説明

組成物、化合物及び被膜形成方法

【課題】潤滑剤組成物等として有用な新規な組成物の提供。
【解決手段】少なくとも1種の下記式(Z)で表される化合物を含む組成物である。
A−L−{D1−(E)q−D2−(B)m−Z1−R}p (Z)
Aはp価の鎖状あるいは環状残基;Lは、単結合、二価の連結基;pは2以上の整数;D1はカルボニル基(−C(=O)−)又はスルホニル基(−S(=O)2−);D2はカルボニル基(−C(=O)−)、スルホニル基(−S(=O)2−)、カルボキシル基(−C(=O)O−)、スルホニキシル基(−S(=O)2O−)、カルバモイル基(−C(=O)N(Alk)−)、又はスルファモイル基(−S(=O)2N(Alk)−);Eは二価の基;Rは、水素原子、C7以下の置換もしくは無置換のアルキル基;Bは、オキシエチレン基等;Z1は、単結合又は二価の基である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧力による粘性の増加率の小さな新規な化合物及びそれを含む組成物、並びにそれを用いた被膜形成方法に関する。本発明の組成物は、潤滑剤、離型剤や洗浄剤組成物の技術分野等をはじめとする種々の技術分野に有用である。さらに、本発明の組成物は、自動車用エンジンなどの内燃機関に使用される潤滑油に求められている、苛酷な条件下での長期の使用に耐え得るための熱・酸化安定性の向上に有用である。
【背景技術】
【0002】
潤滑油は様々な摩擦摺動場の摩擦係数を低減し、摩耗を抑制するために、あらゆる産業機械に用いられてきた。
一般的に、現行の潤滑油は穏和な摩擦条件(流体潤滑条件)下ではその摺動間隙に流体膜を形成し、厳しい摩擦条件(境界潤滑条件)下では摩擦界面に半固体被膜を形成するように構成されている。即ち、低摩擦係数を発現する低粘性の油(すなわち基油)と、厳しい摩擦条件下においてその低粘性基油が破断した後に界面同士が直接的に接することを防止するために、その界面(例えば鉄界面)と反応して強靭で且つ柔軟な低摩擦係数を与える境界潤滑膜を形成可能な薬剤とを含んでいる。薬剤は、基油に溶解しているが、界面素材(通常は鋼鉄)との反応により、経時で、その界面に集積してくる。しかし、同時に、摺動には直接的に関わっていない面の大部分にもその薬剤が反応し、集積が起こり、その貴重な薬剤が消費されることになる。さらに、薬剤が消費されても、基油から消失するのではなく、実際には様々な分解物となって残存し、多くの場合には、それが潤滑油自体の劣化を促進する。また、薬剤が反応してなる境界潤滑膜自体も厳しい条件下での摩擦摺動により剥離し、また界面基材自体も剥離し、上記の反応分解物とともに浮遊したり、沈積(スラッジ化)したりして、潤滑油の潤滑能を損ない、その所期性能を劣化させる一因になる。これを防止するため、潤滑剤には、通常、酸化防止剤、分散剤、清浄剤などが添加されている(特許文献1)。
【0003】
この様に、現行の潤滑油の多くには、極めて厳しい条件(境界潤滑条件)下での摩擦低減という目的のため、並びに添加した薬剤の副作用の低減及び抑止という目的のために、さらに新たな薬剤が添加されている。また、磨耗によって界面自体から生じた微小摩耗粉、及び薬剤の分解浮遊物によって潤滑機能が低下するのを軽減するために、さらに新たな薬剤が添加さている。そして、潤滑油中で、種々の薬剤の機能が関連しあっているために、それぞれの薬剤の消耗及び劣化によって、潤滑油全体として機能し及び最良の潤滑効果を発揮できる期間が短くなることは必然であって、避けられない。これは、ある種の悪循環であるといえる。従って、現行の潤滑油の性能を改善しようとして組成を大きく変更することは容易ではない。
しかし、上記の「薬剤」と称する化合物は全て鉄界面と反応性の元素を含有するもので、さらにそれらと鉄との間の反応で形成される物質がその摩擦・磨耗を軽減する能力を有している。その潤滑に必須の元素が、リン、硫黄、ハロゲンであり、さらに協奏補完的に働く重金属の亜鉛、モリブデンである。前三者は明確に環境負荷元素であり、排気ガスとしてでも大気中への放出は極力避けねばならない。
【0004】
さらに、内燃機関や自動変速機等に使用される潤滑油に対しては、省燃費のための低粘性化の要求があると同時に、近年の資源有効利用、廃油の低減、潤滑油ユーザーのコスト削減等の観点から、潤滑油のロングドレイン化に対する要求が一層高まっている。特に内燃機関用潤滑油(エンジン油)には、内燃機関の高性能化、高出力化、運転条件の苛酷化等に伴い、より高度な性能が要求されている。
しかし従来の内燃機関用潤滑油においては、熱・酸化安定性を確保するために、水素化分解鉱油等の高度精製基油又は合成油などの高性能基油を用い、当該基油にジチオリン酸亜鉛(ZDTP)、ジチオカルバミン酸モリブデン(MoDTC)等のパーオキサイド分解能を有する硫黄含有化合物、あるいはフェノール系又はアミン系酸化防止剤等の無灰酸化防止剤を配合することが一般的になされているが、それ自体の熱・酸化安定性が必ずしも十分とはいえない。また、酸化防止剤の配合量を増量することで熱・酸化安定性をある程度改善することは可能であるが、この手法による熱・酸化安定性の向上効果には自ずと限界がある。
そして、エンジン油には、炭酸ガス排出量削減等の環境問題の観点から、省燃費性能及び耐久性の向上、排気ガスの浄化の触媒能の維持のための硫黄やリンの含率の低減が求められている。一方、近年のディーゼルエンジンには、ディーゼルパティキュレートフィルター(DPF)等粒子状物質の排出抑制装置が装着され始めたが、該装置の目詰まりの問題から、ディーゼルエンジン油の低灰分化が求められている。エンジン油の低灰分化は金属系清浄剤の減量を意味しており、金属系清浄剤や無灰分散剤を多量に配合することで維持されていたディーゼルエンジン清浄性、特に熱負荷の高いトップリング溝の清浄性の確保は極めて重要な課題となっている。
【0005】
以上述べてきた潤滑は、内燃機関を例にとると燃焼室以外の部分の潤滑及び潤滑組成物に関するものである。しかし、燃焼室の潤滑に関しても実際に大きな課題がある。即ち、燃焼室の燃料導入口に生じる付着物の低減、またそれらによる摩擦、磨耗の低減を、燃料への微量添加物によって制御(防止又は減少)する研究も長年続けられている。
特に、最近は排出ガス規制の観点から、燃料組成物の低硫黄濃度化が必須となりつつあるが、それによって潤滑性が低下し、カム、バルブを含む動弁機構の耐久性の低下が懸念されており、ここにも従来の摩擦、磨耗低減に寄与する元素を見直す必要に迫られている。
すなわち、少量添加で効能を発揮するには界面素材との反応性が必須の要件であり、かつ境界潤滑膜形成により所望の低摩擦を発現する必須の元素でありながら、同時に存在自体が問題となっている硫黄、リン、重金属の低減化が求められている。潤滑油は、現在の産業機械自体を支える材料であり、容易には換えられないとしても、真剣に、潤滑油の組成、及びその背景にある潤滑機構自体を、150年以上経った最新の科学技術と機能性素材技術によって見直さなければならない時期に来ている。
【0006】
冒頭で、「潤滑油は様々な摩擦摺動場の摩擦係数を低減し、摩耗を抑制するために、あらゆる産業機械に用いられてきた」と述べたが、潤滑油のそもそものミッション(使命)は、機械の運動機能を維持保全することである。我々は機械に仕事をさせて利用しているが、その仕事(作用)を取り出す(反作用)際には互いに摺動する界面に必然的に摩擦を生じる。その摩擦によって生じる激しい摩耗を軽減し焼付きなどの機械的損傷を未然に防ぐには、摺動間隙の確保が必要であり、そのために固体や液体の様々な潤滑膜が宛がわれてきた。
このような摩擦状態の液体膜の挙動の理論的な解析は、流体力学において粘性流体の運動を記述するNavier−Stokesの方程式を、Reynoldsが狭いすきまの流れに適用したことに始まる。当時、実験的に検証されていた軸受内のクサビ型の油膜が高い流体力学的圧力を発生する現象を理論的に説明し、今日の流体潤滑理論の基礎を築いた。
その理論に従えば、滑り軸受設計の基本特性数として利用されるゾンマーフェルト数が下式のように表されることから、摺動間隙の膜厚dが、圧力P,粘度η(→温度Tにも相関)及び摺動速度Vに関係することが分かる。摺動間隙の膜厚d自体が正確には、その表面の平均粗さRaに依存するため、摺動間隙の膜厚dの破断に関わる因子は、圧力P,温度T、粘度η、表面の平均粗さRa及び摺動速度Vであると言える。
【0007】
【数1】

