説明

光変調器

【課題】DCバイアス電圧について改善された光変調器を提供する。
【解決手段】基板に形成された光を導波するための少なくとも2本の光導波路と、基板の一方の面側に形成され、光を変調する高周波電気信号が伝搬する高周波電気信号用の進行波電極と、光にバイアス電圧を印加するバイアス電極とを有し、光導波路に高周波電気信号用相互作用部とバイアス用相互作用部とを具備する光変調器において、バイアス電極は、バイアス用相互作用部の2本の光導波路の一方および他方の上方に形成された第1バイアス電極および第2バイアス電極と、第2バイアス電極の一部であって第1バイアス電極を間に挟んで当該第2バイアス電極の反対側に形成された側置電極とを含んでなり、第1バイアス電極、第2バイアス電極、及び側置電極は、第1バイアス電極から発せられた電気力線が第2バイアス電極および側置電極に結合するCPW構造を成している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は高速で駆動電圧が低く、かつDCバイアス電圧が小さく、製作の歩留まりの良い光変調器の分野に属する。
【背景技術】
【0002】
リチウムナイオベート(LiNbO)のように電界を印加することにより屈折率が変化する、いわゆる電気光学効果を有する基板(以下、リチウムナイオベート基板をLN基板と略す)に光導波路と進行波電極を形成した進行波電極型リチウムナイオベート光変調器(以下、LN光変調器と略す)は、その優れたチャーピング特性から2.5Gbit/s、10Gbit/sの大容量光伝送システムに適用されている。最近はさらに40Gbit/s、あるいは100Gbit/sの超大容量光伝送システムにも適用が検討されており、キーデバイスとして期待されている。
【0003】
(第1の従来技術)
このLN光変調器にはz―カット基板を使用するタイプとx−カット基板(あるいはy−カット基板)を使用するタイプがある。ここでは、第1の従来技術として特許文献1の考え方をz−カットLN基板と2電極型コプレーナウェーブガイド(CPW)進行波電極に適用したLN光変調器をとり上げ、その概略上面図を図8に示す。
【0004】
図中、1はz-カットLN基板、2は1.3μm、あるいは1.55μmなど光通信において使用する波長領域で透明な厚みDのSiOバッファ層(なお、厚みDは200nmから1μm程度である)、3はz-カットLN基板1にTiを蒸着後、1050℃で約10時間熱拡散して形成した光導波路であり、マッハツェンダ干渉系(あるいは、マッハツェンダ光導波路)を構成している。
【0005】
なお、電界が印加されて屈折率が変化する相互作用光導波路は高周波電気信号と光が相互作用する高周波用電気信号用相互作用部5とDCバイアス電圧(あるいはバイアス電圧)と光が相互作用するDCバイアス用相互作用部6とからなっている。つまり高周波用電気信号用相互作用部5とDCバイアス用相互作用部6はマッハツェンダ光導波路の2本のアームを構成する光導波路から構成されており、高周波用電気信号用相互作用部の2本のアーム(高周波電気信号用相互作用光導波路)を3a、3b、DCバイアス用相互作用部の2本のアーム(DCバイアス用相互作用光導波路)を3a´、3b´とする。
【0006】
この2電極型のLN光変調器では、高周波電気信号用相互作用光導波路3aと3bの上方に各々中心導体(中心電極)4aと4bが形成されている。4c、4d、及び4eは接地導体(接地電極)である。高周波用電気信号用相互作用部5におけるCPW型の進行波電極4は中心導体4a、4b、接地導体4c、4d、4eから構成されている。
【0007】
図9は図8のA−A´における断面図である。DCバイアス用相互作用部6ではDCバイアス電極7aと7bが各々光導波路3a´、3b´の上方に形成されている。8aと8bはDCバイアスの電気力線である。
【0008】
なお、光導波路3a´の上方にあるDCバイアス電極7aはDCバイアス用相互作用部6における中心導体(中心電極)、その並んだ近傍にあるDCバイアス電極7bは側置導体(側置電極)であり、光導波路3b´の上方にあるDCバイアス電極7bはDCバイアス用相互作用部6における中心導体(中心電極)、その並んだ近傍にあるDCバイアス電極7aは側置導体(側置電極)である。
【0009】
図9からわかるように、光導波路3a´にはDCバイアス電極7aからDCバイアス電極7bへ電気力線8aが向かっており、光導波路3a´には下向きの電気力線8aが印加されている。一方、光導波路3b´にもDCバイアス電極7aからDCバイアス電極7bへ電気力線8bが向かっているので、光導波路3b´には上向きの電気力線8bが印加されている。その結果、光導波路3a´と3b´において生じる屈折率変化の符号は互いに逆となる。
