレンズ構成を示す図である。
【図7】図6の倒立顕微鏡の収差図である。
【発明を実施するための形態】
【0013】
(第1の実施形態)
本発明の第1の実施形態に係る倒立顕微鏡1について、図面を参照して以下に説明する。
本実施形態に係る倒立顕微鏡1は、図1に示されるように、試料Aを搭載するステージSの下方に配置された対物光学系2と、該対物光学系2を介して試料Aに照射する照明光を供給する照明光学系7と、無限遠光束からなる試料Aからの光を集光して中間像として結像させる結像光学系3と、結像光学系3により結像されミラー11により水平方向に反射した中間像をリレーするリレー光学系6と、リレー光学系6によりリレーされる中間像を2つに分岐する双眼鏡筒5(光分岐部)と、試料Aの中間像を拡大して観察者の両眼Eの網膜が配置される位置にそれぞれ結像させる接眼光学系4とを備えている。
【0014】
対物光学系2は、試料Aから発せられた光を集光して略無限遠光束として鉛直下方に導くようになっている。
照明光学系7は、照明光を発生する水銀灯等の光源8と、光源8からの照明光を集光する集光光学系9と、該集光光学系9により集光された照明光を対物光学系2の光軸OAに沿う方向に偏向するダイクロイックミラー10とを備えている。集光光学系7の焦点位置は対物光学系2の後側焦点位置に一致しており、略平行光からなる照明光を試料Aに照射することができるようになっている。
【0015】
リレー光学系6は、結像光学系3により結像されミラー11により水平方向に反射した中間像をリレーするものであり、複数のリレーレンズ12〜15を備える。また、リレーレンズ13とリレーレンズ14との間には水平方向の光束を鉛直方向に反射させるミラー16が設けられている。
【0016】
双眼鏡筒5は、リレー光学系6を通過した光束を斜め上方に傾斜した方向に反射するプリズム17と、該プリズム17によって反射された光を2つに分岐する双眼分岐用プリズム18を備えている。
接眼光学系4は、リレー光学系6によってリレーされた試料Aの中間像を拡大して、観察者の両眼Eの網膜が配置される位置にそれぞれ結像させる。なお、接眼光学系4は、双眼分岐用プリズム18により分岐された2つの光束のそれぞれに対応する一対の光学系である。
【0017】
本実施形態に係る倒立顕微鏡1によれば、照明光学系7の光源8から発せられた照明光は、集光光学系9によって集光された後、ダイクロイックミラー10によって対物光学系2の光軸OAに沿う方向に偏向される。そして、照明光は、対物光学系2によって、該対物光学系3の鉛直上方のステージS上に配置されている試料Aに照射される。
【0018】
試料Aから下方に発せられた光は、対物光学系2により集光されて、鉛直下方に向かう略無限遠光束となり、ダイクロイックミラー10を透過して接眼光学系3に入射する。接眼光学系3に入射した光束はミラー11によって鉛直方向から水平方向に反射し、リレー光学系6のリレーレンズ12に入射する。リレー光学系6は水平方向に入射した光束をミラー16によって鉛直上方に反射させ、双眼鏡筒5に光束を入射させる。双眼鏡筒5は、プリズム17によって反射した光束を双眼分岐用プリズム18により2つに分岐する。そして、一対の接眼光学系4によって試料Aの中間像が拡大されて、観察者の両眼Eの網膜が配置される位置に結像される。観察者は、接眼光学系4の焦点位置に両眼Eを配置しておくことにより、試料Aの像を詳細に観察することができる。
【0019】
図1に示す倒立顕微鏡1は、ミラー11およびミラー16の2箇所で光束の方向を変更するものであったが、ミラー11の1箇所で光束の方向を変更する図2に示す変形例を採用してもよい。図2に示すリレー光学系6では、図1に示すリレー光学系6からミラー16、リレーレンズ14、リレーレンズ15が削除されている。また、図2に示す双眼鏡筒5では、図1に示す双眼鏡筒5からプリズム17が削除されている。なお、図2で図1と同一の符号を付した構成は図1と同様であるものとし、説明を省略する。
【0020】
次に、本実施形態に係る倒立顕微鏡1の顕微鏡光学系を、参考例と比較しつつ説明する。