【0008】
油膜の維持の観点から間隙dに影響する因子は、高温では油膜の粘度の減少と界面粗さの因子が重要であり、高圧では当然圧力と油膜粘度の圧力依存性が重要であることは容易に類推できる。
従って、液膜保持の技術の歴史も、基油の粘度の制御から始まった。まずは、破断を防ぐには粘度が比較的大きな、すなわち高粘性油の使用である。しかし、機械は必ず動き出す必要があり、そのときには高粘性であることは不利である。しかも一般的には動き出す時には運転時より低温であり、大抵著しく高粘性で動きづらいので、元々を低粘性で、高温時の破断を極力避ける意味で高粘度指数油の使用、さらに高分子(粘度指数向上剤)の低粘性基油への添加が行われた。
高温での、また高圧でのより厳しい条件に対応して開発された技術が、界面、特に鉄界面に直接、強固に密着し、柔軟性のある界面保護膜(境界潤滑膜)の技術である。歴史的には、石鹸の添加に始まり、塩化鉄、硫化鉄、燐酸鉄などの無機膜の形成、最近ではMo−DTCやZn−DTPなど、反応性で低摩擦性の有機金属錯体が開発され、基油に微量添加されている。
上記のような温度に対する粘度物性の改良、また別の方法による潤滑膜の形成の技術的な進展はあったが、圧力に対して粘性を制御しつつ、油膜の破断を抑止しようとする粘度圧力係数を制御し、最適化しようとする本発明のような技術的、素材的なアプローチはなかった。
【0009】
しかし、粘度圧力係数に関連する理論は確実に時代とともに確立していった。
摩擦の機構は、上記した穏和な流体潤滑機構と厳しい境界潤滑機構との間に弾性流体潤滑機構があることが知られている。この弾性流体潤滑機構の理論的研究は、1882年に発表されたHertzの真実接触面形状と発生圧力の研究に始まり、1951年のPetrosevichのEHL弾性流体潤滑理論のまとめで確立され、1968年のDowson/Higginsonの弾性変形を考慮した油膜形成理論によって実践的な理論となった。
この弾性流体潤滑機構が働く領域は、例えば数トン/cm2、即ち数百MPa程度、の高圧力での摩擦の領域である。一見すると過酷な条件であるが、実は、その程度の圧力範囲であると鉄が弾性変形し始めるので、油膜を介して接する鉄界面の真実接触面の面積が増加し、実質的な圧力は低くなる。即ち、この領域に入ると、鉄の弾性限界か油膜切れが起こらない限り、摩擦係数が増加しなくなり、摺動界面にとっては「恵みの領域」といえるのである。また、同時にこの領域では、鉱物油など一般的な潤滑油の油膜なら常圧時の1000倍程度の高粘性になるが、素材の化学構造によっては500倍程度の低粘性にしかならない場合がある。Barusは、この現象を液体の粘度の圧力依存性に関して下式(VII)で表し、圧力に対する物質固有の粘性の増加率αが関係していることを示した(非特許文献1)。
η=η0 exp(αP) (VII)
但し、αは粘度圧力係数、η0は常圧粘度である。
また、Doolittleは、液体の粘性が、液体の体積中に占める分子の占有体積と液体の熱膨張によって生じる自由体積の比によって決定されるという自由体積モデルの考え方を提唱した(非特許文献2)。
η= Aexp( BV0 / Vf ) (VIII)
但し、ηは粘度,V0 は分子の占有体積,Vf は自由体積を表す。
【0010】
このDoolittleの式(VIII)とBarusの式(VII)とを比較すると、粘度圧力係数αが分子の自由体積に逆比例する関係にあることがわかる。すなわち、粘度圧力係数が小さいことは、分子の自由体積が大きいことを示唆している。従って、液体の粘度の圧力依存性は、素材の化学構造の最適化で制御することが可能であり、即ち化学構造を最適化すれば、同一の高荷重・高圧力下で、現行潤滑油を構成する油より低粘性な素材が提供できることが分かる。例えば、通常潤滑油として用いられている鉱物油やポリ−α−オレフィンなどのような炭化水素系化学合成油の粘度圧力係数αの半分程度である素材によって、真実接触部の油膜が形成されるなら、この弾性流体潤滑領域は、さらに穏和な条件になる。即ち、通常の潤滑油なら境界潤滑領域に入るような高荷重であっても、界面の弾性変形と高圧下低粘性油膜によって、真実接触部位の低圧力、低粘性、さらに油膜による冷却効果が加わることで、実質的に境界潤滑領域を回避し、流体潤滑だけの理想的な潤滑機構が実現されることが期待される。
【0011】
最近、比較的長い炭素鎖を放射状に複数配した円盤状化合物及びそれを含む潤滑油(即ち金属系素材を含まない潤滑油)が、弾性流体潤滑領域で低摩擦係数を示すことが開示されている(例えば、特許文献2〜特許文献4)。これらの円盤状化合物は、円盤状のコアと、当該円盤状のコアから放射状に伸びた側鎖を有していて、必然的に扇形の自由体積を高配列状態においても確保できていることが予測される。従って、側鎖を放射状に有する円盤状又は平板状化合物は、その占有体積に比べて、共通して多くの自由体積を有し、それゆえに小さな粘度圧力係数を示す。即ち、高圧下でも粘度が相対的に小さく、高圧下でより低粘性及びより低摩擦性を示すことが期待される(非特許文献3)。
しかし、これらの素材に共通していることは、その粘性が、通常潤滑油に用いられる鉱物油及び化学合成油の粘性と比較して一桁近く大きいことであり、そのような素材を大量に、安価に、しかも低粘性の基油の代わりに用いることは到底できない。
即ち、高圧下の粘性は、上記式(VII)に示す通り、粘度η0と粘度圧力係数αで規定されるが、現実的に低粘性の基油を用いると弾性流体潤滑領域では既に破断し始め、高圧下では粘性が無い状態すなわち弾塑性体になる。この潤滑油膜の破断のし易さは、流体分子の集合状態、すなわち潤滑油分子のパッキング状態と相関しており、粘度圧力係数αと圧力Pとの積αPで評価できることが明らかにされている(非特許文献4)。
【0012】
一般的に、潤滑油膜は、積αPが13以下であると粘性流体、13〜25であると粘弾性流体、25以上であると弾塑性体として挙動する。或る圧力Pで、同一粘度ηの2種類の潤滑油膜が存在する場合、その粘度圧力係数をそれぞれα1及びα2、常圧粘度をそれぞれη1及びη2とすると、
lnη=lnη1+α1・P=lnη2+α2・P
が成立する。