【0010】
光導波路3aを伝搬する光の波動関数をψと、光導波路3aの上方に形成されているDCバイアス電極7aから発せられてDCバイアス電極7bに向かう電気力線8aからなる電界Eとの相互作用の結果生じる光導波路3aの屈折率変化Δn

Δn∝∬ψ(x、y)E(x、y)dxdy (1)

と表される。
【0011】
特許文献1では、近接するDCバイアス電極7aと7b間の距離Gと比較して光導波路3a´と3b´の間の距離(この図9では光導波路3a´と3b´の中心間の距離)Sが充分大きく、光導波路3a´の上方にあるDCバイアス電極7aから光導波路3b´上方にあるDCバイアス電極7bへ向かう電気力線はほぼ存在していない。つまり光導波路3a´の屈折率変化には電気力線8aのみが、光導波路3b´の屈折率変化には電気力線8bのみが寄与している。その意味で図9に示したこの第1の従来技術におけるDCバイアス電極7a、7bは非対称コプレーナストリップ(ACPS)構造ということができる。そして我々はACPS構造について詳細なシミュレーションを行った結果、DCバイアス印加時において(1)式で与えられる屈折率変化Δnが小さいという問題点があることを見出した。
【0012】
(第2の従来技術)
図10には特許文献2に開示されたLN光変調器の概略上面図を示す。DCバイアス用相互作用部6において、9aと9bはDCバイアス用電極である。図10のB−B´における断面図を図11に示す。
【0013】
この第2の従来技術においては光導波路3a´の上方のDCバイアス電極9aの左右両側にDCバイアス電極9bが存在し、光導波路3b´の上方のDCバイアス電極9bの左右両側にDCバイアス電極9aが存在する。いわばDCバイアス電極がCPW構造となっており、ACPS構造の第1の従来技術と比較して(1)式で与えられる屈折率変化の効率が高い。
【0014】
なお、光導波路3a´の上方にあるDCバイアス電極9aはDCバイアス用相互作用部6における中心導体(中心電極)、その並んだ両側近傍にあるDCバイアス電極9bは側置導体(側置電極)であり、光導波路3b´の上方にあるDCバイアス電極9bはDCバイアス用相互作用部6における中心導体(中心電極)、その並んだ両側近傍にあるDCバイアス電極9aは側置導体(側置電極)である。
【0015】
第1の従来技術と同じく、本従来技術においても近接するDCバイアス電極9aと9b間の距離Gと比較して光導波路3a´と3b´の間の距離Sが充分大きいため、光導波路3a´の上方にあるDCバイアス電極9aから光導波路3b´の上方にあるDCバイアス電極9bへ向かう電気力線はほぼ存在しない。
【0016】
この第2の従来技術では、光導波路3a´と3b´の上方にあるDCバイアス電極9aと9bを中心導体と考えると、それらはその並んだ両側近傍に側置導体9b、9aを具備するCPW構造である。つまり、図11から分かるように、光導波路3a´と3b´の間にDCバイアス電極9bと9aが必ず存在する。そのため光導波路3a´と3b´の間の距離Sが小さくなると、DCバイアス電極9bと9aが極めて細くなりパターニングが困難となる、DCバイアス電極9aと9b間でショートが起き易い、あるいはESDによる電気的な破壊が生じるという問題があった。
【先行技術文献】
【特許文献】
【0017】
【特許文献1】特開昭62−14627号公報
【特許文献2】特許3806043号公報
【発明の概要】
【発明が解決しようとする課題】
【0018】
以上のように、第1の従来技術ではDCバイアス部における屈折率変化の効率が悪いという問題があり、第2の従来技術ではDCバイアス用相互作用光導波路間の距離が小さくなった際に、パターニングが困難になる、DCバイアス電極間でショートが起き易い、あるいはESDによる電気的な破壊が生じるという問題があった。
【課題を解決するための手段】
【0019】
