説明

研磨パッド及びその製造方法

【課題】従来の硬質(乾式)研磨パッドを用いた場合に生ずるスクラッチの問題を改善し、かつ研磨レートや研磨均一性に優れ、一次研磨だけでなく仕上げ研磨にも対応できる研磨パッド及びその製造方法を提供する。
【解決手段】略球状の気泡を含むポリウレタンポリウレア樹脂発泡体を有する研磨層を含有する研磨パッドであって、前記ポリウレタンポリウレア樹脂発泡体の下記式(1)で求められるハードセグメントの含有率(HSC)が26〜34%の範囲内であり、且つ、前記ポリウレタンポリウレア樹脂発泡体の密度Dが0.30〜0.60g/cmの範囲内であることを特徴とする、半導体デバイス研磨用の研磨パッド。
HSC=100×(r−1)×(Mdi+Mda)÷(Mg+r×Mdi+(r−1)×Mda) ・・・(1)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、研磨パッドに関する。特には、半導体デバイスのCMP用研磨パッドに関する。
【背景技術】
【0002】
シリコン、ハードディスク、液晶ディスプレイ用マザーガラス、半導体デバイスなどの材料の表面には平坦性が求められるため、研磨パッドを用いた遊離砥粒方式の研磨が行われている。遊離砥粒方式は、研磨パッドと非研磨物の間に砥粒を含むスラリー(研磨液)を供給しながら被研磨物の加工面を研磨加工する方法である。
【0003】
半導体デバイス用の研磨パッドには、その研磨パッド表面に、砥粒を保持するための開孔と、半導体デバイス表面の平坦性を維持する硬性と、半導体デバイス表面のスクラッチを防止する弾性とが要求される。これらの要求に応える研磨パッドとして、ウレタン樹脂発泡体から製造された研磨層を有する研磨パッドが利用されている。
【0004】
ウレタン樹脂発泡体は、通常、イソシアネート基含有化合物を含むプレポリマと硬化剤との反応により硬化して成形される(乾式法)。そして、この発泡体をシート状にスライスすることにより研磨パッドが形成される。このように乾式法で成形された硬質の研磨層を有する研磨パッド(以下、硬質(乾式)研磨パッドと略すことがある)は、ウレタン樹脂硬化成形時に発泡体内部に比較的小さな略球状の気泡が形成されるため、スライスにより形成される研磨パッドの研磨面には、研磨加工時にスラリーを保持することができる開孔(開口)が形成される。
【0005】
これまで、半導体デバイス用の研磨パッドの素材となるウレタン樹脂発泡体は、気泡径が100μm以下で30μm付近が主流であった(特許文献1)。また、ウレタン樹脂発泡体のA硬度については70度以上、D硬度は45度以上のものが主流であり(特許文献2〜3)、密度は0.5g/cm3以上のもの(特許文献1)、弾性については貯蔵弾性率が数百MPa以上のもの(特許文献4)が主流であった。縦弾性係数(ヤング率)については、500MPa以上が主流であった(特許文献5)。
【0006】
また、上記主流のもの以外に、磨耗の度合を適正化し研磨性能の安定化を目的として、かさ密度、A硬度、ハードセグメント含有率(HSC)(%)の点からウレタン樹脂発泡体の物性の改良が行われている(特許文献6)。さらに、スクラッチ発生を低減することを目的として、貯蔵弾性率を所定の範囲内になるように調整した研磨パッドも報告されている(特許文献7、8)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特許第4338150号公報
【特許文献2】特許第3924952号公報
【特許文献3】特許第3788729号公報
【特許文献4】特許第3983610号公報
【特許文献5】特開平10−6211号公報
【特許文献6】特開2010−58194号公報
【特許文献7】特開2006−114885号公報
【特許文献8】特開2009−256473号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、上記の乾式研磨パッドは依然として硬質であり、被研磨物との間で局所的に圧力がかかりやすいため、被研磨物の表面に生ずる研磨傷(スクラッチ)の低減の点で満足のいくものではなかった。また、目詰まりを起こしやすいという問題も依然として有していた。そのため、通常、これら乾式法で成形された硬質の研磨パッドで研磨した後には、更に湿式法で成形された軟質の研磨層を有する研磨パッドを用いて仕上げ研磨を行う必要があった(湿式法は、樹脂を水混和性の有機溶媒に溶解させた樹脂溶液をシート状の成膜基材に塗布した後に水系凝固液中で樹脂を凝固再生させたものである)。
【0009】
一方、湿式法で成形された軟質の研磨層を有する研磨パッドは、低硬度でスウェードタイプの大きな開孔を有し、その発泡構造も不均一である。そのため、乾式法で成形された硬質な研磨層を有する研磨パッドによる研磨に比べて、研磨レートや研磨均一性(ユニフォーミティー:パッド表面が被研磨物のうねり・反りに追従できること)には優れるものの、発泡形状が異方性であることから、摩耗により表面の開口状態が変化したり、研磨層下部の低密度部分が引きちぎれたりして、長期間一定のレベルの研磨状態を保てないという問題点を有していた。
【0010】
従って、乾式法で成形された研磨層を有する研磨パッドの利点を生かしつつ、仕上げ研磨にも対応することの出来る研磨パッドに対する需要が存在する。
【0011】
本発明は、上記問題点に鑑みてなされたものであり、従来の硬質(乾式)研磨パッドを用いた場合に生ずるスクラッチの問題を改善し、かつ研磨レートや研磨均一性に優れ、一次研磨だけでなく仕上げ研磨にも対応できる研磨パッド及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するため、本発明は以下の構成を採用した。
【0013】
1. 略球状の気泡を含むポリウレタンポリウレア樹脂発泡体を有する研磨層を備える研磨パッドであって、
前記ポリウレタンポリウレア樹脂発泡体の下記式(1)で求められるハードセグメントの含有率(HSC)が26〜34%の範囲内であり、且つ、前記ポリウレタンポリウレア樹脂発泡体の密度Dが0.30〜0.60g/cm3の範囲内であることを特徴とする、半導体デバイス研磨用の研磨パッド。
HSC=100×(r−1)×(Mdi+Mda)÷(Mg+r×Mdi+(r−1)×Mda) ・・・(1)
式(1)中、Mdiは前記ポリウレタンポリウレア樹脂を構成するポリイソシアネート化合物のイソシアネート基2官能あたりの平均分子量を表し;Mgは前記ポリウレタンポリウレア樹脂を構成するポリオール化合物の水酸基2官能あたりの平均分子量を表し;Mdaは前記ポリウレタンポリウレア樹脂を構成するポリアミン化合物のアミノ基2官能あたりの平均分子量を表し;rは前記ポリウレタンポリウレア樹脂を構成するポリオール化合物の水酸基に対するポリイソシアネート化合物のイソシアネート基の当量比を表す。)
【0014】
2. 前記ポリウレタンポリウレア樹脂発泡体のY=HSC+65×Dで求められるY値が50〜65の範囲内であることを特徴とする、上記1に記載の研磨パッド。
(式中、Dは密度(g/cm3)を表し、HSCは前記式(1)により求められる値である。)
【0015】
3. 前記ポリウレタンポリウレア樹脂発泡体の平均気泡径が120〜185μmである、上記1又は2に記載の研磨パッド。
【0016】
4. 前記ポリウレタンポリウレア樹脂発泡体のA硬度が20〜55度である、上記1〜3のいずれかに記載の研磨パッド。
【0017】
5. 前記ポリウレタンポリウレア樹脂発泡体のD硬度が5〜35度である、上記1〜4のいずれかに記載の研磨パッド。
【0018】
6. 前記ポリウレタンポリウレア樹脂発泡体の40℃、初期荷重10g、歪範囲0.01〜4%、測定周波数0.2Hz、引っ張りモードにおける貯蔵弾性率E’が1〜30MPaである、上記1〜5のいずれかに記載の研磨パッド。
【0019】
7. 前記研磨層の研磨面と反対の面側に前記研磨層よりも硬い層が張り合わされていることを特徴とする、上記1〜6のいずれかに記載の研磨パッド。
【0020】
8. イソシアネート基含有化合物(A)と、ポリイソシアネート化合物(B)と、ポリアミン化合物(D)と、水、整泡剤及び反応触媒を含む混合液(E)と、各成分に対して非反応性の気体とを準備する準備工程;