18=α1・P<α2・P=24 すなわちα1:α2=18:24の場合、粘度圧力係数α2の膜は、あと少し圧力Pが増加すると弾塑性体となり、同じ圧力下、同じ粘性であってもより破断し易いことがわかる。
従って、流体潤滑領域でも使用可能な程度の比較的大きなη0の基油を利用しても、基油を構成する鉱物油などの鎖状炭化水素の粘度圧力係数αが大きいので、結局、高圧下での粘度ηが大きくなる傾向があり、流体潤滑下で低摩擦係数を与える低η0と弾性流体潤滑下で低摩擦係数を与える低αとを同時に持った、粘弾性液体領域の広い基油及び有機化合物はこれまで存在しないと考えられてきた。
仮に、その制約をクリアする素材が開発できたとしても、大量供給性及び低コストという基油の必要条件を考慮すると、全てを同時に満足する素材の提供は困難であり、それ故に、低燃費の達成のためには低粘性であることが必須のエンジンオイルには、弾性流体潤滑を有効に利用するという発想自体が無かったという歴史的背景があると思われ、冒頭に述べた現在の低粘性基油と境界潤滑膜を形成する微量薬剤との組合せに素材開発が収束したことは、必然的な結果であったと言える。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】特表2005−516110号公報
【特許文献2】特開2006−328127号公報
【特許文献3】特開2007−92055号公報
【特許文献4】特開2006−257383号公報
【非特許文献】
【0014】
【非特許文献1】C.Barus:Am.J.Sci.,45(1893)pp87.
【非特許文献2】A.K.Doolittle J.Appl.Phys.,22(1951) 1471.
【非特許文献3】濱口正法、大野信義、立石賢司、河田憲、トライボロジー会議予稿集(東京、2005−11)、175頁.
【非特許文献4】大野信義、桑野則行、平野冨士夫、潤滑、33、12(1988)922;929.
【非特許文献5】河田 憲、大野 信義 富士フイルム研究報告 No.51 2006年 PP80−85.
【非特許文献6】石川潤一、七尾英孝、南一郎、森誠之、トライボロジー会議予稿集(鳥取、2004−11)、243頁.
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明はこのような、鉄表面近傍に濃縮させるために鉄に反応性でなおかつ好潤滑性を発現する環境負荷元素を使う、というこの「避けられない課題」に対して、
常圧で現行潤滑油と同程度に低粘性であり、同時に鉄面のみならずあらゆる硬質界面、しかも摩擦摺動する界面に非反応性かつ高圧下、現行素材より粘性が小さな流体膜として機能する程度の濃度で存在する
ことが可能な新しい潤滑組成物を提供するものであり、環境調和性、非反応/非分解性による高耐久性、流体による低摩擦(係数)性(ゆえの耐摩耗性)及び流体の流動による冷却効果など、組成を大きく変更することでの現行の潤滑油の性能を大幅に改善することが期待されるのである。
即ち、本発明は、潤滑剤の技術分野等、種々の分野において有用な、新規な組成物を提供することを課題とする。
また、本発明は、摺動摩擦界面の潤滑性に寄与する新規な皮膜形成方法を提供することを課題とする。
また、本発明は、潤滑剤の技術分野における基油又は添加剤として、又は他の用途において有用な、新規な化合物を提供することを課題する。
【課題を解決するための手段】
【0016】
[1] 少なくとも1種の下記式(Z)で表される化合物を含む組成物:
A−L−{D1−(E)q−D2−(B)m−Z1−R}p (Z)
式中、Aはp価の鎖状あるいは環状残基を表し;
Lは、単結合、オキシ基、下記式(A−a)で表される、置換もしくは無置換のオキシメチレン基、又は下記式(A−b)で表される、置換もしくは無置換のオキシエチレンオキシ基を表し、下記式中、Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し
−(O−C(Alk)2)− (A−a)
−(O−C(Alk)2C(Alk)2O)− (A−b);
pは2以上の整数を表し;
1はカルボニル基(−C(=O)−)又はスルホニル基(−S(=O)2−)を表し、互いに同一でも異なっていてもよく;
2はカルボニル基(−C(=O)−)、スルホニル基(−S(=O)2−)、カルボキシル基(−C(=O)O−)、スルホニキシル基(−S(=O)2O−)、カルバモイル基(−C(=O)N(Alk)−)、又はスルファモイル基(−S(=O)2N(Alk)−)を表し、互いに同一でも異なっていてもよく、但し、Alkは水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;
Eは、置換もしくは無置換の、アルキレン基、シクロアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、二価の複素芳香族環基、複素非芳香族環基、イミノ基、アルキルイミノ基、オキシ基、スルフィド基、スルフェニル基、スルホニル基、ホスホリル基、及びアルキル置換シリル基から選ばれる二価の基、又は2以上の組合せからなる二価の基を表し、qは0以上の整数を表し、qが2以上のとき、Eは互いに異なっていてもよく;
Rは、水素原子、C7以下の置換もしくは無置換のアルキル基を表し、互いに同一でも異なっていてもよく;
Bは置換もしくは無置換のオキシエチレン基、又は置換もしくは無置換のオキシプロピレン基であり、複数個の連結するBは互いに異なっていてもよく、mは1以上の数であり;
1は、単結合、又はカルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のアミノ基、スルフィド基、アルケニレン基、アルキニレン基及びアリーレン基から選ばれる二価の基、又は2以上の組み合わせからなる二価の基を表す。
[2] 式(Z)中、Aが、ペンタエリスリトール、グリセロール、オリゴペンタエリスリトール、キシリトール、ソルビトール、イノシトール、トリメチロールプロパン、ジトリメチロールプロパン、ネオペンチルグリコール、又はポリグリセリンの残基である[1]の組成物。
[3] 式(Z)中、Aが、下記式(AI)〜(AIII)のいずれかで表される基である[1]の組成物:
【化1】

