説明

燃料電池の構造体

【課題】「横縞型」の燃料電池の構造体であって、支持基板が外力を受けた場合において支持基板が変形し難く且つガスシール機能の低下を確実に抑制し得るものの提供。
【解決手段】燃料ガス流路11が内部に形成された平板状の支持基板10の主面に、電気的に直列に接続された複数の発電素子部Aが所定の間隔をおいて配置される。支持基板10の主面には、複数の凹部12が所定の間隔をおいて形成される。各凹部12は、周方向に閉じた4つの側壁と、底壁とで画定された直方体状の窪みである。各凹部12には、対応する発電素子部Aの燃料極20が埋設される。各燃料極20の外側面には凹部21bが形成される。各凹部21bの中央部にはインターコネクタ30が埋設され、各凹部21bの中央部の周囲に位置する周縁部には、電気絶縁性を有する緻密なシール材35が埋設される。シール材35の外側面の周縁部の全周は固体電解質膜40で覆われる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池の構造体に関する。
【背景技術】
【0002】
従来より、「ガス流路が内部に形成された電子伝導性を有さない多孔質の支持基板」と、「前記支持基板の表面における互いに離れた複数の箇所にそれぞれ設けられ、燃料極、固体電解質、及び空気極が積層されてなる複数の発電素子部」と、「1組又は複数組の隣り合う前記発電素子部の間にそれぞれ設けられ、隣り合う前記発電素子部の一方の燃料極と他方の空気極とを電気的に接続する電子伝導性を有する1つ又は複数の電気的接続部」とを備えた固体酸化物形燃料電池の構造体が知られている(例えば、特許文献1、2を参照)。このような構成は、「横縞型」とも呼ばれる。
【0003】
以下、支持基板の形状に着目する。特許文献1に記載の「横縞型」の固体酸化物形燃料電池の構造体では、支持基板が円筒状を呈している。円筒状の支持基板の表面(円筒面)には、燃料極を埋設するための複数の「環状溝」が軸方向の複数の箇所においてそれぞれ形成されている(図3を参照)。従って、支持基板において「環状溝」が形成された部分の外径が小さくなっている。このことに起因して、この構造体は、支持基板に曲げ方向やねじり方向の外力が加えられた場合に変形し易い構造であるといえる。
【0004】
また、特許文献2に記載の「横縞型」の固体酸化物形燃料電池の構造体では、支持基板が長手方向を有する平板状を呈している。平板状の支持基板の主面(平面)には、燃料極等を埋設するための「長手方向に延び且つ長手方向に開放された長溝」が形成されている(図3(b)を参照)。従って、支持基板において「長溝」が形成された部分の厚さが小さくなっている。
【0005】
加えて、「長溝」は、長手方向に直交する幅方向の両端部において長手方向に延びる側壁を有する一方で、長手方向の両端部において幅方向に延びる側壁を有していない。即ち、「長溝」は、その周方向に閉じた側壁を有していない。従って、支持基板において「長溝」を囲む枠体が形成されていない。これらのことに起因して、この構造体は、特に支持基板にねじり方向の外力が加えられた場合に変形し易い構造であるといえる。以上のことから、「横縞型」の燃料電池の構造体において、支持基板が外力を受けた場合における支持基板の変形を抑制することが望まれていたところである。
【0006】
更には、上記の燃料電池の構造体では、燃料電池の稼働の際に使用される2種類のガス(典型的には、燃料ガスと空気)の混合を防止するガスシール機能が要求される。係るガスシール機能の低下を確実に抑制することが要求されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平8−106916号公報
【特許文献2】特開2008−226789号公報
【発明の概要】
【0008】
本発明は、「横縞型」の燃料電池の構造体であって、支持基板が外力を受けた場合において支持基板が変形し難く且つガスシール機能の低下を確実に抑制し得るものを提供することを目的とする。
【0009】
本発明に係る燃料電池の構造体は、ガス流路が内部に形成された電気絶縁性を有する平板状の多孔質の支持基板と、前記平板状の支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられ「少なくとも内側電極、固体電解質、及び外側電極が積層されてなる複数の発電素子部」と、1組又は複数組の隣り合う前記発電素子部の間にそれぞれ設けられ、隣り合う前記発電素子部の一方の内側電極と他方の外側電極とを電気的に接続する電子伝導性を有する1つ又は複数の電気的接続部とを備える。即ち、この構造体は、「横縞型」の燃料電池の構造体である。
【0010】
本発明に係る燃料電池の構造体の特徴は、前記各電気的接続部は、緻密な材料で構成された第1部分と、前記第1部分と接続され且つ多孔質の材料で構成された第2部分とで構成され、前記平板状の支持基板の主面における前記複数の箇所に、前記支持基板の材料からなる底壁と全周に亘って前記支持基板の材料からなる周方向に閉じた側壁とを有する第1凹部がそれぞれ形成され、前記各第1凹部に、対応する前記発電素子部の内側電極(の全体)がそれぞれ埋設され、前記埋設された各内側電極の外側面に形成された第2凹部に、対応する前記電気的接続部の前記第1部分(インターコネクタ)(の全体又は一部)、及び、電気絶縁性を有する緻密な材料からなるシール材がそれぞれ埋設されたことにある。