少なくとも、前記イソシアネート基含有化合物(A)と、ポリイソシアネート化合物(B)と、ポリアミン化合物(D)と、水、整泡剤及び反応触媒を含む混合液(E)と、各成分に対して非反応性の気体とを混合して発泡体成形用混合液を得る混合工程;
前記発泡体成形用混合液からポリウレタンポリウレア樹脂発泡体を成形する発泡体成形工程;及び
前記ポリウレタンポリウレア樹脂発泡体から、被研磨物を研磨加工するための研磨面を有する研磨層を形成する研磨層形成工程、を有することを特徴とする、請求項1〜7のいずれか一項に記載の研磨パッドの製造方法。
【0021】
9. 前記準備工程において、更にポリオール化合物(C−2)を準備し、前記混合工程で混合することを特徴とする、請求項8に記載の研磨パッドの製造方法。
【0022】
10. 前記準備工程において、前記ポリアミン化合物(D)のアミノ基と前記ポリオール化合物(C−2)の水酸基との当量の和(活性水素基の当量)に対する前記ポリアミン化合物(D)のアミノ基の当量比が、0.70〜0.97(アミノ基/(アミノ基+水酸基))となるように準備されることを特徴とする、上記9に記載の研磨パッドの製造方法。
【0023】
11. 前記ポリアミン化合物(D)が、メチレンビス−o−クロロアニリン(MOCA)の単量体と多量体の混合物であって該多量体を15質量%以上含有する粗製MOCAであることを特徴とする、上記8〜10のいずれか1項に記載の研磨パッドの製造方法。
【0024】
12. 前記ポリオール化合物(C−2)が、数平均分子量500〜5000のポリテトラメチレングリコールもしくはポリプロピレングリコール又はこれらの混合物であることを特徴とする、上記9又は10に記載の研磨パッドの製造方法。
【発明の効果】
【0025】
本発明の研磨パッドは、ハードセグメント含有率(HSC)が低いため被研磨物に対する強い押し付けが抑制され、傷(スクラッチ)を招きにくい。また、気孔率が高い(密度が小さい)ため、目詰まりによる傷も発生しにくい。さらに、従来の乾式法で成形された研磨層を有する研磨パッドに比べて軟質であるため、研磨レート、研磨均一性にも優れる。一方で、乾式成形されているため、湿式成形された研磨パッドに比べて研磨表面の磨耗速度が遅く、深さ方向の気泡径の変化が少ないので、長期間一定の研磨状態を維持することが出来る。従って、乾式成形された研磨パッドであっても、一次加工にも仕上げ加工にも有利に用いることが出来る。
【図面の簡単な説明】
【0026】
【図1】本発明の実施形態を示す研磨パッドの断面図(左側)と、従来技術で乾式成形された研磨層を有する研磨パッド(比較例1)の断面図(右側)。
【発明を実施するための形態】
【0027】
以下、本発明を実施するための形態を説明する。
<<研磨パッド>>
本発明の研磨パッドは、略球状の気泡を含むポリウレタンポリウレア樹脂発泡体を有する研磨層を含有する研磨パッドであって、前記ポリウレタンポリウレア樹脂発泡体のハードセグメント含有率(HSC)が26〜34%の範囲内であり、且つ、前記ポリウレタンポリウレア樹脂発泡体の密度Dが0.30〜0.60g/cm3の範囲内であることを特徴とする。
HSC=100×(r−1)×(Mdi+Mda)÷(Mg+r×Mdi+(r−1)×Mda) ・・・(1)
【0028】
上記式(1)中、Mdiは前記ポリウレタンポリウレア樹脂を構成するポリイソシアネート化合物のイソシアネート基2官能あたりの平均分子量を表し;Mgは前記ポリウレタンポリウレア樹脂を構成するポリオール化合物の水酸基2官能あたりの平均分子量を表し;Mdaは前記ポリウレタンポリウレア樹脂を構成するポリアミン化合物のアミノ基2官能あたりの平均分子量を表し;rは前記ポリウレタンポリウレア樹脂を構成するポリオール化合物の水酸基に対するポリイソシアネート化合物のイソシアネート基の当量比を表す。
【0029】
前記ポリウレタンポリウレア樹脂発泡体は、少なくとも2つ以上のウレタン結合と少なくとも2つ以上のウレア結合を分子内に有する樹脂発泡体を意味する。本発明のポリウレタンポリウレア樹脂発泡体は、ポリイソシアネート化合物とポリオール化合物とを反応させて形成したイソシアネート基含有化合物、ポリイソシアネート化合物、ポリアミン化合物、並びに、水、整泡剤及び反応触媒を含む混合液(以降、水分散液と略すことがある)から製造することが出来る。
また、略球状とは、乾式法で成形される発泡体に存在する通常の気泡形状(等方性があり、球状、楕円状、あるいはこれらに近い形状である)を意味する概念であり(図1参照)、湿式法で成形される発泡体に含まれる気泡(異方性があり、研磨パッドの研磨層表面から底部に向けて径が大きい構造を有する)とは明確に区別される。
【0030】
(ハードセグメント含有率(HSC))
ハードセグメント含有率(HSC)(%)とは上記式(1)により求められる値である。
通常、ポリウレタンポリウレア樹脂は、ポリイソシアネート化合物及びポリオール化合物の反応によって形成されるプレポリマのソフトセグメントと、該プレポリマ形成後にポリアミン化合物を添加して過剰のポリイソシアネート化合物及びポリアミン化合物が反応して形成されるハードセグメント(ウレアセグメント)と、で構成されるブロックコポリマーである(本発明では、ポリウレタンポリウレア樹脂のウレタン結合をソフトセグメントとみなす。)。
ハードセグメントには、ポリイソシアネート化合物とポリアミン化合物との間にウレア結合が存在する。このウレア結合はウレタン結合に対して強い水素結合が形成されるため、ウレア結合が多いほど複数のハードセグメント間で水素結合による凝集が起こり、硬い結晶層を形成する。また、ウレア結合が密集すればするほど(規則性ポリウレアセグメント)、隣接分子の当該セグメントと強い凝集力を及ぼし、より強固な結晶層を形成する。
一方、ソフトセグメントの割合が高い(すなわち、ポリオール化合物の割合が高い)と運動性が高くなり軟質化することになる。従って、HSCの値により、研磨層の硬度を調整することが出来る(上記HSCの計算式(1)については、例えば、P.J.Flory;Journal of American Chemical Society,58,1877−1885(1936)参照)。
なお、HSCは、研磨層を構成するポリウレタンポリウレア樹脂の核磁気共鳴(NMR)スペクトル等の構造解析により、Mdi、Mg、Mda、rを求めて算出することができる。これより、成形後の研磨パッドにおいても、研磨層を構成するポリウレタンポリウレア樹脂のHSCを求めることは可能である。
【0031】
本明細書及び特許請求の範囲において、ハードセグメント含有率(HSC)は26〜34%であり、27〜32%が特に好ましい。上記範囲内であると、ウレア結合によって適度な研磨パッド形状の維持と弾性を兼ね備えるため、被研磨物に対する強い押し付けが抑制され、傷(スクラッチ)が生じにくくなると共に、研磨平坦性を損なうことなく高い研磨速度で研磨を達成することができる。
【0032】
(密度D)
前記ポリウレタンポリウレア樹脂発泡体の密度Dは0.30〜0.60g/cm3であり、0.35〜0.55g/cm3であることがより好ましく、0.35〜0.50g/cm3であることがさらにより好ましい。密度Dが上記範囲内であると、研磨剤や被研磨物の加工くずなどで研磨層表面が目詰まりすることによる傷も生じにくくなる。逆に、密度Dが下限値より小さくなると、弾性が極度に大きくなるため被研磨物と接触した際にパッド自体が大きく変形し、平坦化性能が悪くなる。一方で上限値より大きくなると、弾性が欠如することによりスクラッチが発生するようになる。
【0033】
特に、本発明においてはハードセグメント含有率(HSC)及び密度Dの両方がそれぞれ上記数値範囲内に限定されていることにより、スクラッチの発生抑制、研磨レート及び研磨均一性の全ての点で良好な研磨パッドを得ることが出来る。
【0034】
また、上記に加えて、前記ポリウレタンポリウレア樹脂発泡体の、Y=HSC+65×Dで算出されるY値が50〜65の範囲内であることが好ましく、51〜64の範囲内であることがより好ましく、53〜60の範囲内であることがさらにより好ましい。
(式中、Dは密度(g/cm3)を表し、HSCは前記式(1)により求められる値である。)