本実施形態に係る倒立顕微鏡1の顕微鏡光学系は、図3(a)に示されるように、試料Aからの光を集光する対物光学系2と、該対物光学系2により集光された試料Aからの光を中間像Bとして結像させる結像光学系3と、該結像光学系3により結像された中間像Bをリレーするリレー光学系6と、該リレー光学系6からの光を2つに分岐する双眼鏡筒5(光分岐部)と、該双眼鏡筒5(光分岐部)により分岐された試料Aの中間像Cを拡大して観察者の目Eに視角2ωの虚像Dとして結像させる接眼光学系4とを備えている。
【0021】
図3(b)は、参考例として、基準対物光学系2’、倍率が1倍である基準結像光学系3’、倍率が10倍である基準接眼光学系4’、双眼鏡筒5’、倍率が1倍である基準リレー光学系6’を有する倒立顕微鏡1’の顕微鏡光学系を示している。
なお、図3においては、各光学系のそれぞれを、単一のレンズとして示しているが、実際には、それぞれ複数のレンズによって構成されている。
【0022】
本実施形態に係る倒立顕微鏡1は、以下の条件式を満たしている。
K=(Fntl/Ftl)×βRL (1)
Fne=Fe×K (2)
0.3<K<0.9 (3)
ここで、K:係数、Fntl:結像光学系3の焦点距離、Ftl:倍率が1倍である基準結像光学系の焦点距離、βRL:リレー光学系の倍率、Fne:接眼光学系4の焦点距離、Fe:基準結像光学系3’と基準対物光学系2’とを備える倒立顕微鏡1’における基準接眼光学系4’の焦点距離である。
【0023】
このように構成された本実施形態に係る倒立顕微鏡1によれば、試料Aからの光が対物光学系2により集光されて略平行光として結像光学系3に入射されると、結像光学系3によって集光されることにより中間像Bを結像した後にリレー光学系6に入射させられ、双眼鏡筒5を経由して更に接眼光学系4に入射させられる。
【0024】
この場合において、本実施形態に係る倒立顕微鏡1は、倍率1倍の基準結像光学系3’、倍率1倍の基準リレー光学系6’、および倍率10倍の基準接眼光学系4’を有する倒立顕微鏡1’と比較して、接眼光学系4の焦点距離Fneを短くして倍率を大きくしている。そして、接眼光学系4の倍率を大きくした割合と同じ割合で対物光学系2と結像光学系3とリレー光学系6を総合した倍率を小さくする。その結果、倒立顕微鏡1’の総合倍率を変化させずに、接眼光学系4の視野数を実質的に同じにすることができる。ここで、本実施形態においては、図3(a)に示す対物光学系2は図3(b)に示す基準対物光学系2’と同一であるものとする。
【0025】
本実施形態に係る倒立顕微鏡1は、基準結像光学系3’と比較して、結像光学系3の焦点距離Fntlを短くしている。これにより、結像光学系3の倍率が小さくなり、結像光学系3による中間像Bが縮小されることにより、双眼鏡筒5を通過する際の光束径を細くすることができる。その結果、双眼鏡筒5内の双眼分岐用プリズム18のサイズを小型化することができ、双眼鏡筒5を小型化することができるという利点がある。
【0026】
さらに、本実施形態に係る倒立顕微鏡1によれば、接眼光学系4の焦点距離Fneを短くし、それと同じ割合で結像光学系3とリレー光学系6を総合した倍率を小さくしている。これにより、倒立顕微鏡1の総合倍率は変化しない。中間像Cの像高は中間像C’の像高のK倍になるが、目(E)で見る虚像DとD’の高さは等しく、視野数を実質的に同じにすることができる。視野数を実質的に同じにするというのは基準接眼光学系4’の視角2ω’と接眼光学系4の視角2ωとは同じであることを言う。
【0027】
本実施形態に係る倒立顕微鏡1は、前述した係数Kを0.3<K<0.9とした。このようにしたのは、K≦0.3では、結像光学系の焦点距離が短くなりすぎて双眼鏡筒における左右分岐前の空気換算光路長を十分に確保できなくなるか、あるいはリレー光学系の倍率が小さくなりすぎるため、設計が困難になるからである。また、K≧0.9では、プリズムの実質的な小型化を図ることができないからである。
【0028】
ここでは、さらに、以下の条件式を満たすことが好ましい。
15<FN<22 (4)
ここで、FN:接眼光学系4の視野数であり中間像Cの直径に等しい。
【0029】
また、さらに、以下の条件式を満たすことが好ましい。
0.45<K (5)