【0011】
ここにおいて、前記第1凹部の平面形状(支持基板の主面に垂直の方向からみた場合の形状)は、例えば、長方形、正方形、円形、楕円形、長円形である。また、前記支持基板が長手方向を有し、且つ、前記複数の第1凹部が長手方向に沿って所定の間隔をおいて配置されていることが好適である。また、前記内側電極及び前記外側電極はそれぞれ、空気極及び燃料極であってもよいし、燃料極及び空気極であってもよい。また、前記シール材は、前記固体電解質とは異なる材料で構成されていても前記固体電解質と同じ材料で構成されていてもよい。
【0012】
このように、本発明に係る「横縞型」の燃料電池の構造体では、内側電極を埋設するための各第1凹部が周方向に閉じた側壁を有している。換言すれば、支持基板において各第1凹部を囲む枠体がそれぞれ形成されている。従って、この構造体は、支持基板が外力を受けた場合に変形し難い構造であるといえる。
【0013】
また、本発明に係る燃料電池の構造体では、インターコネクタ及びシール材が内側電極の外側面に形成された第2凹部に埋設されている。この構造体では、「インターコネクタ、シール材、及び固体電解質で構成される緻密膜」を用いて「ガスシール機能」が達成され得る。
【0014】
「支持基板の主面に形成された第1凹部に埋設された内側電極の外側面に形成された第2凹部にインターコネクタが埋設される形態」では、(後述する図18に示すように)第2凹部の全体にインターコネクタが埋設(充填)されると、「ガスシール機能」の低下が発生し易いという問題があった(詳細は後述する)。これに対し、本発明に係る燃料電池の構造体では、第2凹部に、インターコネクタに加えてシール材が埋設されていることによってガスシール機能の低下を確実に抑制することができる(詳細は後述する)。
【0015】
本発明に係る燃料電池の構造体では、前記各第2凹部において、前記電気的接続部の第1部分が、前記第2凹部における中央部に埋設され、前記シール材が、前記第2凹部における前記中央部の周囲に位置する周縁部にて、前記第2凹部の側壁の全周、及び、前記電気的接続部の第1部分の外周の側壁の全周と接触するように埋設され得る。加えて、前記シール材が前記固体電解質とは異なる材料で構成される場合、前記シール材の外側面の周縁部の全周が前記発電素子部から延設された前記固体電解質で覆われることが好適である。
【図面の簡単な説明】
【0016】
【図1】本発明に係る燃料電池の構造体を示す斜視図である。
【図2】図1に示す燃料電池の構造体の2−2線に対応する断面図である。
【図3】図1に示す支持基板の主面上に形成された凹部に埋設された燃料極、インターコネクタ、及びシール材の状態を示した平面図である。
【図4】支持基板の主面上に固体電解質膜が形成された状態における図3に対応する図である。
【図5】図1に示す燃料電池の構造体の作動状態を説明するための図である。
【図6】図1に示す燃料電池の構造体の作動状態における電流の流れを説明するための図である。
【図7】図1に示す支持基板を示す斜視図である。
【図8】図1に示す燃料電池の構造体の製造過程における第1段階における図2に対応する断面図である。
【図9】図1に示す燃料電池の構造体の製造過程における第2段階における図2に対応する断面図である。
【図10】図1に示す燃料電池の構造体の製造過程における第3段階における図2に対応する断面図である。
【図11】図1に示す燃料電池の構造体の製造過程における第4段階における図2に対応する断面図である。
【図12】図1に示す燃料電池の構造体の製造過程における第5段階における図2に対応する断面図である。
【図13】図1に示す燃料電池の構造体の製造過程における第6段階における図2に対応する断面図である。
【図14】図1に示す燃料電池の構造体の製造過程における第7段階における図2に対応する断面図である。
【図15】図1に示す燃料電池の構造体の製造過程における第8段階における図2に対応する断面図である。
【図16】図1に示す燃料電池の構造体の製造過程における第9段階における図2に対応する断面図である。
【図17】図1に示す燃料電池の構造体における「燃料極の外側面に形成された凹部の周りの構造」を示した模式図である。
【図18】従来の燃料電池の構造体における「燃料極の外側面に形成された凹部の周りの構造」を示した模式図である。
【図19】本発明に係る燃料電池の構造体の第1変形例の図17に対応する断面図である。
【図20】本発明に係る燃料電池の構造体の第2変形例の図17に対応する断面図である。
【図21】本発明に係る燃料電池の構造体の第3変形例の図17に対応する断面図である。
【図22】本発明に係る燃料電池の構造体の第4変形例の図17に対応する断面図である。
【図23】本発明に係る燃料電池の構造体の第5変形例の図2に対応する断面図である。
【図24】本発明に係る燃料電池の構造体の第6変形例の図2に対応する断面図である。
【図25】本発明に係る燃料電池の構造体の第7変形例の図2に対応する断面図である。
【発明を実施するための形態】
【0017】
(構成)