上記課題を解決するために、本発明の請求項1の光変調器は、電気光学効果を有する基板と、該基板に形成された光を導波するための少なくとも2本の光導波路と、前記基板の一方の面側に形成され、前記光を変調する高周波電気信号が伝搬する高周波電気信号用の中心電極及び接地電極を有する進行波電極と、前記光にバイアス電圧を印加するバイアス電極とを有し、前記光導波路には前記進行波電極に前記高周波電気信号が印加されることにより前記光の位相を変調するための高周波電気信号用相互作用部と、前記バイアス電極にバイアス電圧を印加することにより前記光の位相を調整するためのバイアス用相互作用部とを具備する光変調器において、前記バイアス電極は、前記バイアス用相互作用部の前記2本の光導波路の一方の上方に形成された第1バイアス電極と、前記バイアス用相互作用部の前記2本の光導波路の他方の上方に形成された第2バイアス電極と、前記第2バイアス電極の一部であって、前記第1バイアス電極を間に挟んで当該第2バイアス電極の反対側に形成された側置電極とを含んでなり、前記第1バイアス電極、前記第2バイアス電極、及び前記側置電極は、前記第1バイアス電極から発せられた電気力線が前記第2バイアス電極および前記側置電極に結合するCPW構造を成していることを特徴としている。
【0020】
上記課題を解決するために、本発明の請求項2の光変調器は、請求項1に記載の光変調器において、前記バイアス電極は、前記第1バイアス電極の一部であって、前記他方の光導波路上の前記第2バイアス電極を間に挟んで前記一方の光導波路上の前記第1バイアス電極の反対側に形成された別の側置電極をさらに含み、前記他方の光導波路上の前記第2バイアス電極、前記一方の光導波路上の前記第1バイアス電極、及び前記別の側置電極は、当該第1バイアス電極および当該別の側置電極から発せられた電気力線が当該第2バイアス電極に結合するCPW構造を成していることを特徴としている。
【0021】
上記課題を解決するために、本発明の請求項3の光変調器は、請求項1または2に記載の光変調器において、前記バイアス用相互作用部における前記2本の光導波路の中心線間距離が、前記一方の光導波路上の前記第1バイアス電極のエッジと前記他方の光導波路上の前記第2バイアス電極のエッジとの距離および前記側置電極のエッジとの距離の5倍以下であることを特徴としている。
【0022】
上記課題を解決するために、本発明の請求項4の光変調器は、請求項2または3に記載の光変調器において、前記バイアス用相互作用部における前記2本の光導波路の中心線間距離が、前記他方の光導波路上の前記第2バイアス電極のエッジと前記一方の光導波路上の前記第1バイアス電極のエッジとの距離および前記別の側置電極のエッジとの距離の5倍以下であることを特徴としている。
【0023】
上記課題を解決するために、本発明の請求項5の光変調器は、請求項1乃至4のいずれか一項に記載の光変調器において、前記バイアス用相互作用部における前記2本の光導波路間の距離が、前記高周波電気信号用相互作用部における前記2本の光導波路間の距離よりも狭いことを特徴としている。
【0024】
上記課題を解決するために、本発明の請求項6の光変調器は、請求項1乃至4のいずれか一項に記載の光変調器において、前記光導波路は、ペアレントマッハツェンダ光導波路の分岐光導波路上にチャイルドマッハツェンダ光導波路をそれぞれ有するネスト型光導波路でなり、前記チャイルドマッハツェンダ光導波路に前記高周波電気信号用相互作用部と前記バイス用相互作用部を備えるとともに、前記ペアレントマッハツェンダ光導波路に前記バイス用相互作用部を備えることを特徴としている。
【0025】
上記課題を解決するために、本発明の請求項7の光変調器は、請求項6に記載の光変調器において、前記バイアス用相互作用部が形成されたペアレントマッハツェンダ光導波路における2本の光導波路間の距離が、前記チャイルドマッハツェンダ光導波路のうちの第1のチャイルドマッハツェンダ光導波路における2本の光導波路の中間線と、前記第1のチャイルドマッハツェンダ光導波路と隣接する第2のチャイルドマッハツェンダ光導波路における2本の光導波路の中間線との距離よりも狭いことを特徴としている。
【発明の効果】
【0026】
本発明により、DCバイアス用相互作用部において、第2の従来技術では必要であったDCバイアス用電極を廃止し、かつ光導波路の上方に形成したDCバイアス用電極同士が電気的に結合するように光導波路を近づけることによって、第1の従来技術よりも高い効率の屈折率変化を実現でき、かつ第2の従来技術において問題となっていたパターニングの困難性、DCバイアス電極9aと9b間でのショート、あるいはESDによる電気的な破壊という問題を解決できるという効果がある。
【図面の簡単な説明】
【0027】
【図1】本発明の光変調器における第1の実施形態の模式的な上面図
【図2】本発明の第1実施形態を表す図1のC−C´線における断面図
【図3】本発明の光変調器における第2の実施形態の模式的な上面図