ここで、Y値は、HSCと密度という、夫々が傷、レート、平坦性といった特性を左右する因子が、個々にではなく、お互いに影響しあって最適値をもたらす事を意味し、鋭意研究の結果、Y値が上記範囲にある場合に一定の平坦性を維持しつつ、スクラッチの発生抑制、研磨レート及び研磨均一性を確保することが可能であることを突き止めた。
Y値が上記範囲内である場合に上記効果を奏する理由は不明であるが、研磨パッドの使用時に研磨層の表面がより軟化する一方で内面は硬質のまま保たれるためではないかと推測される。
【0035】
(平均気泡径d)
本明細書及び特許請求の範囲において、平均気泡径とは、研磨パッドの表面画像を二値化処理し、各々の気泡部分の面積と個数から算出した円相当径の平均値である(但し、画像処理時のノイズカットのために「カットオフ値」を10μmに設定したときの数値である)。
前記研磨層のポリウレタンポリウレア樹脂発泡体の平均気泡径d(μm)は、120〜185μmであることが好ましく、140〜170μmであることがより好ましい。平均気泡径(μm)が上限値以上であると、研磨層表面が粗くなって被研磨物の研磨品質が悪化し、下限値以下であると研磨層表面の目詰まりや、研磨層表面が柔軟性を失い、スクラッチが発生しやすくなる。
【0036】
(A硬度及びD硬度)
本明細書及び特許請求の範囲において、A硬度とは、JIS K7311に準じて測定した値を意味する。
また、D硬度とは、JIS K6253−1997/ISO 7619に準じて測定した値を意味する。
また、前記ポリウレタンポリウレア樹脂発泡体のA硬度は、20〜55度であることが好ましい。
同様に、前記ポリウレタンポリウレア樹脂発泡体のD硬度は、5〜35度であることが好ましい。
A硬度及び/又はD硬度が上記の範囲より小さくなると、弾性が極度に大きくなるため被研磨物と接触した際にパッド自体が大きく変形し、平坦化性能が悪くなる。一方で上記の範囲より大きくなると、弾性が欠如することによりスクラッチが発生するようになる。
【0037】
(貯蔵弾性率E’)
本明細書及び特許請求の範囲において、貯蔵弾性率E’は、JIS K7244−4で準じ初期荷重10g、歪範囲0.01〜4%、測定周波数0.2Hz、にて40℃のときの貯蔵弾性率E’である。
前記ポリウレタンポリウレア樹脂発泡体の40℃、初期荷重10g、歪範囲0.01〜4%、測定周波数0.2Hz、引っ張りモードにおける貯蔵弾性率E’は1〜30MPaであることが好ましく、1〜25MPaであることがより好ましく、1〜20MPaであることがさらに好ましい。貯蔵弾性率E’が上記の範囲より小さくなると、研磨中に一時的に加わる偏荷重などによりパッド自体が変形しやすくなり、研磨均一性が悪くなる。一方で上記の範囲より大きくなると、弾性が欠如することによりスクラッチが発生するようになる。
【0038】
本発明の研磨パッドは、半導体デバイスの研磨、特に半導体デバイスの化学機械研磨(CMP)に好適に用いることが出来る。
【0039】
<<研磨パッドの製造方法>>
上記本発明の半導体デバイス研磨用研磨パッドを製造することの出来る、本発明の半導体デバイス研磨用研磨パッドの製造方法は、イソシアネート基含有化合物(A)、ポリイソシアネート化合物(B)、ポリアミン化合物(D)、水分散液(水、整泡剤及び反応触媒を含む混合液)(E)、及び各成分に対して非反応性の気体を準備する準備工程;少なくとも、前記イソシアネート基含有化合物(A)、ポリイソシアネート化合物(B)、ポリアミン化合物(D)、水分散液(E)、及び各成分に対して非反応性の気体を混合して発泡体成形用の混合液を得る混合工程;前記発泡体成形用混合液からポリウレタンポリウレア樹脂発泡体を成形する発泡体成形工程;及び前記ポリウレタンポリウレア樹脂発泡体から、被研磨物を研磨加工するための研磨面を有する研磨層を形成する研磨層形成工程、を有することを特徴とする。
【0040】
以下、準備工程、混合工程、発泡体成形工程、研磨層形成工程に分けて、それぞれ説明する。
【0041】
<準備工程>
本発明の研磨パッドの製造には、ポリウレタンポリウレア樹脂発泡体の原料として、少なくとも、イソシアネート基含有化合物(A)、ポリイソシアネート化合物(B)、ポリアミン化合物(D)、水分散液(E)、及びこれらの成分に非反応性の気体が用いられる。更にポリオール化合物を上記成分とともに用いてもよい。
また、本発明の効果を損なわない範囲で、上記以外の成分を併せて用いてもよい。
以下、各成分について説明する。
【0042】
[(A)イソシアネート基含有化合物]
プレポリマとしてのイソシアネート基含有化合物は、下記ポリイソシアネート化合物とポリオール化合物とを、通常用いられる条件で反応させることにより得られるものである。また、本発明の効果を損なわない範囲内で、他の成分がイソシアネート基含有化合物に含まれていてもよい。
【0043】
イソシアネート基含有化合物としては、市販されているものを用いてもよく、ポリイソシアネート化合物とポリオール化合物とを反応させて合成したものを用いてもよい。前記反応に特に制限はなく、ポリウレタン樹脂の製造において公知の方法及び条件を用いて付加重合反応すればよい。例えば、40℃に加温したポリオール化合物に、窒素雰囲気にて撹拌しながら50℃に加温したイソシアネート基含有化合物を添加し、30分後に80℃まで昇温させ更に80℃にて60分間反応させるといった方法で製造することが出来る。
【0044】
また、イソシアネート基含有化合物(A)を製造するにあたり、ポリオール化合物に対してポリイソシアネート化合物を過剰に添加する場合には、イソシアネート基含有化合物を形成後もその反応溶液中にポリイソシアネート化合物が残存する。これにより、準備工程でポリイソシアネート化合物を別途準備することなく、該反応溶液をそのまま次の混合工程に用いることも出来る。
【0045】
[(B)ポリイソシアネート化合物]
本明細書及び特許請求の範囲において、ポリイソシアネート化合物とは、分子内に2つ以上のイソシアネート基を有する化合物を意味する。
ポリイソシアネート化合物としては、分子内に2つ以上のイソシアネート基を有していれば特に制限されるものではない。例えば、分子内に2つのイソシアネート基を有するジイソシアネート化合物としては、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、2,6−トリレンジイソシアネート(2,6−TDI)、2,4−トリレンジイソシアネート(2,4−TDI)、ナフタレン−1,4−ジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート(MDI)、4,4’−メチレン−ビス(シクロヘキシルイソシアネート)(水添MDI)、3,3’−ジメトキシ−4,4’−ビフェニルジイソシアネート、3,3’−ジメチルジフェニルメタン−4,4’−ジイソシアネート、キシリレン−1,4−ジイソシアネート、4,4’−ジフェニルプロパンジイソシアネート、トリメチレンジイソシアネート、ヘキサメチレンジイソシアネート、プロピレン−1,2−ジイソシアネート、ブチレン−1,2−ジイソシアネート、シクロヘキシレン−1,2−ジイソシアネート、シクロヘキシレン−1,4−ジイソシアネート、p−フェニレンジイソチオシアネート、キシリレン−1,4−ジイソチオシアネート、エチリジンジイソチオシアネート等を挙げることができる。
ポリイソシアネート化合物としては、ジイソシアネート化合物が好ましく、中でも2,4−TDI、MDIがより好ましく、2,4−TDIが特に好ましい。
これらのポリイソシアネート化合物は、単独で用いてもよく、複数のポリイソシアネート化合物を組み合わせて用いてもよい。
【0046】
[(C)ポリオール化合物]
本明細書及び特許請求の範囲において、ポリオール化合物とは、分子内に2つ以上のアルコール性水酸基(OH)を有する化合物を意味する。
((C−1)プレポリマ合成用のポリオール化合物)