図1は、本発明の実施形態に係る固体酸化物形燃料電池(SOFC)の構造体を示す。このSOFCの構造体は、長手方向(x軸方向)を有する平板状の支持基板10の上下面(互いに平行な両側の主面(平面))のそれぞれに、電気的に直列に接続された複数(本例では、4つ)の同形の発電素子部Aが長手方向において所定の間隔をおいて配置された、所謂「横縞型」と呼ばれる構成を有する。
【0018】
このSOFCの構造体の全体を上方からみた形状は、例えば、長手方向の辺の長さが50〜500mmで長手方向に直交する幅方向(y軸方向)の長さが10〜100mmの長方形である。このSOFCの構造体の全体の厚さは、1〜5mmである。このSOFCの構造体の全体は、厚さ方向の中心を通り且つ支持基板10の主面に平行な面に対して上下対称の形状を有する。以下、図1に加えて、このSOFCの構造体の図1に示す2−2線に対応する部分断面図である図2を参照しながら、このSOFCの構造体の詳細について説明する。図2は、代表的な1組の隣り合う発電素子部A,Aのそれぞれの構成(の一部)、並びに、発電素子部A,A間の構成を示す部分断面図である。その他の組の隣り合う発電素子部A,A間の構成も、図2に示す構成と同様である。
【0019】
支持基板10は、電子伝導性を有さない多孔質の材料からなる平板状の焼成体である。後述する図6に示すように、支持基板10の内部には、長手方向に延びる複数(本例では、6本)の燃料ガス流路11(貫通孔)が幅方向において所定の間隔をおいて形成されている。本例では、各凹部12は、支持基板10の材料からなる底壁と、全周に亘って支持基板10の材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。
【0020】
支持基板10は、例えば、CSZ(カルシア安定化ジルコニア)から構成され得る。或いは、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成されてもよいし、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、MgO(酸化マグネシウム)とMgAl(マグネシアアルミナスピネル)とから構成されてもよい。
【0021】
支持基板10は、「遷移金属酸化物又は遷移金属」と、絶縁性セラミックスとを含んで構成され得る。「遷移金属酸化物又は遷移金属」としては、NiO(酸化ニッケル)又はNi(ニッケル)が好適である。遷移金属は、燃料ガスの改質反応を促す触媒(炭化水素系のガスの改質触媒)として機能し得る。
【0022】
また、絶縁性セラミックスとしては、MgO(酸化マグネシウム)、又は、「MgAl(マグネシアアルミナスピネル)とMgO(酸化マグネシウム)の混合物」が好適である。また、絶縁性セラミックスとして、CSZ(カルシア安定化ジルコニア)、YSZ(8YSZ)(イットリア安定化ジルコニア)、Y(イットリア)が使用されてもよい。
【0023】
このように、支持基板10が「遷移金属酸化物又は遷移金属」を含むことによって、改質前の残存ガス成分を含んだガスが多孔質の支持基板10の内部の多数の気孔を介して燃料ガス流路11から燃料極に供給される過程において、上記触媒作用によって改質前の残存ガス成分の改質を促すことができる。加えて、支持基板10が絶縁性セラミックスを含むことによって、支持基板10の絶縁性を確保することができる。この結果、隣り合う燃料極間における絶縁性が確保され得る。
【0024】
支持基板10の厚さは、1〜5mmである。以下、この構造体の形状が上下対称となっていることを考慮し、説明の簡便化のため、支持基板10の上面側の構成についてのみ説明していく。支持基板10の下面側の構成についても同様である。
【0025】
図2及び図3に示すように、支持基板10の上面(上側の主面)に形成された各凹部12には、燃料極集電部21の全体が埋設(充填)されている。従って、各燃料極集電部21は直方体状を呈している。各燃料極集電部21の上面(外側面)には、凹部21aが形成されている。各凹部21aは、燃料極集電部21の材料からなる底壁と、全周に亘って燃料極集電部21の材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と、幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。
【0026】
各凹部21aには、燃料極活性部22の全体が埋設(充填)されている。従って、各燃料極活性部22は直方体状を呈している。燃料極集電部21と燃料極活性部22とにより燃料極20が構成される。燃料極20(燃料極集電部21+燃料極活性部22)は、電子伝導性を有する多孔質の材料からなる焼成体である。各燃料極活性部22の4つの側面と底面とは、凹部21a内で燃料極集電部21と接触している。
【0027】
燃料極活性部22は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、NiO(酸化ニッケル)とGDC(ガドリニウムドープセリア)とから構成されてもよい。燃料極集電部21は、例えば、NiO(酸化ニッケル)とYSZ(8YSZ)(イットリア安定化ジルコニア)とから構成され得る。或いは、NiO(酸化ニッケル)とY(イットリア)とから構成されてもよいし、NiO(酸化ニッケル)とCSZ(カルシア安定化ジルコニア)とから構成されてもよい。燃料極活性部22の厚さは、5〜30μmであり、燃料極集電部21の厚さ(即ち、凹部12の深さ)は、50〜500μmである。