【図4】本発明の光変調器における第3の実施形態の模式的な上面図
【図5】本発明の光変調器における第4の実施形態の模式的な上面図
【図6】本発明の第4実施形態を表す図5のF−F´線における断面図
【図7】本発明の光変調器における第5の実施形態の模式的な上面図
【図8】第1の従来技術の模式的な上面図
【図9】第1の従来技術を表す図8のA−A´線における断面図
【図10】第2の従来技術の模式的な上面図
【図11】第2の従来技術を表す図10のB−B´線における断面図
【発明を実施するための形態】
【0028】
以下、本発明の実施形態について説明するが、図8から図11に示した従来の実施形態と同一番号は同一機能部に対応しているため、ここでは同一番号を持つ機能部の説明を省略する。
【0029】
(第1の実施形態)
図1に本発明における第1の実施形態の概略上面図を示す。本実施形態は高周波電気信号用相互作用部5とDCバイアス用相互作用部6´´とから構成される。高周波電気信号用相互作用部5は図8や図10に示した第1の従来技術、及び第2の従来技術と同じく2電極型の進行波電極4を有している。図2は図1のC−C´における断面図である。ここで、光導波路3a´の上方にはDCバイアス電極11bが、光導波路3b´の上方にはDCバイアス電極11aが形成されている。
【0030】
図2からわかるように、第1の実施形態では、高周波電気信号用相互作用部5における2本のアーム間の距離に対し、DCバイアス用相互作用部6´´における当該距離が狭く構成されている。この構成は、第1の従来技術や第2の従来技術と比較して、DCバイアス用相互作用部6´´における光導波路3a´と3b´の間の距離Sが充分小さい。その結果、DCバイアス電極11bから発せられた電気力線12aと12cは各々2つの(両隣の)DCバイアス電極11aへ達している。従って、光導波路3a´の上方のDCバイアス電極11bについては、DCバイアス電極11bを中心導体とするCPW構造となっており、光導波路3b´の上方のDCバイアス電極11aについては、DCバイアス電極11aを中心導体とするCPW構造となっている。
【0031】
なお、光導波路3a´の上方にあるDCバイアス電極11bはDCバイアス用相互作用部6における中心導体(中心電極)、その並んだ左側近傍にあるDCバイアス電極11aは側置導体(側置電極)である。並んだ右側近傍に側置導体は存在しない。一方、光導波路3b´の上方にあるDCバイアス電極11aはDCバイアス用相互作用部6における中心導体(中心電極)、その並んだ右側近傍にあるDCバイアス電極11bは側置導体(側置電極)である。並んだ左側近傍に側置導体は存在しない。
【0032】
つまり、本発明では第2の従来技術と異なり、光導波路3a´と3b´の間の距離Sが小さくなってもそれらの間に側置導体は存在しないので、第2の従来技術において問題となっていたDCバイアス電極のパターニングの困難性、電気的ショート、あるいはESDによる電極破壊の問題を解決できるという利点がある。
【0033】
ここで、本発明では光導波路3a´の上方のDCバイアス電極11bと光導波路3b´の上方の11aとの間の距離Gと、光導波路3a´の上方のDCバイアス電極11bとその側置電極11aの間の距離Gとの距離の比、あるいはこの距離Gと、光導波路3b´の上方のDCバイアス電極11aとその側置電極11bとの間の距離Gとの距離の比が重要である。つまり、これらの比が略5倍以下、好適には3倍以下であることが望ましい。あるいは2倍以下、特に同程度であると著しい効果がある。
【0034】
本発明において重要な点は、DCバイアス用相互作用光導波路3a´と3b´の上方にあるDCバイアス電極11aと11bが互いに電気力線的に結合できることである。
【0035】
(第2の実施形態)
図3は本発明を単電極型のLN光変調器に適用した第2の実施形態についての概略上面図である。本実施形態は、高周波電気信号用相互作用部5´とDCバイアス用相互作用部6´´から構成される。第1の実施形態とは、高周波電気信号用相互作用部5´の構成が異なっている。
【0036】
高周波電気信号用相互作用部5´は、高周波電気信号用相互作用光導波路3aの上方に形成された中心導体4a´と、その両側に並んで形成された接地導体4c´、4d´とから構成された、単電極構造となっている。本実施形態においても、本発明は有効に効果を発揮できる。
【0037】
(第3の実施形態)