プレポリマとしてのイソシアネート基含有化合物の合成に用いられるポリオール化合物としては、エチレングリコール、ブチレングリコール等のジオール化合物、トリオール化合物等;ポリテトラメチレングリコール(PTMG)等のポリエーテルポリオール化合物;エチレングリコールとアジピン酸との反応物やブチレングリコールとアジピン酸との反応物等のポリエステルポリオール化合物;ポリカーボネートポリオール化合物、ポリカプロラクトンポリオール化合物等を挙げることができる。これらの中でもPTMGが好ましく、数平均分子量(Mn)が約500〜5000のPTMGがさらにより好ましく、約1000のPTMGが最も好ましい。
【0047】
上記ポリオール化合物は単独で用いてもよく、複数のポリオール化合物を組み合わせて用いてもよい。
また、“(ポリイソシアネート化合物の質量(部)+ポリオール化合物(C−1)の質量(部))/[(ポリイソシアネート化合物1分子当たりの官能基数×ポリイソシアネート化合物の質量(部)/ポリイソシアネート化合物の分子量)−(ポリオール化合物(C−1)1分子当たりの官能基数×ポリオール化合物(C−1)の質量(部)/ポリオール化合物(C−1)の分子量)]”で求められるプレポリマのNCO当量は、NCO基1個当たりのPP(プレポリマ)の分子量を示す数値であり、「ソフトセグメント/ハードセグメント」の比率を図るための一指標として用いることが出来る。該NCO当量は、400〜650であることが好ましい。
【0048】
((C−2)プレポリマ合成後に用いられてもよいポリオール化合物)
また、本発明においては、前記プレポリマとしてのイソシアネート基含有化合物を形成するために用いられるポリオール化合物とは別に、イソシアネート基含有化合物、ポリイソシアネート化合物及びポリアミン化合物などとともにポリオール化合物を混合機内に添加して混合することが出来る。前記ポリオール化合物は、それ自体単独で調製されてもよいが、ポリアミン化合物との混合液として調製されてもよく、水分散液を調製する際に添加されてもよい。該ポリオール化合物は、プレポリマを硬化させる硬化剤として作用し、ポリアミン化合物と競争反応的に組み込まれることによって、ポリアミン化合物のブロック内での偏った鎖伸長反応を抑制し、重合度斑の少ない重合がしやすくなる。
【0049】
該ポリオール化合物としては、ジオール化合物やトリオール化合物等の化合物であれば特に制限なく用いることができる。また、プレポリマを形成するのに用いられるポリオール化合物と同一であっても異なっていてもよい。
具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオールなどの低分子量ポリジオール、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの高分子量のポリオール化合物などが挙げられる。これらの中でも、混合工程における他成分との相溶性及び得られる気泡の均一性の観点から、2官能性、3官能性のポリプロピレングリコール(ここで、3官能性のポリプロピレングリコールとは、多官能基のグリセリンを重合開始剤に用いた分岐を有するポリプロピレングリコールを意味する)、ポリテトラメチレングリコールが好ましく、数平均分子量(Mn)が約500〜5000のポリプロピレングリコール及び/又はポリテトラメチレングリコールがより好ましく、Mnが約2000〜4000のポリプロピレングリコール及び/又はMnが約500〜1500のポリテトラメチレングリコールがさらに好ましく、Mn約3000のポリプロピレングリコール及び/又はMnが約1000のポリテトラメチレングリコールが最も好ましい。また、上記ポリプロピレングリコールとしては、3官能性のポリプロピレングリコールが好ましい。
上記ポリオール化合物(C−2)は単独で用いてもよく、複数のポリオール化合物(C−2)を組み合わせて用いてもよい。
【0050】
ポリオール化合物(C−2)を用いる場合には、後述するポリアミン化合物のアミノ基と、前記イソシアネート基含有化合物とは別に用意した前記ポリオール化合物の水酸基との当量の和(活性水素基の当量)に対する前記ポリアミン化合物のアミノ基の当量比(以下、s値と呼ぶことがある)が、0.70〜0.97(アミノ基/(アミノ基+水酸基))となるように準備されることが好ましい。
該ポリオール化合物は単独で用いてもよく、複数のポリオール化合物を組み合わせて用いてもよい。
【0051】
[(D)ポリアミン化合物]
本明細書及び特許請求の範囲において、ポリアミン化合物とは、分子内に2つ以上のアミノ基を有する化合物を意味する。
ポリアミン化合物は、鎖伸長剤として作用し、一部は前記ポリイソシアネート化合物と反応してハードセグメントを形成しつつ、一部は前記イソシアネート基含有化合物(ソフトセグメント部)の主鎖末端側と結合して、ポリマー鎖を更に伸長させることが出来る。これにより、ハードセグメントとソフトセグメントのブロックコポリマーを有するポリウレタンポリウレア樹脂が生成される。
ポリアミン化合物としては、脂肪族や芳香族のポリアミン化合物、特にはジアミン化合物を使用することができ、例えば、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、イソホロンジアミン、ジシクロヘキシルメタン−4,4’−ジアミン、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン(メチレンビス−o−クロロアニリン)(以下、MOCAと略記する。)、MOCAと同様の構造を有するポリアミン化合物等を挙げることができる。また、ポリアミン化合物が水酸基を有していてもよく、このようなアミン系化合物として、例えば、2−ヒドロキシエチルエチレンジアミン、2−ヒドロキシエチルプロピレンジアミン、ジ−2−ヒドロキシエチルエチレンジアミン、ジ−2−ヒドロキシエチルプロピレンジアミン、2−ヒドロキシプロピルエチレンジアミン、ジ−2−ヒドロキシプロピルエチレンジアミン等を挙げることができる。
ポリアミン化合物としては、ジアミン化合物が好ましく、MOCA、ジアミノジフェニルメタン、ジアミノジフェニルスルホンがより好ましく、MOCAが特に好ましい。
【0052】
ここで、MOCAとしては、固形MOCAと粗製MOCAが知られている。固形MOCAは、室温で固体形状の純粋なMOCAを意味する。粗製MOCAは、MOCAのモノマー(単量体)とMOCAの多量体との混合物であり、好ましくは多量体の比率が15質量%以上のものが用いられる。多量体の比率は10〜50質量%であることがより好ましく、20〜40質量%であることがさらにより好ましい。多量体の例としては、MOCAの二量体、三量体、四量体などが挙げられる。粗製MOCAは反応速度の制御が行いやすく、結果として発泡体全体の物性の均一性(例えば密度、硬度など)を得やすい。
本明細書及び特許請求の範囲において、「固形MOCA」及び「粗製MOCA」を用いた場合には、上記の固形MOCA及び粗製MOCAをそれぞれ意味するものする。
【0053】
ポリアミン化合物は、単独で用いてもよく、複数のポリアミン化合物を組み合わせて用いてもよい。また、固形MOCA及び粗製MOCAは常温で固体であるので、混合工程に用いる場合は120℃程度に加温して溶融状態とする必要がある。そこで、ポリオール化合物(C−2)を用いる場合には、MOCA、特に粗製MOCAを予めポリオール化合物(C−2)に溶解して用いると、溶融温度まで加温せずとも、混合工程で利用でき、加温による反応性の増大に起因する重合斑が抑制されるので好ましい。上記のように溶解して用いる場合、MOCAとポリオール化合物(C−2)との質量比は、3:1〜1:3が好ましく、2:1〜1:2がより好ましく、1:1が特に好ましい。また、MOCAを溶解させるポリオール化合物(C−2)としては、ポリテトラメチレングリコールが好ましく、数平均分子量(Mn)が約500〜5000のポリテトラメチレングリコールがより好ましく、Mnが約500〜1500のポリテトラメチレングリコールがさらに好ましく、Mnが約1000のポリテトラメチレングリコールが最も好ましい。
【0054】
ポリアミン化合物は、他の成分と混合し易くするため及び/又は後の発泡体形成工程における気泡径の均一性を向上させるために、必要により加熱した状態で減圧下脱泡することが好ましい。減圧下での脱泡方法としては、ポリウレタンポリウレアの製造において公知の方法を用いればよく、例えば、真空ポンプを用いて0.1MPa以下の真空度で脱泡することができる。
