説明

回転主軸冷却水の制御方法

【課題】制御が簡単で、主軸回転数の変化や余熱等に対し臨機応変に冷却水のON−OFFを制御し速やかに所定主軸回転数でのサチュレート温度に達するような主軸冷却水の制御方法を提供。
【解決手段】回転主軸2、回転主軸温度センサ9、冷却ジャケット4、冷却水5、ON−OFF制御バルブ8を有する回転主軸冷却装置1において、回転主軸回転数とサチュレート温度との関係を示す閾値テーブルを設け、回転主軸がONの時は、回転主軸温度Tが閾値テーブルの閾温度より高いときは冷却水を供給し、低いときは冷却水を停止する。回転主軸がOFFの時は、回転主軸温度がOFF前の回転主軸の回転数に対する閾値テーブルの温度より高いときは冷却水を供給し、低いときは冷却水を停止する。閾値温度を所定回転数以下ではサチュレート温度より高く、所定回転数以上の時は低く設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、精密工作機等のスピンドル(回転主軸)の冷却水の制御方法に関する。
【背景技術】
【0002】
従来、精密工作機の主軸は、主軸の温度変化による軸方向の伸びによる寸法精度への影響を避ける必要がある。このため、主軸回転状態で主軸に冷却水を供給しながら、主軸の温度が一定温度に安定するまで、暖機運転を行う。しかし、加工にあたっては、ワークの段取り替えのため主軸を回転停止したり、ワーク諸元の変更により回転数を変えたりする必要がある。そのたびに、温度が安定するまで加工を待つ必要があるが、できる限り安定までの時間を短縮したい。また、コスト等の関係から見ても、制御システムも簡単なON−OFF制御が好ましい。そこで、特許文献1のものにおいては、主軸停止時の冷やし過ぎを防止するために、主軸停止時には冷却水をOFFし、次回の運転開始時の温度上昇までの時間を短縮する。また、主軸ON時に、冷却水をOFFからONするようにして、無駄なエネルギーロスを減らしている。
【0003】
一方、特許文献2の場合は、主軸回転数に対するサチュレート時の熱変移量の関係を求めておき、前後の主軸回転数及び経過時間を考慮して、所定回転数時に早くサチュレートするように冷却水のON−OFFのタイミングを計っている。例えば、主軸OFF時は、OFF時の主軸回転数と前もって与えられた次の回転数及び経過時間の値から、短時間にサチュレートするように計算して、もし冷やし過ぎとなるときは冷却水をOFFし、冷やす必要があるときは冷却水をONするかを判定する。
【0004】
また、主軸ON時には、高速回転から低速回転に変化する場合は、当然サチュレート温度は低くなるので、早めに温度を下げるために、冷却水をONする又は冷却水を継続してONする。低速回転から高速回転に変化する場合は、サチュレート温度が高くなるので、冷却水をOFFし、冷却水のON時のタイミングを遅らせて主軸の温度上昇を早めるようにしている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2004−338034号公報
【特許文献2】特開平11−110021号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、特許文献1の場合は、制御はシンプルであるが、温度が下がり過ぎている場合は、サチュレート温度に達するまでに時間がかかるという問題があった。また、停止前後の回転数が異なる場合までは開示されていない。もし、停止後の再起動時の回転数が停止前より高い場合は、再起動と同時に冷却水をONしたのでは、サチュレート温度に達するまでにさらに時間がかかるという問題があった。
【0007】
また、特許文献2の場合は、予め次回主軸の回転開始時間、回転数を前もって知る必要がある。このため、作業がサイクルタイムに沿って行われている必要がある。逆に、段取り作業等で思わぬ時間が掛かったり、早く終わったりした場合は、対処できない。また、制御が複雑である。また、ワークを連続して加工する場合等の主軸回転数が同回転の場合については特に考慮されていない等の問題があった。さらに、主軸回転停止後の余熱による温度の影響については考慮されていない。