【0028】
このように、燃料極集電部21は、電子伝導性を有する物質を含んで構成される。燃料極活性部22は、電子伝導性を有する物質と酸化性イオン(酸素イオン)伝導性を有する物質とを含んで構成される。燃料極活性部22における「気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合」は、燃料極集電部21における「気孔部分を除いた全体積に対する酸素イオン伝導性を有する物質の体積割合」よりも大きい。
【0029】
各燃料極集電部21の上面(外側面)における凹部21aを除いた部分には、凹部21bが形成されている。各凹部21bは、燃料極集電部21の材料からなる底壁と、全周に亘って燃料極集電部21の材料からなる周方向に閉じた側壁(長手方向に沿う2つの側壁と、幅方向に沿う2つの側壁)と、で画定された直方体状の窪みである。
【0030】
各凹部21bには、インターコネクタ30、並びに、シール材35が埋設(充填)されている。具体的には、図3に示すように、各凹部21b内において、インターコネクタ30は、凹部21bにおける中央部に埋設(配置)されている。各インターコネクタ30は、長手方向に沿う2つの側壁と幅方向に沿う2つの側壁とを有する直方体状を呈している。シール材35は、凹部21bにおけるインターコネクタ30の周囲に位置する周縁部にて、凹部21bの側壁(内壁)の全周、及び、インターコネクタ30の外周の側壁の全周と接触するように埋設(充填)されている。即ち、各シール材35は四角の枠状を呈している。各インターコネクタ30の側面は燃料極20(集電部21)と接触していない一方で、各インターコネクタ30の底面の全域は、燃料極20(集電部21)と接触している。
【0031】
インターコネクタ30は、電子伝導性を有する緻密な材料からなる焼成体である。インターコネクタ30は、例えば、ランタンクロマイト(LC)から構成され得る。ランタンクロマイトの化学式は、La1−xCr1−y−z(ただし、A:Ca,Sr,Baから選択される少なくとも1種類の元素、B:Co,Ni,Mg,Alから選択される少なくとも1種類の元素、0.05≦x≦0.2、0.02≦y≦0.22、0≦z≦0.05)で表わされる。
【0032】
或いは、インターコネクタ30は、チタン酸化物から構成され得る。チタン酸化物の化学式は、(A1−x,B1−z(Ti1−y,D)O(ただし、A:アルカリ土類元素から選択される少なくとも1種類の元素、B:Sc,Y,及びランタノイド元素から選択される少なくとも1種類の元素、D:第4周期、第5周期、第6周期の遷移金属、及びAl,Si,Zn,Ga,Ge,Sn,Sb,Pb,Biから選択される少なくとも1種類の元素、0≦x≦0.5、0≦y≦0.5、−0.05≦z≦0.05)で表わされる。この場合、(Sr,La)TiO(ストロンチウムチタネート)から構成され得る。インターコネクタ30の厚さは、10〜100μmである。
【0033】
シール材35は、電気絶縁性を有する緻密な材料からなる焼成体である。シール材35は、例えば、金属酸化物を含有し、好ましくは金属酸化物を主成分とする。具体的には、上記金属酸化物として、(AE)ZrO、MgO、MgAl、及びCeLn1−xからなる群より選択される少なくとも1種類の酸化物を含有してもよい。ここで、AEは、アルカリ土類金属であり、Lnは、Y及びランタノイドからなる群より選択される少なくとも1種類の元素であり、xは0<x≦0.3を満たす。AEに該当する元素としては、Mg,Ca,Sr,及びBaが挙げられる。また、微量成分として、遷移金属酸化物(例えば、NiO、Mn、Fe、Cr、CoO)が含まれても良い。これらの成分は、酸化物として存在していても良いし、上記「(AE)ZrO、MgO、MgAl、及びCeLn1−xからなる群より選択される少なくとも1種類の酸化物」に固溶する形で存在していても良い。金属酸化物の平均粒径は0.1〜5.0μmが好ましく、さらに好ましくは0.3〜4.0μmである。なお、シール材35は、後述する固体電解質膜40と同じ材料で構成されてもよい。シール材35の厚さは、10〜100μmである。
【0034】
燃料極20(燃料極集電部21及び燃料極活性部22)の上面(外側面)と、インターコネクタ30の上面(外側面)と、シール材35の上面(外側面)と、支持基板10の主面とにより、1つの平面(凹部12が形成されていない場合の支持基板10の主面と同じ平面)が構成されている。即ち、燃料極20の上面とインターコネクタ30の上面とシール材35の上面と支持基板10の主面との間で、段差が形成されていない。
【0035】
燃料極20、インターコネクタ30、及びシール材35がそれぞれの凹部12に埋設された状態の支持基板10における長手方向に延びる外周面(主面を含む)において複数のシール材35(及びインターコネクタ30)に対応する部分を除いた全面は、固体電解質膜40により覆われている。より具体的には、図4に示すように、固体電解質膜40は、シール材35の外側面の周縁部の全周を覆うように、支持基板10の主面上に形成されている。この結果、シール材35とインターコネクタ30とが接触し、シール材35と固体電解質膜40とが接触する一方で、インターコネクタ30と固体電解質膜40とは接触していない。