鎖伸長剤として固体の化合物を用いる場合は、加熱により溶融させつつ、減圧下脱泡することができる。
一方、室温で液状のポリアミン化合物を用いる場合は、加熱せずに減圧下脱泡を行ってもよい。
【0055】
本発明の研磨パッドの製造方法では、プレポリマ形成に使用されるポリオール化合物及び/又は全ポリオール化合物に対するポリアミン化合物の含有割合(モル比又は当量比)が、従来の研磨パッドの製造で用いられる含有割合よりも非常に小さい。
【0056】
具体的には、従来の研磨パッドのHSCが35%以上であるのに対し、本発明では26〜34%であり、好ましくは27〜32%である。
また、ポリアミン化合物として固形MOCAを用いる場合には、ポリイソシアネート化合物とポリオール化合物(C−1)の合計1000質量部に対して、固形MOCAを150〜205質量部用いることが好ましい。ポリアミン化合物として液状MOCA(詳細は後記する)を用いる場合には、ポリイソシアネート化合物とポリオール化合物(C−1)の合計1000質量部に対して、液状MOCAを200〜400質量部用いることが好ましい。
【0057】
[(E)水分散液]
本明細書及び特許請求の範囲において、水分散液とは、水、整泡剤及び反応触媒を含む混合液を意味する。
水分散液は、発泡剤、重付加の触媒、発泡径や発泡均一性の整泡に寄与するものであり、例えば、水、反応触媒、界面活性剤等を一般的な攪拌装置を用いて攪拌・混合することにより調製することが出来る。もちろん、水分散液は、これら3成分の組み合わせのみからなるものに限定されない。
【0058】
水分散液に含まれる水は、不純物の混入を防止する観点から蒸留水が好ましい。水は、プレポリマ1000質量部に対して0.1〜6質量部の割合で用いられることが好ましく、0.5〜5質量部の割合で用いられることがより好ましく、1〜3質量部の割合で用いられることがさらにより好ましい。
【0059】
水分散液に含まれる反応触媒(以下、単に触媒ということがある。)は、公知のものを使用することが出来る。例えば、3級アミン、アルコールアミン、エーテルアミン(例えば、トヨキャットET)などのアミン触媒、酢酸塩(カリウム、カルシウム)、有機金属触媒などが挙げられる。なお、本実施例では、触媒としてビス(2−ジメチルアミノエチル)エーテル(トヨキャットET、東ソー株式会社製)を用いているが、本発明の効果はこの触媒を用いた場合のみに限定されるものではない。触媒の量は特に限定されるものではないが、プレポリマ1000質量部に対して0.01〜5質量部の割合で用いられることが好ましく、0.5〜3質量部であることがより好ましい。
【0060】
水分散液に含まれる整泡剤としての界面活性剤は、公知のものを使用することが出来る。例えば、ポリエーテル変性シリコーンなどが挙げられる。なお、本実施例では、シリコーン系界面活性剤の一種であるSH−193(ダウコーニング社製)を用いたが、本発明の効果はこの界面活性剤を用いた場合のみに限定されるものではない。界面活性剤の量は特に限定されるものではないが、プレポリマ1000質量部に対して0.1〜10質量部であることが好ましく、0.5〜5質量部であることがより好ましい。
【0061】
また、上記の成分以外に、本発明の効果を損なわない範囲において、公知の難燃剤、着色剤、可塑剤等を水分散液中に含んでいてもよい。
【0062】
<混合工程>
混合工程では、前記準備工程及びプレポリマ形成工程で得られた、イソシアネート基含有化合物(プレポリマ)(A)、ポリイソシアネート化合物(B)、ポリアミン化合物(D)及び水分散液(E)を、混合機内に供給する。このとき、前記各成分に対して非反応性の気体が吹き込まれる。供給された非反応性気体が前記各成分とともに混合機内で攪拌・混合されることにより、内部に気泡が形成された発泡体成形用の混合液が調製される。混合工程は、上記各成分の流動性を確保できる温度に加温した状態で行われる。
例えば、30℃~100℃に加温したプレポリマ(イソシアネート)溶液に固形MOCA(120℃)またはポリオール化合物(C−2)に溶解したMOCA(80℃)、触媒等を含む分散液を温調可能なジャケット付き混合機に投入し、80℃で攪拌することが出来る。必要に応じ攪拌機付きジャケット付きのタンクに混合液を受けて熟成させても良い。攪拌時間は混合機の歯数や回転数、クリアランス等によって適宜調整するが、例えば0.5〜600秒である。
【0063】
前記気体としては、前記の各成分に対して非反応性であれば特に制限することなく用いることができ、例えば、空気、窒素、酸素、二酸化炭素、ヘリウム、アルゴンなどを挙げることが出来る。
前記気体の供給量は、前記各成分の合計量1kgに対して、好ましくは0.10〜4.00L、より好ましくは0.17〜3.33Lの範囲内になるように供給速度及び時間を調整する。
【0064】
<発泡体成形工程>
発泡体成形工程では、前記混合工程で調製された発泡体成形用混合液を50〜100℃の型枠内に流し込み、発泡・硬化させることによりポリウレタンポリウレア樹脂発泡体を成形する。このとき、プレポリマ、ポリイソシアネート化合物、ポリアミン化合物(及びポリオール化合物)が反応してポリウレタンポリウレア樹脂が形成することにより、該混合液は硬化する。このとき、水分散液に含まれる水がプレポリマ中のイソシアネート基と反応することで二酸化炭素が発生する。この発生した二酸化炭素及び前記吹き込んだ気体がポリウレタンポリウレア樹脂中に留まることで、図1に示すような略球状の微細な気泡を多数有するポリウレタンポリウレア樹脂発泡体が形成される。
なお、図1において、本発明の実施形態を示す研磨パッドの断面図(左側)、従来技術で乾式成形された研磨層を有する研磨パッド(比較例1)の断面図(右側)は同一の拡大倍率(×100倍)で撮影されており、右図中の白線で示すバーが100μmの長さを表す。
【0065】
<研磨層形成工程>
前記発泡体成形工程により得られたポリウレタンポリウレア樹脂発泡体は、シート状にスライスされてポリウレタンポリウレアシートを形成する。スライスされることにより、シート表面に開孔が設けられることになる。このとき、耐摩耗性に優れ目詰まりしにくい研磨層表面の開孔を形成するには、30〜80℃にて1時間〜2週間程度エイジングすることにより、所望の弾性特性が得られやすくなる。ここで発泡体中の平均気泡径を前記範囲内、すなわち、120〜185μm、さらには140〜170μmとすることが好ましく、プレポリマの温度(粘度)、攪拌の回転数、エアー流量、整泡剤の種類や濃度、金型温度のコントロールによって調整される。
【0066】
このようにして得られたポリウレタンポリウレアシートを有する研磨層は、その後、研磨層の研磨面とは反対の面側に両面テープが貼り付けられ、所定形状、好ましくは円板状にカットされて、本発明の研磨パッドとして完成する。両面テープに特に制限はなく、当技術分野において公知の両面テープの中から任意に選択して使用することが出来る。
【0067】
また、本発明の研磨パッドは、研磨層のみからなる単層構造であってもよく、研磨層の研磨面とは反対の面側に他の層(下層、支持層)を貼り合わせた複層からなっていてもよい。他の層の特性は特に限定されるものではないが、研磨層の反対の面側に研磨層よりも硬い(A硬度及び/又はD硬度の高い)層が張り合わされていることが好ましい。研磨層よりも硬い層が設けられることにより、研磨定盤の微小な凹凸が研磨面の形状に影響することを回避でき、研磨平坦性が更に向上する。また、研磨布の剛性が総じて高くなることにより、研磨布を定盤に貼着させる際の、皺の発生などを抑制することができる。
【0068】
複層構造を有する場合には、複数の層同士を両面テープや接着剤などを用いて、必要により加圧しながら接着・固定すればよい。この際用いられる両面テープや接着剤に特に制限はなく、当技術分野において公知の両面テープや接着剤の中から任意に選択して使用することが出来る。
【0069】
さらに、本発明の研磨パッドは、必要に応じて、研磨層の表面及び/又は裏面を研削処理したり、溝加工やエンボス加工を表面に施してもよく、基材及び/又は粘着層を研磨層と張り合わせてもよく、光透過部を備えてもよい。
研削処理の方法に特に制限はなく、公知の方法により研削することができる。具体的には、サンドペーパーによる研削が挙げられる。