【0008】
本発明の課題は、かかる問題点に鑑みて、制御が簡単で、前もって次回回転数のデータを把握する必要がなく、主軸回転数の変化に対し臨機応変に冷却水のON−OFFを制御し、余熱等の影響をも考慮でき、速やかに所定主軸回転数でのサチュレート温度に達するような主軸冷却水の制御方法を提供することである。
【課題を解決するための手段】
【0009】
本発明においては、回転主軸と、前記回転主軸の温度を測定する温度センサと、前記回転主軸を冷却する冷却ジャケットと、前記冷却ジャケットに供給される室温より低い一定温度に制御された冷却水と、前記冷却水を最大流量で供給又は供給をゼロとするON−OFF制御バルブと、を有する回転主軸冷却装置において、
前記回転主軸の各所定回転数での最大冷却水を与えた時の各所定回転数毎のサチュレート温度との関係を予め測定して作成した前記回転主軸の回転数とサチュレート温度との関係を示す閾値テーブルを設け、
a)回転主軸がONの時は、前記閾値テーブルの前記回転主軸の回転数に対する温度より前記温度センサの温度が高いときは前記ON−OFF制御バルブをONとし、前記冷却水を前記ジャケットに供給し、前記閾値テーブルの回転主軸の回転数に対する温度より前記温度センサの温度が低いときは前記ON−OFF制御バルブをOFFとし、前記冷却水を停止し、
b)回転主軸がOFFの時は、前記閾値テーブルのOFF前の回転主軸の回転数に対する温度より前記温度センサの温度が高いときは前記ON−OFF制御バルブをONとし、前記冷却水を前記ジャケットに供給し、前記閾値テーブルのOFF前の回転主軸の回転数に対する温度より前記温度センサの温度が低いときは前記ON−OFF制御バルブをOFFとし、前記冷却水を停止するようにした主軸冷却水の制御方法を提供することにより、前述した課題を解決した。
【0010】
即ち、a)回転主軸ON時、回転主軸の温度が閾値テーブルの温度より高いときは、再起動時の回転数に対するサチュレート温度は主軸温度より低いことと想定される。そこで、冷却水を供給し、早くサチュレート温度に低下させる。なお、冷却水をOFFすると回転主軸OFF時の内外部の余熱が冷却ジャケットに伝わって回転主軸の温度、即ち温度センサ温度が高くなっている場合にも冷却水が供給される。これにより、部分的な発熱を抑え、再起動時に安定した温度環境を与える。
【0011】
また、回転主軸の温度が閾値テーブルの温度より低いときは、再起動時の回転数に対するサチュレート温度は回転主軸温度より高いと想定され、冷却水を停止(OFF)し、主軸回転による発熱を優先してサチュレート温度に昇温させる。
【0012】
b)回転主軸OFF時、回転主軸の温度が閾値テーブルの停止前の回転数に対する温度より高いときは、冷却水OFF時前の回転時の内外部の余熱が冷却ジャケットに伝わって主軸温度、即ち温度センサ温度が高くなっていることと想定し、冷却水を供給(ON)する。一方、主軸温度が閾値テーブルの停止前の回転数に対する温度より低いときは、緩やかに温度を低下するため、冷却水を停止(OFF)する。これにより、主軸回転OFF後の温度を一定の温度低下状態とする。なお、閾値に対しては適宜所定のヒステリシスを与えるのが好ましい。
【0013】
また、回転主軸停止時や、加工回転数より十分回転数が低い範囲では、発熱量は少なく冷却水を供給する必要がほとんど無い。そこで、請求項2に記載の発明においては、前記閾値テーブルの閾値の温度は、所定の回転数以下のときは、前記サチュレート温度より高く、前記所定の回転数以上の時は、前記サチュレート温度より低い値に設定することとした。
【発明の効果】
【0014】