【0036】
固体電解質膜40は、イオン伝導性を有し且つ電子伝導性を有さない緻密な材料からなる焼成体である。固体電解質膜40は、例えば、YSZ(8YSZ)(イットリア安定化ジルコニア)から構成され得る。或いは、LSGM(ランタンガレート)から構成されてもよい。固体電解質膜40の厚さは、3〜50μmである。
【0037】
即ち、燃料極20がそれぞれの凹部12に埋設された状態の支持基板10における長手方向に延びる外周面の全面は、インターコネクタ30とシール材35と固体電解質膜40とからなる緻密層により覆われている。この緻密層は、緻密層の内側の空間を流れる燃料ガスと緻密層の外側の空間を流れる空気との混合を防止するガスシール機能を発揮する。
【0038】
なお、図2に示すように、本例では、固体電解質膜40が平坦化されている。この結果、固体電解質膜40に段差が形成される場合に比して、応力集中に起因する固体電解質膜40でのクラックの発生が抑制され得、固体電解質膜40が有するガスシール機能の低下が抑制され得る。
【0039】
固体電解質膜40における各燃料極活性部22と接している箇所の上面には、反応防止膜50を介して空気極60が形成されている。反応防止膜50は、緻密な材料からなる焼成体であり、空気極60は、電子伝導性を有する多孔質の材料からなる焼成体である。反応防止膜50及び空気極60を上方からみた形状は、燃料極活性部22と略同一の長方形である。
【0040】
反応防止膜50は、例えば、GDC=(Ce,Gd)O(ガドリニウムドープセリア)から構成され得る。反応防止膜50の厚さは、3〜50μmである。空気極60は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSF=(La,Sr)FeO(ランタンストロンチウムフェライト)、LNF=La(Ni,Fe)O(ランタンニッケルフェライト)、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)等から構成されてもよい。また、空気極60は、LSCFからなる第1層(内側層)とLSCからなる第2層(外側層)との2層によって構成されてもよい。空気極60の厚さは、10〜100μmである。
【0041】
なお、反応防止膜50が介装されるのは、SOFC作製時又は作動中のSOFC内において固体電解質膜40内のYSZと空気極60内のSrとが反応して固体電解質膜40と空気極60との界面に電気抵抗が大きい反応層が形成される現象の発生を抑制するためである。
【0042】
ここで、燃料極20と、固体電解質膜40と、反応防止膜50と、空気極60とが積層されてなる積層体が、「発電素子部A」に対応する(図2を参照)。即ち、支持基板10の上面には、複数(本例では、4つ)の発電素子部Aが、長手方向において所定の間隔をおいて配置されている。
【0043】
各組の隣り合う発電素子部A,Aについて、一方の(図2では、左側の)発電素子部Aの空気極60と、他方の(図2では、右側の)発電素子部Aのインターコネクタ30とを跨ぐように、空気極60、固体電解質膜40、及び、インターコネクタ30の上面に、空気極集電膜70が形成されている。空気極集電膜70は、電子伝導性を有する多孔質の材料からなる焼成体である。空気極集電膜70を上方からみた形状は、長方形である。
【0044】
空気極集電膜70は、例えば、LSCF=(La,Sr)(Co,Fe)O(ランタンストロンチウムコバルトフェライト)から構成され得る。或いは、LSC=(La,Sr)CoO(ランタンストロンチウムコバルタイト)から構成されてもよい。或いは、Ag(銀)、Ag−Pd(銀パラジウム合金)から構成されてもよい。空気極集電膜70の厚さは、50〜500μmである。
【0045】
このように各空気極集電膜70が形成されることにより、各組の隣り合う発電素子部A,Aについて、一方の(図2では、左側の)発電素子部Aの空気極60と、他方の(図2では、右側の)発電素子部Aの燃料極20(特に、燃料極集電部21)とが、電子伝導性を有する「空気極集電膜70及びインターコネクタ30」を介して電気的に接続される。この結果、支持基板10の上面に配置されている複数(本例では、4つ)の発電素子部Aが電気的に直列に接続される。ここで、電子伝導性を有する「空気極集電膜70及びインターコネクタ30」が、前記「電気的接続部」に対応する。
【0046】
インターコネクタ30は、前記「電気的接続部」における前記「緻密な材料で構成された第1部分」に対応し、気孔率は10%以下である。空気極集電膜70は、前記「電気的接続部」における前記「多孔質の材料で構成された第2部分」に対応し、気孔率は20〜60%である。シール材35の気孔率は10%以下である。固体電解質膜40の気孔率は10%以下である。
【0047】