溝加工及びエンボス加工の形状に特に制限はなく、例えば、格子型、同心円型、放射型などの形状が挙げられる。
【0070】
本発明の研磨パッドを使用するときは、研磨パッドを研磨層の研磨面が被研磨物と向き合うようにして研磨機の研磨定盤に取り付ける。そして、研磨剤スラリーを供給しつつ、研磨定盤を回転させて、被研磨物の加工表面を研磨する。
本発明の研磨パッドにより加工される被研磨物としては、ハードディスク用ガラス基板、薄型ディスプレイ用マザーガラス、半導体ウェハ、半導体デバイスなどが挙げられる。中でも、本発明の研磨パッドは、半導体デバイスを加工するのに好適に用いられる。
【0071】
<<作用効果>>
本発明のCMP用研磨パッドは、ポリウレタンポリウレア樹脂発泡体を含む研磨層を有し、前記ポリウレタンポリウレア樹脂発泡体のハードセグメント含有率(HSC)が26〜34%であり、且つ、前記研磨層の密度Dが0.30〜0.60g/cm3の範囲に設定されている。
【0072】
上記範囲を満たすポリウレタンポリウレア樹脂製の研磨層は、従来の乾式法で成形された硬質ポリウレタン研磨層に比べてハードセグメント含有率が低く、かつ、密度が小さいため、従来のものよりも低硬度な研磨パッドが得られる。従って、研磨層と被研磨物との間における強い押し付けが抑制され、被研磨物表面にスクラッチが生じにくくなる。また、研磨レートや研磨均一性も向上する。さらに、該研磨層の密度も小さいため、スラリーや加工屑などの目詰まりによるスクラッチも発生しにくい。
【0073】
その一方で、本発明の研磨パッドは、略球状の気泡をスライスすることにより得られる形状の開孔が設けられており、また、研磨層の厚さ方向、平面方向に均一な、等方性の発泡構造を有しており、スウェードタイプの比較的大きな開孔部を備えた発泡構造を有する従来の湿式法で成形された異方性の発泡構造を有する研磨パッド(軟質(湿式)研磨パッドと略す。)とは研磨層表面の気孔(開孔)形状が異なる。軟質(湿式)研磨パッドは、研磨面から底部に向かって気泡径が徐々に大きくなった構造を有する。従って、研磨により磨耗していくと、表面の気泡径(開孔径)が大きくなっていくため表面が粗くなり、研磨品質が劣化するという問題点を有する。また、底部に向かうにつれて気泡が肥大化した構造のため、研磨抵抗により表面が引き千切れ磨耗するといった問題も有する。これに対し、本件の研磨パッドは乾式法により成形されているため、気泡が等方性であり、湿式の研磨パッドが有する上記問題点が生じにくいといった効果をも有する。
【0074】
以上の通り、本発明の研磨パッドは、従来の硬質(乾式)研磨パッドよりも軟性で密度が小さいため、スクラッチの発生を抑制することができ、研磨レート及び研磨均一性にも優れるため、一次加工のみならず仕上げ加工にも使用することが可能となる。また、Z値が一定の範囲内に制限されていると、平坦化能をある程度維持しつつも研磨レート及び研磨均一性を更に向上させることが出来る。
【実施例】
【0075】
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。
【0076】
各実施例及び比較例並びに表1〜4において、特段の指定のない限り、「部」とは「質量部」を意味するものとする。
また、表1〜4の各略号は以下のものを意味する。
・2,4−TDI: 2,4−トリレンジイソシアネート
・水添MDI: 4,4’−メチレン−ビス(シクロヘキシルイソシアネート)
・PTMG1000: 数平均分子量約1000のポリテトラメチレングリコール
・DEG: ジエチレングリコール
・MOCA: 3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン
・3官能PPG3000: 数平均分子量3000で3官能のポリプロピレングリコール
【0077】
また、PPのNCO当量とは、“(ポリイソシアネート化合物の質量(部)+ポリオール化合物(C−1)の質量(部))/[(ポリイソシアネート化合物1分子当たりの官能基数×ポリイソシアネート化合物の質量(部)/ポリイソシアネート化合物の分子量)−(ポリオール化合物(C−1)1分子当たりの官能基数×ポリオール化合物(C−1)の質量(部)/ポリオール化合物(C−1)の分子量)]”で求められるNCO基1個当たりのPP(プレポリマ)の分子量を示す数値であり、「ソフトセグメント/ハードセグメント」の比率を図るための一指標として用いた。
s値とは、上述したように、ポリアミン化合物のアミノ基(D)と、前記イソシアネート基含有化合物(A)とは別に用意した前記ポリオール化合物(C−2)の水酸基との当量の和(活性水素基の当量)に対する前記ポリアミン化合物(D)のアミノ基の当量比(アミノ基/(アミノ基+水酸基))を示す数値である。
【0078】
なお、下記実施例及び比較例において使用した粗製MOCAは、PTMGと粗製MOCA(多量体含有率40質量%)の質量比が1:1の液状の混合物(以下、液状MOCAと記載する)である。
【0079】
(比較例1)
比較例1において、従来知られている硬質(乾式)研磨パッドを製造した。第1成分のプレポリマとして2,4−TDIの316部、水添MDIの88部、数平均分子量約1000のPTMGの539部を反応させた後、ジエチレングリコールの57部を加えて更に反応させたイソシアネート含有量が9.0%、NCO当量466のイソシアネート基含有ウレタンプレポリマを用いこれを55℃に加熱し減圧下で脱泡した。第2成分の鎖伸長剤としての固形MOCAを120℃で溶融し、減圧下で脱泡した。第3成分として発泡剤(Expancel551DE)を2重量%となるように第1成分に混合し、第1成分:第2成分を重量比で1000部:256部の割合で混合機に供給した。
得られた混合液を50℃に加熱した890×890mmの型枠に注型し、100℃で5時間加熱して硬化させた後、形成されたポリウレタン樹脂発泡体を型枠から抜き出した。更にこの発泡体を厚さ1.25mmにスライスしてウレタンシートを作製し、研磨パッドを得た。
【0080】
<実施例1〜4及び比較例2〜5>
次に、固形MOCAを用い、各成分の割合を表1に示すように変動させて、密度の大きさが異なる種々の研磨パッドを製造した。
【0081】
(実施例1)
実施例1では、第1成分のプレポリマとして2,4−TDI(286部)、数平均分子量約1000のPTMG(714部)を反応させたイソシアネート含有量が7.8%、NCO当量が540のイソシアネート基含有ウレタンプレポリマを用いこれを55℃に加熱し減圧下で脱泡した。第2成分の鎖伸長剤として固形MOCAを用いこれを120℃で溶融し、減圧下で脱泡した。第3成分の水分散液は、数平均分子量3000で3官能のPPG(42部)、水(3部)、触媒(トヨキャットET、東ソー株式会社製)(1部)、シリコーン系界面活性剤(SH−193、ダウコーニング社製)(1部)をそれぞれ添加し35℃で1時間攪拌混合した後、減圧下で脱泡した。第1成分:第2成分:第3成分を重量比で1000部:168部:47部の割合で混合機に80kg/minの流量で供給した。このとき、混合機の攪拌ローターに設けられたノズルより、空気を18.2L/minの流量で供給した(すなわち、前記第1〜第3成分の合計80kgあたり18.2Lの空気を供給した)。得られた混合液を型枠(890×890mm)に注型し、100℃で5時間かけて硬化させた後、形成されたポリウレタン樹脂発泡体を型枠から抜き出した。この発泡体を厚さ1.35mmにスライスしてウレタンシートを作製し、研磨パッドを得た。
【0082】
(実施例2〜4及び比較例2〜5)
混合機内に供給する各成分の割合を表1のように変更した以外は実施例1と同様の方法により、厚さ1.32〜1.35mmの研磨パッドを得た。
【0083】
【表1】

【0084】
<実施例5〜9及び比較例6〜8>
次に、液状MOCAを用い、各成分の割合を表2に示すように変動させて、密度の大きさが異なる種々の研磨層を製造した。
【0085】
(実施例5)