このようにすることで、K≦0.45とする場合と比較して接眼光学系の焦点距離を長くすることができ、接眼光学系のコマ収差の特性が良好となる。
【0030】
また、さらに、以下の条件式を満たすことが好ましい。
140<Fntl<210 (6)
0.55<βRL<1.1 (7)
8<Fne<23 (8)
【0031】
なお、傾斜角度可変鏡筒や接眼レンズのアイポイントを低くするための鏡筒などでは機構を内蔵するために光路を伸ばす必要があるため結像光学系にリレー系を含むものがあるが対物光学系と接眼光学系の間にある光学系を結像光学系とみなすことで本発明が適用できる。
【実施例】
【0032】
(第1実施例)
次に、本発明の第1の実施形態に係る倒立顕微鏡1の第1実施例について以下に説明する。本実施例に係る倒立顕微鏡1のレンズ構成を図4に示し、レンズデータを表1に、収差図を図5に示す。双眼鏡筒5のプリズムは、空気換算して面番号36の面間隔に含まれる。図4において面番号は一部のみ表示し他を省略している。
【0033】
図5(a)は像面湾曲(非点隔差)、(b)はディストーション、(c)は軸外横収差(コマ収差、倍率色収差)、(d)は球面収差である。各収差は接眼光学系4の後にある目Eの代わりに焦点距離25mmの理想レンズをつけて計算した収差をそれぞれ示している。
【0034】
[表1]
面番号 曲率半径 面間隔 屈折率 アッベ数
物体面 ∞ 0.17(カバーガラス) 1.521 56
1 ∞ 3.59(WD)
(対物光学系2)
2 −11.16 6.3 1.6935 53.2
3 ∞ 4.5 1.4343 94.8
4 −10.14 0.18
5 12.98 4.05 1.4343 94.8
6 ―14.35 0.18
7 11.31 4.5 1.4338 95.0
8 −10.04 7.02 1.72 50.3
9 12.18 2.97
10 −5.69 0.9 1.5725 57.7
11 112.56 2.07 1.4978 82.6
12 −10.77 0.18
13 −139.45 6.75 1.7859 44.2
14 −17.46 0.45
15 545.57 1.8 1.6228 57.0
16 16.13 4.05 1.4978 82.6
17 −42.23 102
(結像光学系3)
18 135.09 4.8 1.497 81.5
19 −49.98 4.0 1.8044 39.6
20 −85.54 161.92
(リレー光学系6)
21 78.79 5.5 1.6031 60.6
22 −37.35 2.9 1.8052 25.4
23 −112.22 4.38
24 21.27 7.67 1.744 44.8
25 ∞ 3.3 1.741 52.6
26 15.46 114.89
27 −197.29 2.98 1.5085 61.2
28 38.36 4.9
29 48.8 7.88 1.456 90.3
30 −31.16 3.15 1.5085 61.2
31 −42.51 31.3
32 57.99 3.17 1.4875 70.2
33 294.37 0.35
34 34.35 6.33 1.7234 38.0
35 −95.99 2.74 1.7185 33.5
36 27.37 165.67
(接眼光学系4)
37 ∞ 3.84 1.7859 44.2
38 −25.0 3.95
39 −17.02 2.25 1.8052 25.4
40 31.5 5.92 1.6516 58.5
41 −31.5 0.14
42 80.44 3.6 1.744 44.8
43 −47.22 0.14
44 23.58 4.32 1.5688 56.4
45 ∞
【0035】
K=0.8
Fntl=144
Ftl=180
βRL=1.0
Fne=20
Fe=25
FN=20
2ω=53.1°
Fob=18
M’=Ftl/Fob×250/Fe=100
M=Fntl/Fob×βRL×250/Fne=100
【0036】