式中、*は、−L−D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;Cは炭素原子を表し;R0は水素原子又は置換基を表し;X1〜X4、X11〜X14、及びX21〜X24はそれぞれ、水素原子、又はハロゲン原子を表し、同一でも異なっていてもよく;n1〜n3はそれぞれ0〜5の整数を表し;m4は0〜8の整数を表す。
【0017】
[4] 式(AII)で表される化合物を50〜95質量%、さらに式(AIII)及び/又は下記式(AIII’)で表される化合物を5〜50質量%を含む[3]の組成物:
【化2】

式中、*は、―D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;Cは炭素原子を表し;X1〜X4、X11〜X14、及びX21〜X24はそれぞれ、水素原子、又はハロゲン原子を表し、同一でも異なっていてもよく;LはCH2もしくはCO(CH2kCOを表し、kは1〜10の整数を表す。
【0018】
[5] 式(Z)中、Aが、下記式(AIV)〜(AVIII)のいずれかで表されるポリマー又はオリゴマーの残基である[1]の組成物:
【化3】

式中、*は、―L−D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;式中の各炭素原子に結合している水素原子はそれぞれ、C1〜C4のアルキル基又はハロゲン原子に置換されていてもよく、2以上の置換基を有する場合は同一でも異なっていてもよく;Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;p1〜p5はそれぞれ2以上の数を表し;rは1〜3の整数を表す。
【0019】
[6] 式(Z)中、Aが、亜鉛もしくはモリブデンにイオン結合又は配位結合したジチオカルバミン酸又はジチオリン酸の残基である[1]の組成物。
[7] 式(Z)中、−(B)m−Z1−Rがそれぞれ、下記式(ECa)で表され、同一でも異なっていてもよい有機基である[1]〜[6]のいずれかの組成物:
【化4】