実施例5では、第1成分のプレポリマとして2,4−TDI(286部)、数平均分子量約1000のPTMG(714部)を反応させたイソシアネート含有量が7.8%、NCO当量540のイソシアネート基含有ウレタンプレポリマを用いこれを55℃に加熱し減圧下で脱泡した。第2成分の鎖伸長剤として、液状MOCA(234部)を減圧下で脱泡した。第3成分の水分散液は、数平均分子量3000で3官能のPPG(41部)、水(3部)、触媒(トヨキャットET、東ソー株式会社製)(1部)、シリコーン系界面活性剤(SH−193、ダウコーニング社製)(4部)をそれぞれ添加し攪拌混合した後、減圧下で脱泡した。第1成分:第2成分:第3成分を重量比で1000部:234部:49部の割合で混合機に80kg/minの流量で供給した。このとき、混合機内に攪拌ローターに設けられたノズルより、空気を19.1L/minの流量で供給した(すなわち、前記第1〜第3成分の合計80kgあたり19.1Lの空気を供給した)。得られた混合液を型枠に注型し、100℃で5時間かけて硬化させた後、形成されたポリウレタン樹脂発泡体を型枠から抜き出した。この発泡体を厚さ1.28mmにスライスしてウレタンシートを作製し、研磨パッドを得た。
【0086】
(実施例6〜9及び比較例6〜8)
混合機内に供給する各成分の割合を表2のように変更したこと以外は実施例5と同様の方法により、厚さ1.28〜1.30mmの研磨パッドを得た。
【0087】
【表2】

【0088】
<実施例10〜15及び比較例9〜13>
最後に、ポリイソシアネート化合物、ポリオール化合物及びポリアミン化合物の量を増減させて研磨層を製造した。
【0089】
(実施例10)
実施例10では、第1成分のプレポリマとして2,4−TDI(325部)、数平均分子量約1000のPTMG(675部)を反応させたイソシアネート含有量が10.0%、NCO当量420のイソシアネート基含有ウレタンプレポリマを用いこれを55℃に加熱し減圧下で脱泡した。第2成分の鎖伸長剤として、液状MOCA(397部)を減圧下で脱泡した。第3成分の水分散液は、数平均分子量3000で3官能のPPG(43部)、水(1部)、触媒(トヨキャットET、東ソー株式会社製)(1部)、シリコーン系界面活性剤(SH−193、ダウコーニング社製)(4部)をそれぞれ添加し攪拌混合した後、減圧下で脱泡した。第1成分:第2成分:第3成分を重量比で1000部:397部:49部の割合で80kg/minの流量で混合機に供給した。このとき、混合機内に空気を19.1L/minの流量で供給した。得られた混合液を型枠に注型し硬化させた後、形成されたポリウレタン樹脂発泡体を型枠から抜き出した。この発泡体を厚さ1.27mmにスライスしてウレタンシートを作製し、研磨パッドを得た。
【0090】
(実施例11〜15及び比較例9〜13)
実施例11〜15及び比較例9〜18について、各成分の割合を表3〜4に示すとおりに変更した以外は実施例10と同様の方法により、厚さ1.27〜1.30mmの研磨パッドを製造した。
【0091】
【表3】

【0092】
【表4】

【0093】
<物性評価>
上記の各実施例及び比較例について、ハードセグメント含有率(%)、密度(g/cm3)、Y値、A硬度(°)、D硬度(°)、平均気泡径(μm)、1mm2当たりの気泡個数、貯蔵弾性率E’40(Mpa)、及び厚み(mm)を算出又は測定した。その結果を表1〜4に示す。
なお、各項目の測定方法は以下の通りである。
【0094】
密度(g/cm3)は、所定サイズの大きさに切り出した試料の重量(g)を測定し、サイズから体積(cm3)を求めることにより算出した。
【0095】
A硬度は、日本工業規格(JIS K 7311)に従って、ショアA デュロメーターを用いて測定した。なお、試料は、比較例及び実施例に記載のウレタンシート(厚さ約1.3mm)を4枚重ねとし、少なくとも総厚さ4.5mm以上になるように設定した。
【0096】
D硬度はJIS K 6253-1997/ISO 7619によってテクロック社製D型硬度計で測定した。なお、試料は、比較例及び実施例に記載のウレタンシート(厚さ約1.3mm)を4枚重ねとし、少なくとも総厚さ4.5mm以上になるように設定した。
【0097】
平均気泡径(μm)、1mm2当たりの気泡個数は、マイクロスコープ(VH−6300、KEYENCE製)でパッド表面の約1.3mm四方の範囲を175倍に拡大して観察し、得られた画像を画像処理ソフト(Image Analyzer V20LAB Ver. 1.3、ニコン製)により二値化処理して気泡個数を確認し、また、各々の気泡の面積から円相当径及びその平均値(平均気泡径)を算出した。なお、気泡径のカットオフ値(下限)を10μmとし、ノイズ成分を除外した。
【0098】
40℃における貯蔵弾性率(E’40(MPa))は、ティー・エイ・インスツルメント・ジャパン RSAIIIにより、JIS K7244−4に準じ初期荷重10g、歪範囲0.01〜4%、測定周波数0.2Hzにて40℃のときの貯蔵弾性率を測定した。
【0099】
<研磨試験>
各実施例及び比較例の研磨パッドについて、以下の研磨条件で研磨加工を行い、研磨レート、研磨均一性及びスクラッチの有無を測定した。被研磨物としては、12インチのシリコンウェハ上にテトラエトキシシランをCVDで絶縁膜を1μmの厚さになるように形成した基板(均一性(CV%)が13%)を用いた。
【0100】
(研磨レート)
研磨レートは、1分間あたりの研磨量を厚さ(nm)で表したものであり、研磨加工前後の基板の絶縁膜について各々17箇所の厚み測定結果から平均値を求めた。なお、厚み測定は、光学式膜厚膜質測定器(KLAテンコール社製、ASET−F5x)のDBSモードにて測定した。
【0101】
(研磨均一性)
研磨均一性は、前記の17箇所の厚み測定結果のバラツキ(標準偏差÷平均値)から求めた。
【0102】
(スクラッチの有無)
スクラッチの評価では、25枚の基板を繰り返し3回順次研磨し、研磨加工後の21〜25枚目の基板5枚について、パターンなしウェハ表面検査装置(KLAテンコール社製、Surfscan SP1DLS)の高感度測定モードにて測定し、基板表面におけるスクラッチの有無を評価した。
【0103】
なお、上記試験で用いた研磨条件は以下の通りである。
・使用研磨機:荏原製作所社製、F−REX300。
・回転数:(定盤)70rpm、(トップリング)71rpm。
・研磨圧力:220hPa。
・研磨剤:キャボット社製、品番:SS25(SS25原液:純水=1:1の混合液を使用)。
・研磨剤温度:30℃。
・研磨剤吐出量:200ml/min。
・使用ワーク(被研磨物):12インチφシリコンウェハ上にテトラエトキシシランをCVDで絶縁膜1μmの厚さになるように形成した基板。
・研磨時間:60秒間/各回。
・ドレッシング:(研磨布貼付後)10min。
【0104】
各実施例及び比較例について、上記方法を用いて行った研磨試験の結果を、表1〜4に示す。
ここで、本発明の研磨パッドは、研磨レート、研磨均一性及びスクラッチ抑制が、バランスよく効果として発揮されていることを要するものであるため、商品価値上、以下のようにして研磨試験の結果を評価した。
研磨レートは200以上(nm/min)を○、190以上〜200未満(nm/min)を△、190未満(nm/min)を×として評価した。
研磨均一性は、7.0以下(CV%)を○、7.0超過〜8.0以下(CV%)を△、8.0超過(CV%)を×として評価した。
スクラッチの有無は、無(0枚)を○、有(1枚以上)を×として評価した。
そして、研磨レート、研磨均一性及びスクラッチの有無の3種について、△が0〜1つのもの(3種全てが○のもの及び2種が○で1種が△のもの)を好ましい例(実施例)とし、△を2つ以上有するサンプル及び×を1つでも有するサンプルを、本発明において好ましくない例(比較例)として評価した。
【0105】
(試験結果1(比較例1))
空気を吹き込まず、水分散液も用いない比較例1により製造された従来の研磨パッドは、密度、ハードセグメント含有率ともに高かった。また、1mm2当たりの気泡の個数が多く、平均気泡径が小さい構造、すなわち、非常に小さな気泡が無数に存在する構造を有していた(図1の右図参照)。その結果、スクラッチが発生し、研磨均一性の点でも満足のいく数値は得られなかった。
【0106】
(試験結果2(実施例1〜4及び比較例2〜5))