以上、説明した「横縞型」のSOFCの構造体に対して、図5に示すように、支持基板10の燃料ガス流路11内に燃料ガス(水素ガス等)を流すとともに、支持基板10の上下面(特に、各空気極集電膜70)を「酸素を含むガス」(空気等)に曝す(或いは、支持基板10の上下面に沿って酸素を含むガスを流す)ことにより、固体電解質膜40の両側面間に生じる酸素分圧差によって起電力が発生する。更に、この構造体を外部の負荷に接続すると、下記(1)、(2)式に示す化学反応が起こり、電流が流れる(発電状態)。
(1/2)・O+2e→O2− (於:空気極60) …(1)
+O2−→HO+2e (於:燃料極20) …(2)
【0048】
発電状態においては、図6に示すように、各組の隣り合う発電素子部A,Aについて、電流が、矢印で示すように流れる。この結果、図5に示すように、このSOFCの構造体全体から(具体的には、図5において最も手前側の発電素子部Aのインターコネクタ30と最も奥側の発電素子部Aの空気極60とを介して)電力が取り出される。
【0049】
(製造方法)
次に、図1に示した「横縞型」のSOFCの構造体の製造方法の一例について図7〜図16を参照しながら簡単に説明する。図7〜図16において、各部材の符号の末尾の「g」は、その部材が「焼成前」であることを表す。
【0050】
先ず、図7に示す形状を有する支持基板の成形体10gが作製される。この支持基板の成形体10gは、例えば、支持基板10の材料(例えば、CSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、押し出し成形、切削等の手法を利用して作製され得る。以下、図7に示す8−8線に対応する部分断面を表す図8〜図16を参照しながら説明を続ける。
【0051】
図8に示すように、支持基板の成形体10gが作製されると、次に、図9に示すように、支持基板の成形体10gの上下面に形成された各凹部に、燃料極集電部の成形体21gがそれぞれ埋設・形成される。次いで、図10に示すように、各燃料極集電部の成形体21gの外側面に形成された各凹部に、燃料極活性部の成形体22gがそれぞれ埋設・形成される。各燃料極集電部の成形体21g、及び各燃料極活性部22gは、例えば、燃料極20の材料(例えば、NiとYSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成される。
【0052】
続いて、図11に示すように、各燃料極集電部の成形体21gの外側面における「燃料極活性部の成形体22gが埋設された部分を除いた部分」に形成された各凹部の中央部に、直方体状のインターコネクタの成形体30gがそれぞれ埋設・形成される。各インターコネクタの成形体30gは、例えば、インターコネクタ30の材料(例えば、LaCrO)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成される。
【0053】
次いで、図12に示すように、前記各凹部の成形体30gの周囲に位置する周縁部に、シール材の成形体35gがそれぞれ埋設・形成される。各シール材の成形体35gは、例えば、シール材35の材料(例えば、MgO、或いは、MgOとCaZrOのコンポジット材料)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して埋設・形成される。
【0054】
次に、図13に示すように、複数の燃料極の成形体(21g+22g)及び複数の成形体30g、35gがそれぞれ埋設・形成された状態の支持基板の成形体10gにおける長手方向に延びる外周面において複数の成形体30g、35gが形成されたそれぞれの部分を除いた全面に、固体電解質膜の成形膜40gが形成される。固体電解質膜の成形膜40gは、例えば、固体電解質膜40の材料(例えば、YSZ)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法、ディッピング法等を利用して形成される。
【0055】
次に、図14に示すように、固体電解質膜の成形体40gにおける各燃料極の成形体22gと接している箇所の外側面に、反応防止膜の成形膜50gが形成される。各反応防止膜の成形膜50gは、例えば、反応防止膜50の材料(例えば、GDC)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。
【0056】
そして、このように種々の成形膜が形成された状態の支持基板の成形体10gが、空気中にて1500℃で3時間焼成される。これにより、図1に示したSOFCの構造体において空気極60及び空気極集電膜70が形成されていない状態の構造体が得られる。
【0057】
次に、図15に示すように、各反応防止膜50の外側面に、空気極の成形膜60gが形成される。各空気極の成形膜60gは、例えば、空気極60の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。
【0058】
次に、図16に示すように、各組の隣り合う発電素子部について、一方の発電素子部の空気極の成形膜60gと、他方の発電素子部のインターコネクタ30とを跨ぐように、空気極の成形膜60g、固体電解質膜40、インターコネクタ30、及びシール材35の外側面に、空気極集電膜の成形膜70gが形成される。各空気極集電膜の成形膜70gは、例えば、空気極集電膜70の材料(例えば、LSCF)の粉末にバインダー等が添加されて得られるスラリーを用いて、印刷法等を利用して形成される。