式(ECa)中、Cは炭素原子を表し、Oは酸素原子を表し、式(Z)中のRに相当するRaは置換もしくは無置換のC7以下のアルキル基を表し;式(Z)中のZ1に相当するLaは、単結合、又はカルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のアミノ基、スルフィド基、アルケニレン基、アルキニレン基及びアリーレン基から選ばれる二価の基、又は2以上の組み合わせからなる二価の基を表し;Xa1及びXa2はそれぞれ、水素原子、又はハロゲン原子を表し、na1は2又は3であるが、na1が2以上のとき、複数のXa1及びXa2はそれぞれ同一でも異なっていてもよく;na2は1〜12の数である。
【0020】
[8] 式(Z)中、Z1に相当するLaが、単結合、又はカルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のアミノ基、チオ基、アルキレン基、アルケニレン基、アルキニレン基、及びアリーレン基から選択される一つ以上の組合せからなる二価の連結基である[7]の組成物。
[9] 式(Z)中のRが、C4以下の直鎖アルキル基を含む基である[1]〜[8]のいずれかの組成物。
[10] 式(Z)中の(B)mのmが、2〜6である[1]〜[9]のいずれかの組成物。
[11] 式(Z)で表わされる化合物の40℃における粘度圧力係数が15GPa-1以下である[1]〜[10]のいずれかの組成物。
[12] 式(Z)で表わされる化合物の少なくとも一種とともに、水、C12以下の直鎖もしくは分岐状のアルコール、エチレングリコール、ポリエチレングリコール、鉱物油、ポリ−α−オレフィン、ポリオールエステル、(ポリ)フェニルエーテル、イオン液体、シリコーン油、フッ素油、又はこれらから選択される2種以上とを含有する[1]〜[11]のいずれかの組成物。
[13] 全成分のそれぞれの構成元素が、炭素、水素、酸素及び窒素から選択される1種以上のみである[1]の組成物。
[14] 式(Z)で表わされる化合物を、10質量%以上含有する[1]〜[13]のいずれかの組成物。
[15] 40℃での粘性が30mPa・s以下である[1]〜[14]のいずれかの組成物。
[16] 有機亜鉛化合物、モリブデン化合物、有機リン化合物、及び有機硫黄化合物から選択される少なくとも1種をさらに含有する[1]〜[12]及び[14]〜[15]のいずれかの組成物。
[17] 無機材料もしくはそれらの多孔質材料、又は樹脂もしくはそれらの多孔質材料の摺動界面の潤滑に用いられる[1]〜[16]のいずれかの組成物。
[18] 離型剤である[1]〜[17]のいずれかの組成物。
[19] 燃焼機関用燃料である[1]〜[17]のいずれかの組成物。
[20] 内燃機関用エンジンオイルである[1]〜[17]のいずれかの組成物。
[21] 軸受用オイルである[1]〜[17]のいずれかの組成物。
[22] グリース用オイルである[1]〜[17]のいずれかの組成物。
[23] 切削用オイルである[1]〜[17]のいずれかの組成物。
[24] [1]〜[23]のいずれかの組成物を、2つの面間に配置すること、及び2つの面を摺動させて、少なくとも一方の面に前記組成物からなる被膜を形成することを含む被膜形成方法。
【0021】
[25] 下記式(Z’)で表される化合物:
A−L’−{D1’−E’−D2’−(B)m'−Z1’−R}p' (Z’)
式中、Aはp価の鎖状あるいは環状残基を表し;
L’は、単結合又はオキシ基を表し、
p’は3以上の整数を表し;
1’はカルボニル基(−C(=O)−)を表し;
2’はカルボニル基(−C(=O)−)、カルバモイル基(−C(=O)N(Alk)−)を表し、互いに同一でも異なっていてもよく、但し、Alkは水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;
E’は、単結合、置換もしくは無置換の、C1〜C3のアルキレン基、C2〜C3のアルケニレン基、又は−Alk’−N(Ra)−(Alk’はC1〜C3のアルキレン基を表し、Raは水素原子又はC13のアルキル基を表す)を表し;
Rは、水素原子、C7以下の置換もしくは無置換のアルキル基を表し、互いに同一でも異なっていてもよい;
Bは、置換もしくは無置換のオキシエチレン基、又は置換もしくは無置換のオキシプロピレン基であり、複数個の連結するBは互いに異なっていてもよく、m’は1以上30以下の数であり;
1’は、単結合、オキシ基、又はカルボニル基を表す。
【0022】
[26] 式(Z)中、Aが、ペンタエリスリトール、グリセロール、オリゴペンタエリスリトール、キシリトール、ソルビトール、イノシトール、トリメチロールプロパン、ジトリメチロールプロパン、ネオペンチルグリコール、又はポリグリセリンの残基である[25]の化合物。
[27] 式(Z)中、Aが、下記式(AI)〜(AVIII)のいずれかで表される基である[25]の化合物:
【化5】

式中、*は、―D1’−(E’)q'−D2’−(B’)m'−Z1’−Rとの結合部位を意味し;Cは炭素原子を表し;R0は水素原子又は置換基を表し;X1〜X4、X11〜X14、及びX21〜X24はそれぞれ、水素原子、又はハロゲン原子を表し、同一でも異なっていてもよく;m4は0〜2の整数を表す。
【化6】

式中、*は、−L’−D1’−(E’)q'−D2’−(B’)m'−Z1’−Rとの結合部位を意味し;式中の各炭素原子に結合している水素原子はそれぞれ、C1〜C4のアルキル基又はハロゲン原子に置換されていてもよく、2以上の置換基を有する場合は同一でも異なっていてもよく;Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;p1〜p5はそれぞれ2以上の数を表し;rは1〜3の整数を表す。
【0023】
[28] 前記式(Z)中の、*−L’−{D1’−E’−D2’−(B)m'−Z1’−R}が、以下の(a)〜(b)のいずれかの基である[25〜27]のいずれかの化合物:
【化7】