図4は本発明をDQPSK型のLN光変調器に適用した第3の実施形態についての概略上面図である。本実施形態は、高周波電気信号用相互作用部5´´とDCバイアス用相互作用部6´´´、DCバイアス用相互作用部6´´とから構成され、ペアレントマッハツェンダ光導波路の分岐光導波路上に2つのチャイルドマッハツェンダ光導波路(30aと30a´および30bと30b´の各組合せ)をそれぞれ有するネスト型光導波路となっている。
【0038】
6´´´はチャイルドマッハツェンダ用のDCバイアス用相互作用部であり、13a、13b、13c、13dは高周波電気信号用相互作用光導波路30a、30a´、30b、30b´の上方に形成されたDCバイアス電極である。6´´はペアレントマッハツェンダ用のDCバイアス用相互作用部であり、第1の実施形態と同様である。なお、説明を簡単にするために単電極型に必要となる分極反転構造や進行波電極は省略して描いている。
【0039】
この実施形態においては、バイアス用相互作用部6´´が形成されたペアレントマッハツェンダ光導波路における2本の光導波路3a´と3b´との距離が、チャイルドマッハツェンダ光導波路30a、30a´の中間線と、隣接するチャイルドマッハツェンダ光導波路30b、30b´の中間線との距離Lよりも狭く構成されている。もちろん、本発明はこの構成に限定されるものではない。
【0040】
DQPSK型のLN変調器におけるチャイルドマッハツェンダに形成する進行波電極としては2電極型でもよいことは言うまでもない。本実施形態においても、本発明は有効に効果を発揮できる。
【0041】
(第4の実施形態)
図5は本発明を単電極型のLN光変調器に適用した第4の実施形態についての概略上面図である。本実施形態は、高周波電気信号用相互作用部5´とDCバイアス用相互作用部6´´´から構成される。第2の実施形態とは、DCバイアス用相互作用部6´´´の構成が異なっている。
【0042】
本実施形態は、DCバイアス用相互作用部6´´のDCバイアス電極14a、14bの構成として、光導波路3a´についてはCPW構造としたが、光導波路3b´についてはACPS構造としている。図6は図5のF−F´における断面図である。15a、15bは電気力線を表している。光導波路3a´、3b´の両方についてCPW構造とする第1の実施形態に比べてDCバイアス電圧の低減効果は少し劣化するものの、DCバイアスを低減できるという本発明の効果を実現できる。
【0043】
(第5の実施形態)
図7は本発明の第5の実施形態についての概略上面図である。本実施形態は、高周波電気信号用相互作用部5´´´とDCバイアス用相互作用部6´´から構成される。本実施形態は、高周波電気信号用相互作用部5´´´における2本の光導波路3a、3bよりもDCバイアス用相互作用部6´´における2本の光導波路3a、3bの間隔を狭くしている。これにより、高周波電気信号用相互作用部5´´´とDCバイアス用相互作用部6´´を独立に設計できるので、DCバイアス電圧をより低減できるという利点がある。
【0044】
(各実施形態について)
以上の実施形態ではプレーナ構造について説明してきたが、リッジ構造でも良いことはいうまでもない。
【0045】
また、高周波電気信号用相互作用部における2本の光導波路間の距離と、DCバイアス用相互作用部における2本の光導波路間の距離とが、同一であっても、相違していてもよい。
【0046】
また、進行波電極としてはCPW電極を例にとり説明したが、非対称コプレーナストリップ(ACPS)や対称コプレーナストリップ(CPS)などの各種進行波電極、あるいは集中定数型の電極でも良いことは言うまでもない。また、マッハツェンダ干渉系が1つ及び2つの場合について説明したが、DP−QPSKを含めさらに多くのマッハツェンダ干渉系を有する複雑なネスト構造にも適用可能である。
【0047】
また、上記においては高周波電気信号用相互作用部に分極反転を含まない図面で説明したが、高周波電気信号用相互作用部に分極反転を含むか含まないかはDCバイアス用相互作用部についての議論とは本質的に関連しないので、分極反転を含んでいても良いことはいうまでもない。
【0048】
また、LN基板のみでなく、リチウムタンタレートや半導体などその他の基板でも良いことは言うまでもない。
【符号の説明】
【0049】
1:z−カットLN基板
2:SiOバッファ層
3:光導波路
3a、3b、30a、30a´、30b、30b´:高周波電気信号用相互作用部の光導波路
3a´、3b´:DCバイアス用相互作用部の光導波路
4、4´:進行波電極
4a、4a´、4b:進行波電極の中心導体
4c、4c´、4d、4d´、4e:進行波電極の接地導体