【0059】
そして、このように成形膜60g、70gが形成された状態の支持基板10が、空気中にて1050℃で3時間焼成される。これにより、図1に示したSOFCの構造体が得られる。なお、この時点では、酸素含有雰囲気での焼成により、支持基板10、及び燃料極20中のNi成分が、NiOとなっている。従って、燃料極20の導電性を獲得するため、その後、支持基板10側から還元性の燃料ガスが流され、NiOが700〜1000℃で1〜100時間に亘って還元処理される。なお、この還元処理は発電時に行われてもよい。以上、図1に示したSOFCの構造体の製造方法の一例について説明した。
【0060】
(作用・効果)
以上、説明したように、上記実施形態では、支持基板10の上下面に形成されている、燃料極20を埋設するための複数の凹部12のそれぞれが、全周に亘って支持基板10の材料からなる周方向に閉じた側壁を有している。換言すれば、支持基板10において各凹部12を囲む枠体がそれぞれ形成されている。従って、この構造体は、支持基板10が外力を受けた場合に変形し難い。
【0061】
また、上記実施形態では、支持基板10の各凹部12内に燃料極20及びインターコネクタ30等の部材が隙間なく充填・埋設された状態で、支持基板10と前記埋設された部材とが共焼結される。従って、部材間の接合性が高く且つ信頼性の高い焼結体が得られる。
【0062】
また、図17に模式的に示すように、上記実施形態では、「インターコネクタ30とシール材35と固体電解質膜40とが連続して接続されてなる緻密層」が、燃料ガスと空気との混合を防止するガスシール機能を発揮している。燃料極20(集電部21)の外側面に形成された凹部21bの周縁部に配置されたシール材35の外側面の一部(周縁部)が固体電解質膜40で覆われている一方で、凹部21bの中央部に配置されたインターコネクタ30の外側面は固体電解質膜40で覆われていない。
【0063】
ここで、上記実施形態と比較するための従来例として、図18に示すように、燃料極の外側面に形成された凹部の全体にインターコネクタが埋設(充填)される態様を考える。この場合、ガスシール性の低下の抑制のため、図18に示すように、インターコネクタの外側面の周縁部が電解質膜で覆われる場合が多い。一般に、インターコネクタ(特に、ランタンクロマイトで構成されるインターコネクタ)は、上述した還元処理の際に膨張する性質を有する(還元膨張)。この還元膨張に起因して、インターコネクタの外側面の周縁部と電解質膜の内側面との界面において剥離が発生し、「ガスシール機能」の低下が発生し易いという問題があった。これに対し、上記実施形態では、上述のように、インターコネクタ30の外側面上には緻密膜(固体電解質膜40)が設けられていない。従って、上述したインターコネクタの還元膨張による剥離に起因する「ガスシール機能」の低下が発生しない。即ち、「ガスシール機能」の低下を確実に抑制し得る。
【0064】
また、上記実施形態では、平板状の支持基板10の上下面のそれぞれに、複数の発電素子部Aが設けられている。これにより、支持基板の片側面のみに複数の発電素子部が設けられる場合に比して、構造体中における発電素子部の数を多くでき、燃料電池の発電出力を高めることができる。
【0065】
また、上記実施形態では、固体電解質膜40が平坦化されている。この結果、固体電解質膜40に段差が形成される場合に比して、応力集中に起因する固体電解質膜40でのクラックの発生が抑制され得、固体電解質膜40が有するガスシール機能の低下が抑制され得る。
【0066】
なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施形態では、図7等に示すように、支持基板10に形成された凹部12の平面形状(支持基板10の主面に垂直の方向からみた場合の形状)が、長方形になっているが、例えば、正方形、円形、楕円形、長穴形状等であってもよい。
【0067】
また、上記実施形態においては、各凹部12にはインターコネクタ30の全体が埋設されているが、インターコネクタ30の一部のみが各凹部12に埋設され、インターコネクタ30の残りの部分が凹部12の外に突出(即ち、支持基板10の主面から突出)していてもよい。
【0068】
また、上記実施形態では、図17に示すように、直方体状のインターコネクタ30の底面の全域が燃料極20(集電部21)と接触しているが、図19に示すように、直方体状のインターコネクタ30の底面における中央部が燃料極20(集電部21)と接触し、インターコネクタ30の底面における前記中央部の周囲に位置する周縁部がシール材35と接触するように構成されてもよい。また、図20に示すように、シール材35の底面における周縁部の一部がインターコネクタ30と接触するように構成されてもよい。また、図21に示すように、シール材35及び固体電解質膜40が同じ材質で構成されてもよい。加えて、図22に示すように、シール材35及び固体電解質膜40が同じ材質で構成され、且つ、インターコネクタ30の上面(外側面)と、シール材35及び固体電解質膜40の上面(外側面)とにより1つの平面が構成されてもよい。
【0069】