式中、xは1〜3の整数であり、yは2又は3であり、m’、Ra、及びRについては、式(Z’)中のそれぞれと同義である。
【発明の効果】
【0024】
本発明によれば、潤滑剤の技術分野等、種々の分野において有用な、新規な組成物を提供することができる。本発明の組成物は、温度、圧力の広い範囲において、小さな摩擦係数が発現するため、潤滑剤の技術分野等、摩擦や摺動が関わる種々の分野において有用である。
また、本発明によれば、摺動摩擦界面の潤滑性に寄与する新規な皮膜形成方法を提供することができる。
また、本発明によれば、潤滑剤の技術分野における基油又は添加剤として、又は他の用途において有用な、新規な化合物を提供することができる。
【図面の簡単な説明】
【0025】
【図1】実施例で合成したBの粗体の重クロロホルム試料についての1H−NMR測定結果である。
【図2】実施例で合成したBの粗体の重クロロホルム試料についての13C−NMR測定結果である。
【図3】実施例で合成したBのGPC測定結果である。
【図4】例示化合物AII−2及びAII−4の試験例1の結果を示すグラフである。
【図5】例示化合物AII−1及びAII−3の試験例1の結果を示すグラフである。
【図6】例示化合物AII−4及びAII−5の試験例1の結果を示すグラフである。
【図7】比較例用化合物C−1及びC−2の試験例1の結果を示すグラフである。
【図8】比較例化合物C−3の試験例1の結果を示すグラフである。
【発明を実施するための形態】
【0026】
以下、本発明について詳細に説明する。なお、本願明細書において「〜」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
【0027】
1. 式(Z)で表される化合物
本発明の組成物は、下記式(Z)で表される化合物の少なくとも1種を含有することを特徴とする。
A−L−{D1−(E)q−D2−(B)m−Z1−R}p (Z)
式中、Aは、p価の鎖状あるいは環状残基を表す。
【0028】
Aの好ましい例としては、−Lに結合するA中の原子(α-位)から3番目(γ-位)以内の原子が二級以上の分岐構造を含む残基である。このようなAを含む式(Z)で表わされる化合物は、いわゆる「スターバースト型」又は「星型」と表現される化合物群に属し、該化合物を含む本発明の組成物の態様が、潤滑剤組成物として好ましい性質を示す。
上記した通り、「圧力による粘度の増加率が小さい」化合物が、潤滑剤の技術分野において有用であり、この性質は、「自由体積ができる限り大きい」化合物によって達成できることは、非特許文献2に開示されていることも上記した通りである。「自由体積ができる限り大きい」化合物の一例は、分子中に存在する複数の側鎖の自由体積が大きい化合物である。
円盤状構造を有する化合物として、トリフェニレン化合物を例にとると、例えば、2,3,6,7,10,11−位に長鎖アルコキシ基を有するトリフェニレンでは、その長鎖アルコキシ基からなる側鎖は、自ずと放射状に伸び、アルコキシ基中の酸素原子を起点にして中心部からさらに離れるほど、自由に運動することのできる空間の体積(自由体積)が大きくなる。たとえ当該化合物が、高密度に集積されたり、液晶相又は結晶のようなカラムナー構造の六方晶の最密充填構造をとっても、側鎖が一定の運動をできる最低限の空間は確保される。これが、円盤状分子と紐状分子との大きな差異であり、紐状分子は、一軸方向に配向すると、自由体積が失われてしまう。
【0029】
次に、メタンやテトラメチルシランやトリメチルアミンなどのSP3元素を中心としてそこから空間に対して均等に四方向に、まさに「スターバースト型」又は「星型」に側鎖を伸ばす構造の分子について考察する。これらの分子では、その自由体積を同様に確保することは、論理上は、円盤状構造の分子と同様に可能であると考えられるが、実際にはかなり様子は異なる。先に述べた円盤状分子では、円盤状核自体が、剛直な核構造によってその中心からある程度の距離までは側鎖が自由に動き得るような空間をはじめから確保しているが、一方、「スターバースト型」又は「星型」分子では、SP3元素を中心として、その元素からすぐに炭素鎖を伸ばす構造になっているため、両者には大きな相違点がある。
例えば、先に述べた、円盤状化合物であるヘキサアルコキシトリフェニレンの酸素の位置と、「スターバースト型」又は「星型」化合物である、トリメチロールメタンのトリエトキシレートの酸素の位置とを比較すると、以下に模式的に示す通り、SP3炭素の鎖の長さで近似すると中心核のSP3炭素からおおよそ4番目の炭素、すなわちエトキシ基末端の炭素の位置に相当する。一見、後者のほうがより自由度が高いが、密度があがり分子が密集し始めると、それぞれの側鎖の近傍の空間にも他の側鎖が入り込んだり、それぞれの側鎖が折れ曲がったり、傘をたたむ様に近似的に棒状になったりしてその自由体積を縮めることが可能であり、実際に、密度をあげていくと、側鎖の状態はそのように変化していくだろうことは容易に想像できる。
【0030】
【化8】

【0031】
本発明は、このようなSP3元素を含む核等、非円盤状構造の核を有する分子であっても、その側鎖が、円盤状分子の側鎖と同様に大きな空間体積を確保し得るためには、側鎖がいかなる構造であればよいかについて、本発明者が鋭意検討し、その結果得られた知見に基づいて完成されたものである。
下記のアセトキシトリメチロールメタンは、上記トリメチロールメタンのトリエトキシレートをエステルに変換したものであるが、潤滑の世界ではこの構造は油脂の基本構造である。油脂とは脂肪酸のポリオールエステルであって、鉱物油より低粘度圧力係数すなわち高圧力下で低摩擦係数を発現し易い構造である。
【0032】
【化9】

【0033】
その理由は、エステル中のC−Oの回転障壁エネルギーが、C−Cに比べて小さいこと、カルボニル基同士の電子反発及び立体反発がより放射状に開きやすくさせるので、自由体積を大きく確保できること、であると推定している。確かに、ポリカルボン酸のエステルよりポリオールのエステルのほうが低摩擦の傾向にある。これは、C−Oの回転の側鎖全体に及ぼす自由体積の大きさに関係すると考えている。
しかし、現行のエステル油は鉱物油に比較したら低摩擦性であるが、さほど顕著ではない。そこで、本発明者は、側鎖をさらに伸長した先に、カルボニル基を有する化合物の潤滑効果の検討を重ね、下記の、コハク酸に相当する残基を、トリメチロールメタンに接続した化合物が、顕著な摩擦低減効果を示すことを見出した。
この効果は、コハク酸のような1,4−ジカルボニル基だけでなく、1,3−ジカルボニル基や中央に酸素を挟んだ1,5−ジカルボニル基などでも発現する。また、アシル化したサルコシン酸のポリオールエステルも同様の低摩擦効果が発現する。
【0034】
【化10】