5、5´、5´´、5´´´:高周波電気信号用相互作用部
6、6´、6´´、6´´´:DCバイアス用相互作用部
7a、7b、9a、9b、11a、11b、13a、13b、13c、13d、14a、14b:DCバイアス電極
8a、8b、10a、10b,12a、12b、12c、15a、15b:電気力線

【特許請求の範囲】
【請求項1】
電気光学効果を有する基板と、該基板に形成された光を導波するための少なくとも2本の光導波路と、前記基板の一方の面側に形成され、前記光を変調する高周波電気信号が伝搬する高周波電気信号用の中心電極及び接地電極を有する進行波電極と、前記光にバイアス電圧を印加するバイアス電極とを有し、
前記光導波路には前記進行波電極に前記高周波電気信号が印加されることにより前記光の位相を変調するための高周波電気信号用相互作用部と、前記バイアス電極にバイアス電圧を印加することにより前記光の位相を調整するためのバイアス用相互作用部とを具備する光変調器において、
前記バイアス電極は、
前記バイアス用相互作用部の前記2本の光導波路の一方の上方に形成された第1バイアス電極と、
前記バイアス用相互作用部の前記2本の光導波路の他方の上方に形成された第2バイアス電極と、
前記第2バイアス電極の一部であって、前記第1バイアス電極を間に挟んで当該第2バイアス電極の反対側に形成された側置電極とを含んでなり、
前記第1バイアス電極、前記第2バイアス電極、及び前記側置電極は、前記第1バイアス電極から発せられた電気力線が前記第2バイアス電極および前記側置電極に結合するCPW構造を成していることを特徴とする光変調器。
【請求項2】
前記バイアス電極は、前記第1バイアス電極の一部であって、前記他方の光導波路上の前記第2バイアス電極を間に挟んで前記一方の光導波路上の前記第1バイアス電極の反対側に形成された別の側置電極をさらに含み、
前記他方の光導波路上の前記第2バイアス電極、前記一方の光導波路上の前記第1バイアス電極、及び前記別の側置電極は、当該第1バイアス電極および当該別の側置電極から発せられた電気力線が当該第2バイアス電極に結合するCPW構造を成していることを特徴とする請求項1に記載の光変調器。
【請求項3】
前記バイアス用相互作用部における前記2本の光導波路の中心線間距離が、
前記一方の光導波路上の前記第1バイアス電極のエッジと前記他方の光導波路上の前記第2バイアス電極のエッジとの距離および前記側置電極のエッジとの距離の5倍以下であることを特徴とする請求項1または2に記載の光変調器。
【請求項4】
前記バイアス用相互作用部における前記2本の光導波路の中心線間距離が、
前記他方の光導波路上の前記第2バイアス電極のエッジと前記一方の光導波路上の前記第1バイアス電極のエッジとの距離および前記別の側置電極のエッジとの距離の5倍以下であることを特徴とする請求項2または3に記載の光変調器。
【請求項5】
前記バイアス用相互作用部における前記2本の光導波路間の距離が、前記高周波電気信号用相互作用部における前記2本の光導波路間の距離よりも狭いことを特徴とする請求項1乃至4のいずれか一項に記載の光変調器。
【請求項6】
前記光導波路は、ペアレントマッハツェンダ光導波路の分岐光導波路上にチャイルドマッハツェンダ光導波路をそれぞれ有するネスト型光導波路でなり、
前記チャイルドマッハツェンダ光導波路に前記高周波電気信号用相互作用部と前記バイス用相互作用部を備えるとともに、前記ペアレントマッハツェンダ光導波路に前記バイス用相互作用部を備えることを特徴とする請求項1乃至4のいずれか一項に記載の光変調器。
【請求項7】
前記バイアス用相互作用部が形成されたペアレントマッハツェンダ光導波路における2本の光導波路間の距離が、前記チャイルドマッハツェンダ光導波路のうちの第1のチャイルドマッハツェンダ光導波路における2本の光導波路の中間線と、前記第1のチャイルドマッハツェンダ光導波路と隣接する第2のチャイルドマッハツェンダ光導波路における2本の光導波路の中間線との距離よりも狭いことを特徴とする請求項6に記載の光変調器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2012−145894(P2012−145894A)
【公開日】平成24年8月2日(2012.8.2)
【国際特許分類】
【出願番号】特願2011−6210(P2011−6210)
【出願日】平成23年1月14日(2011.1.14)
【出願人】(000000572)アンリツ株式会社 (838)
【Fターム(参考)】