ここで、K:係数、Fntl:結像光学系3の焦点距離、Ftl:倍率が1倍である基準結像光学系の焦点距離、βRL:リレー光学系の倍率、Fne:接眼光学系4の焦点距離、Fe:基準結像光学系3’と基準対物光学系2’とを備える倒立顕微鏡1’における基準接眼光学系4’の焦点距離、FN:中間像Cの直径に等しい接眼光学系4の視野数、2ω:接眼光学系4の視角、M:本実施例の倒立顕微鏡1の総合倍率、Fob:対物光学系2および基準対物光学系2’の焦点距離、M’:基準対物光学系2’と基準結像光学系3’と基準接眼光学系4’を備える倒立顕微鏡1’の総合倍率である。
【0037】
(第2実施例)
次に、本発明の第1の実施形態に係る倒立顕微鏡1の第2実施例について以下に説明する。
本実施例に係る倒立顕微鏡1のレンズ構成を図6に示し、レンズデータを表2に、収差図を図7に示す。双眼鏡筒5のプリズムは、空気換算して面番号31の面間隔に含まれる。図6において面番号は一部のみ表示し他を省略している。
【0038】
図7(a)は像面湾曲(非点隔差)、(b)はディストーション、(c)は軸外横収差(コマ収差、倍率色収差)、(d)は球面収差である。各収差は接眼光学系4の後にある目Eの代わりに焦点距離25mmの理想レンズをつけて計算した収差をそれぞれ示している。
【0039】
[表2]
面番号 曲率半径 面間隔 屈折率 アッベ数
物体面 ∞ 0.17(カバーガラス) 1.521 56
1 ∞ 22.86(WD)
(対物光学系2)
2 55.38 3.44 1.497 81.5
3 −26.01 0.24
4 15.43 4.43 1.6779 55.3
5 −52.53 1.62 1.5317 48.9
6 10.57 6.37
7 −10.02 1.75 1.5955 39.2
8 111.49 5.18 1.497 81.5
9 −20.91 0.72
10 −52.75 2.68 1.4875 70.2
11 −21.88 0.56
12 −52.75 2.68 1.4875 70.2
13 −21.88 102
(結像光学系3)
14 187.63 6.67 1.497 81.5
15 −69.42 5.56 1.8044 39.6
16 −118.8 217.57
(リレー光学系6)
17 78.79 5.5 1.6031 60.6
18 −37.35 2.9 1.8052 25.4
19 −112.22 4.38
20 21.27 7.67 1.744 44.8
21 ∞ 3.3 1.741 52.6
22 15.46 114.89
23 −197.29 2.98 1.5085 61.2
24 38.36 4.9
25 48.8 7.88 1.456 90.3
26 −31.16 3.15 1.5085 61.2
27 −42.51 12.53
28 ∞ 18.77
29 167.48 5.79 1.4875 70.2
30 −60.93 3.8 1.7185 33.5
31 −106.39 161.61
(接眼光学系4)
32 −22.29 2.28 1.8052 25.4
33 −14.64 1.07 1.5163 64.1
34 22.29 17.15
35 −43.68 5.0 1.755 52.3
36 −21.78 0.29
37 ∞ 1.79 1.8052 25.4
38 36.41 7.85 1.7292 54.7
39 −49.98 0.29
40 49.98 7.85 1.7292 54.7
41 −36.41 1.79 1.8052 25.4
42 ∞ 0.29
43 21.78 3.57 1.755 52.3
44 43.68
【0040】
K=0.5
Fntl=200
Ftl=360
βRL=0.9
Fne=12.5
Fe=25
FN=16
2ω=65.2°
Fob=36
M’=Ftl/Fob×250/Fe=100
M=Fntl/Fob×βRL×250/Fne=100
【0041】
ここで、K:係数、Fntl:結像光学系3の焦点距離、Ftl:倍率が1倍である基準結像光学系の焦点距離、βRL:リレー光学系の倍率、Fne:接眼光学系4の焦点距離、Fe:基準結像光学系3’と基準対物光学系2’とを備える倒立顕微鏡1’における基準接眼光学系4’の焦点距離、FN:中間像Cの直径に等しい接眼光学系4の視野数、2ω:接眼光学系4の視角、M:本実施例の倒立顕微鏡1の総合倍率、Fob:対物光学系2および基準対物光学系2’の焦点距離、M’:基準対物光学系2’と基準結像光学系3’と基準接眼光学系4’を備える倒立顕微鏡1’の総合倍率である。