本発明によれば、主軸回転ON時に、主軸温度が閾値テーブルの温度より高いときは、冷却水を供給し、早くサチュレート温度に低下させる。主軸温度が低いときは、冷却水を停止(OFF)し、主軸回転による発熱を優先してサチュレート温度に昇温させる。主軸回転OFF時に、主軸温度が高いときは、冷却水を供給(ON)し、余熱の影響を無くし、主軸温度が低いときは、冷却水を停止(OFF)し緩やかに温度を低下する。これにより、次回回転数を予測することなく、実際の主軸回転数に応じて臨機応変に冷却水のON−OFFを制御でき、速やかに所定主軸回転数でのサチュレート温度に到達し、待ち時間を短くし、加工効率を向上するものとなった。
【0015】
また、熱発生が少ない低回転時には、閾値温度をサチュレート温度より高くし、冷却水を供給しないので、無駄なエネルギーを消費しない。また、制御も簡単となる。
【図面の簡単な説明】
【0016】
【図1】本発明を実施するための回転主軸冷却装置のブロック図である。
【図2】本発明の実施の形態を示す回転主軸回転数とサチュレート温度との関係を示す説明図である。
【図3】本発明の実施の形態を示す閾値テーブルの説明図である。
【図4】本発明の実施の形態を示す停止時から所定回転数に回転させた場合の主軸回転ON−OFF時のタイムチャート図である。
【図5】本発明の実施の形態を示す高速回転から、所定時間休止後、低速回転で回転させた場合の主軸回転ON−OFF時のタイムチャート図である。
【図6】本発明の実施の形態を示す所定時間休止後同回転数で回転させた場合の主軸回転ON−OFF時のタイムチャート図である。
【図7】本発明の実施の形態を示す低速回転から所定時間休止後、高速回転で回転させた場合の主軸回転ON−OFF時のタイムチャート図である。
【発明を実施するための形態】
【0017】
本発明の実施の形態について図面を参照して説明する。図1に示すように、本発明に用いる回転主軸冷却装置1は、先端2aに砥石等の高速回転工具3が取り付けられる回転主軸2の支持空気軸受の周りに設けられた冷却ジャッケト4と、冷却ジャケットに供給される冷却水5を供給する冷却供給装置6とを有する。回転主軸2は制御装置7により指定回転数で制御されるようにされている。冷却供給装置6と冷却ジャケット4の間にはON−OFFバルブ8が設けられており、NC制御装置7からの信号により、冷却水5を冷却ジャケット4に供給又は供給を停止するようにされている。回転主軸2及び制御装置7は、特許文献1や2に開示されているNC工作機、ウエハダイシング装置、研削装置等に用いられる一般的なものであり、説明を省略する。
【0018】
回転主軸2の温度を測定するための温度センサ9が冷却ジャケット4と回転主軸2との間に設けられており、温度センサ9の温度測定データが制御装置7に入力される。制御装置7には、予め、回転主軸の回転数N(rpm)と冷却水供給時(最大流量又は所定流量の一定の流量)のサチュレート温度T(温度センサの測定温度℃)との関係を求め、回転主軸回転数とサチュレート温度との関係をデータ化した閾値データテーブル10が設けられている。回転主軸回転数Nとサチュレート温度Tとは図2に示すように回転数によりサチュレート温度が変化する。これは、特許文献2が主軸変位としているのを主軸温度とした点で相違するが、同様な傾向を示す。かかるデータを基に、図3に示す閾値データとする。回転数Nとサチュレート温度Tの関係は右上がりの上側へ凹状の点線曲線となる。閾値データ(実線曲線)11はサチュレート温度より若干低い値となるように予め入力されるか、又は、プログラムで修正される。なお、回転数が加工回転数より低い部分又は充分低い部分では、閾値は一定の値とされ、回転主軸のON−OFFに関わらず冷却水はOFFとされる。
【0019】