【0035】
従って、本発明は、放射状に側鎖を配することが可能な鎖状又は環状の化学構造と、さらにそれに接続し放射状に伸びる側鎖とを有する化合物であって、その側鎖が、より大きな自由体積を確保できる化合物を利用するものである。側鎖が大きな自由体積を確保するためには、側鎖は、中心核との結合部位近傍において自由回転の容易さがあり、側鎖同士の反発が起こるように設計された化学構造を有することが好ましい。本明細書では、この様に設計された側鎖を有する化合物を、総合的に「スターバースト型」又は「星型」化合物と表現している。
【0036】
上記では、SP3炭素元素を含み、それによって分岐構造を含む中心核を有する化合物について説明したが、側鎖が大きな自由体積を確保できるのであれば、中心核の構造については特に制限はない。勿論、環状構造であってもよい。また、窒素、ケイ素、ホウ素、又はリン等の3価以上となり得る元素を含み、それによって分岐構造を含んでいる中心核に、上記式(Z)で表される化合物が有する所定の構造の側鎖(−D1−(E)q−D2−(B)m−Z1−R)を連結させた化合物も、当該側鎖が大きな自由体積を確保でき、同様の効果を示すものであり、本発明に利用することができる。
【0037】
また、本発明で利用する化合物は、ポリマー又はオリゴマーであってもよい。より具体的には、主鎖を構成している1種又は2種以上の繰り返し単位の側鎖に、所定の構造の側鎖(−D1−(E)q−D2−(B)m−Z1−R)を連結させたポリマー及びオリゴマーも、当該側鎖が大きな自由体積を確保でき、同様の効果を示すものであり、本発明に利用することができる。ポリマー及びオリゴマーの主鎖は、例えば、ポリビニルアルコール鎖のような、単純な構造のものであってもよく、具体的には、ポリビニルアセテートのアセチル基を、記式(Z)で表される化合物が有する所定の構造の側鎖(−D1−(E)q−D2−(B)m−Z1−R)に置き換えたポリマー又はオリゴマーを、本発明に用いることができる。
【0038】
上記側鎖を結合する、中心核構造の例のうち、炭化水素鎖としては、ペンタエリスリトール、ジ−、トリ−、テトラ−などのオリゴペンタエリスリトール、又はペンタエリスリトールの一つの水酸基を他の二価基(例えば、置換もしくは無置換の、アルキレン基、シクロアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、二価の複素芳香族環基、複素非芳香族環基、イミノ基、オキシ基、スルフィド基、スルフェニル基、スルホニル基、ホスホリル基、及びアルキル置換シリル基から選ばれる二価の基、又は2以上の組合せからなる二価の基を表す)で連結したもの、グリセロール、キシリトール、ソルビトール、イノシトール、トリメチロールプロパン、ジトリメチロールプロパン、ネオペンチルグリコール、又はポリグリセリンの残基が挙げられる。
【0039】
前記式(Z)中、Aの好ましい例は、以下の式(AI)〜(AIII)のいずれかで表される基である。
【0040】
【化11】

【0041】
式中、*は、―D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;Cは炭素原子を表し;R0は水素原子又は置換基を表し;X1〜X4、X11〜X14、及びX21〜X24はそれぞれ、水素原子、又はハロゲン原子(例えば、フッ素原子又は塩素原子)を表し、同一でも異なっていてもよく;n1〜n3はそれぞれ0〜5の整数を表し、好ましくは1又は2の整数を表す。;m4は0〜8の整数を表し、好ましくは0〜2の整数を表す。
【0042】
前記式(AI)中、R0が表す置換基の例には、置換もしくは無置換の炭素原子数1〜7のアルキル基(例えば、メチル、エチル、以後いずれも直鎖状もしくは分枝鎖状の、プロピル、ブチル、ペンチル、ヘキシル、ヘプチル);炭素原子数2〜7のアルケニル基(例えば、プロペニル、ブテニル、ペンテニル、ヘキセニル、ヘプテニル);炭素原子数3〜7のシクロアルキル基(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル);炭素原子数7以下の芳香族環基(例えば、フェニル、トルイル)、複素環基(窒素原子、酸素原子、及び硫黄原子から選ばれる少なくとも1個のヘテロ原子を含む複素環の残基であるのが好ましく、例えば、ピリジル、ピリミジル、トリアジニル、チエニル、フリル、ピロリル、ピラゾリル、イミダゾリル、トリアゾリル、チアゾリル、イミダゾリル、オキサゾリル、チアジアリル、オキサジアゾリル、);又はそれらの組み合わせからなる基を表す。これらの置換基は、可能な場合はさらに1以上の置換基を有してもよく、該置換基の例には、アルコキシ基、アルコキシカルボニル基、ハロゲン原子、エーテル基、アルキルカルボニル基、シアノ基、チオエーテル基、スルホキシド基、スルホニル基、アミド基などが挙げられる。
【0043】
Aとして、式(AI)〜(AIII)で表される基を有する化合物はいずれも好ましいが、合成の観点からは、式(AII)で表される基を有する、即ち、ペンタエリスリトール誘導体が好ましい。
【0044】
上記した通り、Aは、窒素、ケイ素、ホウ素及びリン等、の3価以上となり得る原子を含んでいてもよく、該原子を含むことでAが分岐構造を含む基であってもよい。窒素原子を含むAの例には、トリエタノールアミン、及びN,N,N’,N”,N”−ペンタキス(2−ヒドロキシプロピル)ジエチレントリアミン等の残基が含まれる。このトリアミンの例は、ポリアミンのイミノ基を(メチルが置換した)ヒドロキエチル化したものであり、さらに、ヒドロキシエチル化、ヒドロキシメチル化したポリオールの残基も、Aの例に含まれる。また、Aの例には、ケイ酸、ホウ酸、及びリン酸の残基が含まれる。
【0045】
また、Aの例には、金属にイオン結合又は配位結合している残基も含まれる。具体的には、ジチオカルバミン酸やジチオリン酸等の金属錯体の、ジチオカルバミン酸残基、及びジチオリン酸残基が挙げられ、即ち、Aの例には、下記式(AIX)又は(AXa)もしくは(AXb)で表される基が含まれる。
【0046】
【化12】