【0042】
(他の実施形態)
第1の実施形態に係る倒立顕微鏡1は、倍率1倍の基準結像光学系3’と比較して結像光学系3の焦点距離Fntlを短くするものであったが、他の態様であっても良い。具体的には、結像光学系3の焦点距離Fntlを基準結像光学系3’の焦点距離Ftlと同じにしても良い。この場合、第1の実施形態に係る(1)から(3)の条件式を満たすために、リレー光学系6の倍率βRLを小さくする。
【0043】
このようにすることで、倍率1倍の基準結像光学系および基準接眼光学系を有する倒立顕微鏡と比較して、接眼光学系の焦点距離を短くして倍率を大きくし、それと同じ割合で対物光学系2と結像光学系3とリレー光学系6を総合した倍率を小さくする。従って、この場合でも、倒立顕微鏡1’の総合倍率を変化させずに、接眼光学系4の視野数を実質的に同じにすることができる。また、双眼鏡筒5を通過する際の光束径を細くして、双眼鏡筒5を小型化することができる。
【0044】
また、第1の実施形態では、図3(a)に示す対物光学系2は図3(b)に示す基準対物光学系と同一であるものとしたが、他の態様であっても良い。具体的には、図3(b)に示す基準対物光学系2’の倍率を、図3(a)に示す対物光学系2の倍率と異ならせてもよい。この場合、倍率1倍の基準結像光学系および基準接眼光学系を有する倒立顕微鏡と比較して、接眼光学系の焦点距離を短くして倍率を大きくし、それと同じ割合で対物光学系2と結像光学系3とリレー光学系6を総合した倍率を小さくする。このようにすることで、倒立顕微鏡1の総合倍率を変化させずに、接眼光学系4の全長を短縮しつつ視野数を実質的に同じにすることができる。また、双眼鏡筒5を通過する際の光束径を細くして、双眼鏡筒5を小型化することができる。
【符号の説明】
【0045】
A 試料
B 中間像
C 中間像
D 虚像
E 目
OA 光軸
ω 接眼光学系の視角の片側角度
1,1’ 倒立顕微鏡
2 対物光学系
2’ 基準対物光学系
3 結像光学系
3’ 基準結像光学系
4 接眼光学系
4’ 基準接眼光学系
5,5’ 双眼鏡筒(光分岐部)
6 リレー光学系
6’ 基準リレー光学系
7 照明光学系

【特許請求の範囲】
【請求項1】
試料からの光を集光する対物光学系と、
該対物光学系により集光された試料からの光を中間像として結像させる結像光学系と、
該結像光学系により結像された前記中間像をリレーするリレー光学系と、
該リレー光学系からの光を分岐する光分岐部と、
該光分岐部により分岐された前記中間像を拡大して観察者の目に虚像として結像させる一対の接眼光学系とを備え、
以下の条件式を満たす倒立顕微鏡。
K=(Fntl/Ftl)×βRL (1)
Fne=Fe×K (2)
0.3<K<0.9 (3)
ここで、
K:係数
Fntl:前記結像光学系の焦点距離、
Ftl:倍率が1倍である基準結像光学系の焦点距離、
βRL:前記リレー光学系の倍率、
Fne:前記接眼光学系の焦点距離、
Fe:前記基準結像光学系と基準対物光学系とを備える倒立顕微鏡における接眼光学系の焦点距離、
である。
【請求項2】
以下の条件式を満たす請求項1に記載の倒立顕微鏡。
15<FN<22 (4)
ここで、FN:前記接眼光学系の視野数
である。
【請求項3】
以下の条件式を満たす請求項1または請求項2に記載の倒立顕微鏡。
0.45<K (5)
【請求項4】
以下の条件式を満たす請求項1から請求項3のいずれか1項に記載の倒立顕微鏡。
140<Fntl<210 (6)
0.55<βRL<1.1 (7)
8<Fne<23 (8)

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−109081(P2013−109081A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−252673(P2011−252673)
【出願日】平成23年11月18日(2011.11.18)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】