かかる、装置において、制御装置7は、回転主軸2の指令回転数又は回転主軸の実回転数Nのデータから閾値データ11を参照し、回転主軸への回転(ON)―停止(OFF)指令と温度センサ9の測定温度Tと比較結果から条件判定を行い、ON−OFFバルブ8へON−OFFの指令を出力する。回転主軸が回転している(ON)場合は、測定温度が閾値データの温度より高い時は制御バルブ8をONして、冷却水5を冷却ジャケット4に供給する。また、測定温度が閾値データの温度より低い時は制御バルブ8をOFFして、冷却水5を停止するようにされている。また、回転主軸2が回転していない(OFF)場合は、測定温度が直前の回転主軸2の指令又は実回転数の閾値データの温度より高い時は制御バルブ8をONして、冷却水5を冷却ジャケット4に供給する。また、測定温度が直前の回転主軸2の指令又は実回転数の閾値データの温度より低い時は制御バルブ8をOFFして、冷却水5を停止するようにされている。なお、ゼロ回転(OFF)時のチュレート温度は、ほぼ冷却水温度となるが、回転OFF時は、前の回転数が使用され、余熱の影響がなくなり前の回転数のサチュレート温度以下になり、冷却水がOFFとなった後は、温度が上昇することがないので、再度回転するまでは、冷却水はOFFのままである。また、スタート時に回転OFFの場合は、前の回転数の影響がない場合には冷却水はOFFとされる。また、低速回転(例えば、通常の加工回転数が3000rpm以上の場合では、100rpm以下)では、冷却水はOFFとされる。
【0020】
かかる装置により、本発明の制御は次のように行われる。図4は、本発明の実施の形態を示す停止時から所定回転数に回転させた場合の主軸回転ON−OFF時のタイムチャート図である。図4に示すように、停止時即ち回転数ゼロでは熱発生はないので、冷却水はOFFとされる。次に所定回転数指令により回転主軸が回転(ON)すると、回転の発熱により回転主軸の温度が上昇する。しかし、温度センサの温度が回転数に対する閾値テーブルの閾値温度より低い間は冷却水はOFFのままなので、回転主軸の温度は速やかに上昇する。温度が上昇し、サチレート温度より若干低く設定された閾値温度になった時に冷却水がONされる。これにより、所定のサチュレート温度に速やかに達し回転主軸の温度が安定する。
【0021】
図5は、本発明の実施の形態を示す高速回転から、所定時間休止後、低速回転で回転させた場合の主軸回転ON−OFF時のタイムチャート図である。図5(a)、(b)に示すように、高速回転時には冷却水はONとされ、回転主軸温度はサチュレート温度になっている。回転主軸を停止(OFF)すると回転主軸の温度は低下するが、余熱があるのですぐには低下しない。徐々に温度が低下し、サチレート温度より若干低く設定された閾値温度になった時に冷却水がOFFされる。これにより、回転主軸の温度が余熱により高いまま放置されることなく、冷やし過ぎることもなく、自然放熱状態とされる。
【0022】
次に、低速回転で回転させると、低速回転時の温度が閾値テーブルの温度より高い場合は、冷却水が供給(ON)され、温度を低下させ、速やかに低速回転時のサチュレート温度に達し、回転主軸の発熱とバランスして冷却水は供給され続ける(図5(a))。反対に、低速回転時の温度が閾値テーブルの閾値温度より低い場合は、冷却水が停止(OFF)され、温度が上昇し、サチレート温度より若干低く設定された閾値温度になった時に冷却水がONされる(図5(b))。これにより、所定のサチュレート温度に速やかに達し回転主軸の温度が安定する。
【0023】
図6は、本発明の実施の形態を示す所定時間休止後同回転数で回転させた場合の主軸回転ON−OFF時のタイムチャート図である。図6(a)、(b)に示すように、回転時には冷却水はONとされ、回転主軸温度はサチュレート温度になっている。回転主軸を停止(OFF)すると回転主軸の温度は低下するが、余熱があるのですぐには低下しない。徐々に温度が低下し、サチレート温度より若干低く設定された閾値温度になった時に冷却水がOFFされる。これにより、回転主軸の温度が高いまま放置されることなく、また、冷やしすぎることもなく、自然放熱状態とされる。次に、同じ回転数で回転させると、回転主軸の温度が下がっておらず、閾値テーブルの閾値温度より高い場合は、冷却水が継続供給(ON)されつづけ、サチュレート温度を維持する(図6(a))。反対に、再回転時の温度が閾値テーブルの閾値温度より低い場合は、冷却水が継続停止(OFF)され、温度が上昇し、サチレート温度より若干低く設定された閾値温度になった時に冷却水がONされる(図6(b))。これにより、所定のサチュレート温度に速やかに達し回転主軸の温度が安定する。