また、上記実施形態において、凹部12における底壁と側壁とのなす角度θが90°になっているが、図23に示すように、角度θが90〜135°となっていてもよい。また、上記実施形態においては、図24に示すように、凹部12における底壁と側壁とが交差する部分が半径Rの円弧状になっていて、凹部12の深さに対する半径Rの割合が0.01〜1となっていてもよい。
【0070】
また、上記実施形態においては、平板状の支持基板10の上下面のそれぞれに複数の凹部12が形成され且つ複数の発電素子部Aが設けられているが、図25に示すように、支持基板10の片側面のみに複数の凹部12が形成され且つ複数の発電素子部Aが設けられていてもよい。
【0071】
また、上記実施形態においては、燃料極20が燃料極集電部21と燃料極活性部22との2層で構成されているが、燃料極20が燃料極活性部22に相当する1層で構成されてもよい。加えて、上記実施形態においては、「内側電極」及び「外側電極」がそれぞれ燃料極及び空気極となっているが、逆であってもよい。
【符号の説明】
【0072】
10…支持基板、11…燃料ガス流路、12…凹部、20…燃料極、21…燃料極集電部、21a、21b…凹部、22…燃料極活性部、30…インターコネクタ、35…シール材、40…固体電解質膜、50…反応防止膜、60…空気極、70…空気極集電膜、A…発電素子部

【特許請求の範囲】
【請求項1】
ガス流路が内部に形成された平板状の多孔質の支持基板と、
前記平板状の支持基板の主面における互いに離れた複数の箇所にそれぞれ設けられ、少なくとも内側電極、固体電解質、及び外側電極が積層されてなる複数の発電素子部と、
1組又は複数組の隣り合う前記発電素子部の間にそれぞれ設けられ、隣り合う前記発電素子部の一方の内側電極と他方の外側電極とを電気的に接続する1つ又は複数の電気的接続部と、
を備えた燃料電池の構造体において、
前記各電気的接続部は、緻密な材料で構成された第1部分と、前記第1部分と接続され且つ多孔質の材料で構成された第2部分とで構成され、
前記平板状の支持基板の主面における前記複数の箇所に、前記支持基板の材料からなる底壁と全周に亘って前記支持基板の材料からなる周方向に閉じた側壁とを有する第1凹部がそれぞれ形成され、
前記各第1凹部に、対応する前記発電素子部の前記内側電極がそれぞれ埋設され、
前記埋設された各内側電極の外側面に、第2凹部がそれぞれ形成され、
前記各第2凹部に、対応する前記電気的接続部の前記第1部分、及び電気絶縁性を有する緻密な材料からなるシール材がそれぞれ埋設された、燃料電池の構造体。
【請求項2】
請求項1に記載の燃料電池の構造体において、
前記各第2凹部は、前記内側電極の材料からなる底壁と、全周に亘って前記内側電極の材料からなる周方向に閉じた側壁とを有する、燃料電池の構造体。
【請求項3】
請求項1又は請求項2に記載の燃料電池の構造体において、
前記各第2凹部において、
前記電気的接続部の第1部分が、前記第2凹部における中央部に埋設され、
前記シール材が、前記第2凹部における前記中央部の周囲に位置する周縁部にて、前記第2凹部の側壁の全周、及び、前記電気的接続部の第1部分の外周の側壁の全周と接触するように埋設された、燃料電池の構造体。
【請求項4】
請求項3に記載の燃料電池の構造体において、
前記各第2凹部において、
前記電気的接続部の第1部分の底面における中央部が前記内側電極と接触し、前記電気的接続部の第1部分の底面における前記中央部の周囲に位置する周縁部が前記シール材と接触している、燃料電池の構造体。
【請求項5】
請求項3又は請求項4に記載の燃料電池の構造体において、
前記各第2凹部において、
前記シール材は、前記固体電解質とは異なる材料で構成され、
前記シール材の外側面の周縁部の全周が前記発電素子部から延設された前記固体電解質で覆われた、燃料電池の構造体。
【請求項6】
請求項5に記載の燃料電池の構造体において、
前記各第2凹部において、
前記シール材と前記電気的接続部の第1部分とが接触し、
前記シール材と前記固体電解質とが接触し、
前記電気的接続部の第1部分と前記固体電解質とが接触しない、燃料電池の構造体。
【請求項7】
請求項1乃至請求項6の何れか一項に記載の燃料電池の構造体において、
前記電気的接続部の第1部分は、
化学式La1−xCr1−y−z(ただし、A:Ca,Sr,Baから選択される少なくとも1種類の元素、B:Co,Ni,Mg,Alから選択される少なくとも1種類の元素、0.05≦x≦0.2、0.02≦y≦0.22、0≦z≦0.05)で表わされるランタンクロマイトで構成された、燃料電池の構造体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公開番号】特開2013−110092(P2013−110092A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2012−142563(P2012−142563)
【出願日】平成24年6月26日(2012.6.26)
【特許番号】特許第5116184号(P5116184)
【特許公報発行日】平成25年1月9日(2013.1.9)
【出願人】(000004064)日本碍子株式会社 (2,325)
【Fターム(参考)】