鎖伸長剤として固形MOCAを用いた実施例1〜4及び比較例2〜5において、水の添加量が多く固形MOCAの量が少ない場合には密度が小さくなりすぎ、研磨レート及び研磨均一性の点で劣る結果となった(比較例2)。逆に、水の添加量が少なく固形MOCAの量が多い場合には、密度が大きくなるために、スクラッチが発生し、研磨均一性の点でも十分な結果は得られなかった(比較例3〜5)。
一方、密度及びハードセグメント含有率が本発明の範囲内となるように固形MOCA及び水添加量を調整して製造された研磨パッドでは、スクラッチが発生せず、研磨レート、研磨均一性のいずれにおいても良好な結果が得られた(実施例1〜4)。
【0107】
(試験結果3(実施例5〜9及び比較例6〜8))
鎖伸長剤として液体MOCAを用いた実施例5〜9及び比較例6〜8において、水の添加量が多く液状MOCAの量が少ない場合には密度が小さくなりすぎてしまうために、特に研磨レート、研磨均一性の点で十分な結果は得られなかった(比較例6)。逆に、水の添加量が少なく液状MOCAの量が多い場合には、密度が大きくなるため、スクラッチが発生し、研磨均一性の点でも劣る結果となった(比較例7〜8)。
一方、密度及びハードセグメント含有率が本発明の範囲内となるように液状MOCA及び水添加量を調整して製造された研磨パッドでは、スクラッチが発生せず、研磨レート、研磨均一性のいずれにおいても良好な結果が得られた(実施例5〜9)。
【0108】
(試験結果4(実施例10〜15及び比較例9〜13))
ポリイソシアネート化合物、ポリオール化合物及びポリアミン化合物の含有比率を変動させた実施例10〜15及び比較例9〜13において、ポリアミン化合物の量がポリオール化合物の量に対して多すぎる場合(当量比)には、ハードセグメント含有率が大きくなりすぎてしまい、スクラッチの発生、低研磨レート及び低研磨均一性を2種以上生ずる結果となった(比較例9〜10)。
逆に、ポリアミン化合物の量がポリオール化合物の量に対して少なすぎる場合(当量比)には、ハードセグメント含有率が小さくなりすぎてしまい、特に研磨レートや研磨均一性の点で大きく劣る結果となった(比較例11〜18)。
一方、ポリアミン化合物のアミノ基とプレポリマ形成用のポリオール化合物の水酸基との当量比を、ハードセグメント含有率及び密度が本発明の範囲内になるように調整して製造された研磨パッドでは、スクラッチが発生せず、研磨レート、研磨均一性のいずれも十分良好な結果が得られた(実施例10〜15)。
【0109】
以上から明らかなように、ハードセグメント含有率が26〜34%の範囲内であり、且つ、密度Dが0.30〜0.60g/cm3の範囲内である実施例1〜15の研磨パッドは、非研磨物の研磨表面にスクラッチが生じておらず、研磨レート、研磨均一性の点でも良好な結果が得られた。従って、比較例1〜13に比べて、スクラッチの発生抑制、研磨レート及び研磨均一性のいずれもがバランスよく効果を発揮することが明らかとなった。
【産業上の利用可能性】
【0110】
本発明の研磨パッドは、ハードセグメント含有率が小さいので強い押し付けが抑制され傷を招きにくい。また、気孔率が高い(密度が小さい)ため、目詰まりによる傷も発生しにくい。さらに、従来の乾式法で成形された研磨層を有する研磨パッドに比べて軟質であるため、研磨レート及び研磨均一性にも優れる。一方で、乾式成形されているため、湿式成形された研磨パッドに比べて研磨表面の磨耗速度が遅く、長期間一定の研磨状態を維持することが出来る。従って、乾式成形された研磨パッドであっても、一次加工にも仕上げ加工にも有利に用いることが出来る。よって、本発明の研磨パッド及びその製造方法は、産業上の利用可能性を有する。

【特許請求の範囲】
【請求項1】
略球状の気泡を含むポリウレタンポリウレア樹脂発泡体を有する研磨層を備える研磨パッドであって、
前記ポリウレタンポリウレア樹脂発泡体の下記式(1)で求められるハードセグメントの含有率(HSC)が26〜34%の範囲内であり、且つ、前記ポリウレタンポリウレア樹脂発泡体の密度Dが0.30〜0.60g/cm3の範囲内であることを特徴とする、半導体デバイス研磨用の研磨パッド。
HSC=100×(r−1)×(Mdi+Mda)÷(Mg+r×Mdi+(r−1)×Mda) ・・・(1)
式(1)中、Mdiは前記ポリウレタンポリウレア樹脂を構成するポリイソシアネート化合物のイソシアネート基2官能あたりの平均分子量を表し;Mgは前記ポリウレタンポリウレア樹脂を構成するポリオール化合物の水酸基2官能あたりの平均分子量を表し;Mdaは前記ポリウレタンポリウレア樹脂を構成するポリアミン化合物のアミノ基2官能あたりの平均分子量を表し;rは前記ポリウレタンポリウレア樹脂を構成するポリオール化合物の水酸基に対するポリイソシアネート化合物のイソシアネート基の当量比を表す。)
【請求項2】
前記ポリウレタンポリウレア樹脂発泡体のY=HSC+65×Dで求められるY値が50〜65の範囲内であることを特徴とする、請求項1に記載の研磨パッド。
(式中、Dは密度(g/cm3)を表し、HSCは前記式(1)により求められる値である。)
【請求項3】
前記ポリウレタンポリウレア樹脂発泡体の平均気泡径が120〜185μmである、請求項1又は2に記載の研磨パッド。
【請求項4】
前記ポリウレタンポリウレア樹脂発泡体のA硬度が20〜55度である、請求項1〜3のいずれか一項に記載の研磨パッド。
【請求項5】
前記ポリウレタンポリウレア樹脂発泡体のD硬度が5〜35度である、請求項1〜4のいずれか一項に記載の研磨パッド。
【請求項6】
前記ポリウレタンポリウレア樹脂発泡体の40℃、初期荷重10g、歪範囲0.01〜4%、測定周波数0.2Hz、引っ張りモードにおける貯蔵弾性率E’が1〜30MPaである、請求項1〜5のいずれか一項に記載の研磨パッド。
【請求項7】
前記研磨層の研磨面と反対の面側に前記研磨層よりも硬い層が張り合わされていることを特徴とする、請求項1〜6のいずれか一項に記載の研磨パッド。
【請求項8】
イソシアネート基含有化合物(A)と、ポリイソシアネート化合物(B)と、ポリアミン化合物(D)と、水、整泡剤及び反応触媒を含む混合液(E)と、各成分に対して非反応性の気体とを準備する準備工程;
少なくとも、前記イソシアネート基含有化合物(A)と、ポリイソシアネート化合物(B)と、ポリアミン化合物(D)と、水、整泡剤及び反応触媒を含む混合液(E)と、各成分に対して非反応性の気体とを混合して発泡体成形用混合液を得る混合工程;
前記発泡体成形用混合液からポリウレタンポリウレア樹脂発泡体を成形する発泡体成形工程;及び
前記ポリウレタンポリウレア樹脂発泡体から、被研磨物を研磨加工するための研磨面を有する研磨層を形成する研磨層形成工程、を有することを特徴とする、請求項1〜7のいずれか一項に記載の研磨パッドの製造方法。
【請求項9】
前記準備工程において、更にポリオール化合物(C−2)を準備し、前記混合工程で混合することを特徴とする、請求項8に記載の研磨パッドの製造方法。
【請求項10】
前記準備工程において、前記ポリアミン化合物(D)のアミノ基と前記ポリオール化合物(C−2)の水酸基との当量の和(活性水素基の当量)に対する前記ポリアミン化合物(D)のアミノ基の当量比が、0.70〜0.97(アミノ基/(アミノ基+水酸基))となるように準備されることを特徴とする、請求項9に記載の研磨パッドの製造方法。
【請求項11】
前記ポリアミン化合物(D)が、メチレンビス−o−クロロアニリン(MOCA)の単量体と多量体の混合物であって該多量体を15質量%以上含有する粗製MOCAであることを特徴とする、請求項8〜10のいずれか1項に記載の研磨パッドの製造方法。
【請求項12】
前記ポリオール化合物(C−2)が、数平均分子量500〜5000のポリテトラメチレングリコールもしくはポリプロピレングリコール又はこれらの混合物であることを特徴とする、請求項9又は10に記載の研磨パッドの製造方法。

【図1】
image rotate


【公開番号】特開2012−223834(P2012−223834A)
【公開日】平成24年11月15日(2012.11.15)
【国際特許分類】
【出願番号】特願2011−91284(P2011−91284)
【出願日】平成23年4月15日(2011.4.15)
【出願人】(000005359)富士紡ホールディングス株式会社 (180)
【Fターム(参考)】