【0024】
図7は、本発明の実施の形態を示す低速回転から所定時間休止後、高速回転で回転させた場合の主軸回転ON−OFF時のタイムチャート図である。図7に示すように、低速回転時には冷却水はONとされ、回転主軸温度はサチュレート温度になっている。回転主軸を停止(OFF)すると回転主軸の温度は低下するが、余熱があるのですぐには低下しない。徐々に温度が低下し、閾値温度になった時に冷却水がOFFされる。これにより、回転主軸の温度が高いまま放置されることなく、また、冷やしすぎることもなく、自然放熱状態とされる。次に、高速回転数で回転させると、高速回転数の閾値テーブルの閾値温度は低速回転数の閾値温度より当然高いので、冷却水は停止(OFF)され、温度が上昇し、サチレート温度より若干低く設定された閾値温度になった時に冷却水がONされる。これにより、所定のサチュレート温度に速やかに達し回転主軸の温度が安定する。
【0025】
このように、本発明の実施の形態においては、主軸回転OFF時には、直前の主軸回転数によりON−OFFバルブを制御し、余熱対策及び保温対策を行い、停止時の温度変化を少なくし、次工程に備える。一方、主軸回転ON時には、指令又は実主軸回転数の値によりON−OFFバルブを制御し、速やかにサチュレート温度に近づけることができる。従って、複雑な工程データを用いることなく、回転主軸の指令又は実回転数と測定温度を用いて閾値テーブルと比較するという簡単な制御で回転主軸の回転数に応じて、速やかに安定した温度とし、回転主軸寸法を安定させ、加工開始を早めることができる。
【符号の説明】
【0026】
1 回転主軸冷却装置
2 回転主軸
4 冷却ジャケット
5 冷却水
8 ON−OFF制御バルブ
9 温度センサ
10 閾値テーブル

【特許請求の範囲】
【請求項1】
回転主軸と、前記回転主軸の温度を測定する温度センサと、前記回転主軸を冷却する冷却ジャケットと、前記冷却ジャケットに供給される室温より低い一定温度に制御された冷却水と、前記冷却水を最大流量で供給又は供給をゼロとするON−OFF制御バルブと、を有する回転主軸冷却装置において、
前記回転主軸の各所定回転数での最大冷却水を与えた時の各所定回転数毎のサチュレート温度との関係を予め測定して作成した前記回転主軸の回転数とサチュレート温度との関係を示す閾値テーブルを設け、
a)回転主軸がONの時は、前記回転主軸の回転数に対する前記閾値テーブルの閾値温度より前記温度センサの温度が高いときは前記ON−OFF制御バルブをONとし、前記冷却水を前記ジャケットに供給し、回転主軸の回転数に対する前記閾値テーブルの閾値温度より前記温度センサの温度が低いときは前記ON−OFF制御バルブをOFFとし、前記冷却水を停止し、
b)回転主軸がOFFの時は、OFF前の回転主軸の回転数に対する前記閾値テーブルの閾値温度より前記温度センサの温度が高いときは前記ON−OFF制御バルブをONとし、前記冷却水を前記ジャケットに供給し、OFF前の回転主軸の回転数に対する前記閾値テーブルの閾値温度より前記温度センサの温度が低いときは前記ON−OFF制御バルブをOFFとし、前記冷却水を停止することを特徴とする回転主軸冷却水の制御方法。
【請求項2】
前記閾値テーブルの閾値の温度は、所定の回転数以下のときは、前記サチュレート温度より高く、前記所定の回転数以上の時は、前記サチュレート温度より低い値に設定されていることを特徴とする請求項1記載の回転主軸冷却水の制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−86214(P2013−86214A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−229607(P2011−229607)
【出願日】平成23年10月19日(2011.10.19)
【出願人】(000005197)株式会社不二越 (625)
【Fターム(参考)】