【0047】
式中、*は、−L−D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味する。
【0048】
また、上記した通り、Aは、ポリマー又はオリゴマーの残基であってもよい。その構造については制限はない。N位にオキシアルキル基が置換する鎖状あるいは環状ポリアミンの残基、C位にオキシアルキル基が置換するポリオキシエチレンの残基、ポリビニルアルコールの残基、ポリアクリレートの残基、及びジアルキルシロキシ残基が挙げられる。前記式(Z)中の側鎖部分、即ち、−L−D1−(E)q−D2−(B)m−Z1−Rをモノマーの置換基として導入した後に、当該モノマーを重合して得られるポリマー又はオリゴマーを用いてもよいし、該置換基を導入する前にモノマーを重合して、オリゴマー又はポリマーを得た後に、当該置換基を側鎖に導入したものを用いてもよい。
例えば、アクリレート類であって、エステル部分に、−L−D1−(E)q−D2−(B)m−Z1−Rを有するモノマーを重合して得られるポリマーもしくはオリゴマー、又はアクリレート類を重合したオリゴマーもしくはオリゴマーを、−L−D1−(E)q−D2−(B)m−Z1−Rで修飾したものを用いることができる。前記式(Z)で表されるポリマー又はオリゴマーの例としては、
[アクリロイル基]−O−CH2CH2O−[式(Z)のA以外の側鎖部分]
が好ましく、
[アクリロイル基]−O−CH2−[式(Z)のA以外の側鎖部分]
がより好ましい。
同様に、ビニルオキシモノマーあるいはビニルエーテルを重合して得られるポリビニルアルコール(オリゴマーも含む)の残基;
グリシジルオキシモノマーを重合して得られる、メチロール残基が置換したポリエチレングリコール(オリゴマーも含む)の残基;並びに、
ポリメチルヒドロシロキサンとビニルオキシモノマーをハイドロシリレーションして得られるポリシロキサン(オリゴマーも含む)の残基;
も、式(Z)中のAの例に含まれる。
より具体的には、Aの例には、以下(AIV)〜(AVIII)で表されるポリマー又はオリゴマーの残基が含まれる。
【0049】
【化13】

【0050】
式中、*は、−L−D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;式中の各炭素原子に結合している水素原子はそれぞれ、C1〜C4のアルキル基又はハロゲン原子に置換されていてもよく、2以上の置換基を有する場合は同一でも異なっていてもよく;Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;p1〜p5はそれぞれ2以上の数を表し;rは1〜3の整数を表す。p1〜p5はそれぞれ3〜40であるのが好ましく、5〜20であるのがより好ましい。
【0051】
式(Z)中、Lは、単結合、オキシ基、下記式(A−a)で表される、置換もしくは無置換のオキシメチレン基、又は下記式(A−b)で表される、置換もしくは無置換のオキシエチレンオキシ基を表す。下記式中、Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表す。
−(O−C(Alk)2)− (A−a)
−(O−C(Alk)2C(Alk)2O)− (A−b)
【0052】
式(Z)中、D1はカルボニル基(−C(=O)−)又はスルホニル基(−S(=O)2−)を表し、互いに同一でも異なっていてもよく、D2はカルボニル基(−C(=O)−)、スルホニル基(−S(=O)2−)、カルボキシル基(−C(=O)O−)、スルホキシル基(−S(=O)2O−)、カルバモイル基(−C(=O)N(Alk)−)、スルファモイル基(−S(=O)2N(Alk)−)を表す。Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表す。
【0053】
式(Z)中、Eはそれぞれ、単結合、置換もしくは無置換の、アルキレン基(好ましくはC1〜C8のアルキレン基であり、例えばメチレン、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、ヘプチレン、オクチレン)、シクロアルキレン基(好ましくはC3〜C15のシクロアルキレン基であり、例えばシクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン)、アルケニレン基(好ましくはC2〜C8のアルケニレン基であり、例えばエテン、プロペン、ブテン、ペンテン)、アルキニレン基(好ましくはC2〜C8のアルキニレン基であり、例えばエチン、プロピン、ブチン、ペンチン)及びアリーレン基(好ましくはC6〜C10のアリーレン基であり、例えばフェニレン)、二価の複素芳香族環基、複素非芳香族環基、及び置換もしくは無置換のイミノ基、オキシ基、スルフィド基、スルフェニル基、スルホニル基、ホスホリル基、及びアルキル置換シリル基から選ばれる一つ以上の組合せからなる二価の基を表す。
qは0以上の整数を表し、qが2以上のとき、互いに異なっていてもよい。
【0054】
前記式(Z)中の、−D1−(E)q−D2−の好ましい例には、以下の基が含まれる。
【0055】
【化14】

【0056】
上記式中、*は式中のLと結合する部位を示し、**は式中のBと結合する部位を示す。D11及びD12はそれぞれ炭素原子又はS(=O)を表し、炭素原子であるのが好ましい。E1は、単結合、直鎖状もしくは分岐鎖状の、置換もしくは無置換の、C1〜C8のアルキレン基、C2〜C8のアルケニレン基、もしくはC2〜C8のアルキニレン基(但し、炭素原子は酸素原子に置換されていてもよい);置換もしくは無置換の、C3〜C15のシクロアルキレン基、シクロアルケニレンもしくはシクロアルキニレン基;置換もしくは無置換のC6〜C10のアリーレン基;置換もしくは無置換の芳香族もしくは非芳香族の複素環基;−NH−;−Alk”−NH−(但し、Alk”はC1〜C4のアルキレン基、以下同様である);−NH−Alk”−、又は―NH−Alk”−NH−を表す。アルキレン基等の置換基の例には、ハロゲン原子(例えば、フッ素原子、塩素原子)が含まれる。E1の好ましい例としては、単結合、メチレン、エチレン、プロピレン、メチレンオキシメチレン、ビニレン、イミノ、テトラフルオロエチレン、イミノヘキシレンイミノ等の二価の基が挙げられる。
【0057】
式(Z)中、Rは、水素原子、又はC7以下の置換もしくは無置換のアルキル基を表す。
Rがそれぞれ表すC7以下のアルキル基は、C4以下のアルキル基であるのが好ましい。C2以下のアルキル基であるのがさらに好ましい。該アルキル基は、直鎖状であっても、分岐鎖状であってもよい。具体的には、メチル、エチル、プロピル、イソプロピル、ブチル、ヘキシル、ヘプチルが挙げられる。これらのアルキル基は、1以上の置換基を有していてもよい。置換基の例には、ハロゲン原子(例えば、フッ素原子及び塩素原子)、水酸基、アミノ基、アルキルアミノ基、メルカプト基、アルキルチオ基、アルコキシ基、シアノ基等が含まれる。
【0058】
式(Z)中、Bは、置換もしくは無置換のオキシエチレン基、又は置換もしくは無置換のオキシプロピレン基であり、複数個の連結するBは互いに異なっていてもよく、mは1以上の自然数であり、好ましくは1〜30の数であり、より好ましくは1〜10の数であり、さらに好ましくは、1〜8の数であり、よりさらに好ましくは1〜4である。
Bは互いに同一でも異なっていてもよく、またB中には、オキシエチレン基及びオキシプロピレン基が混在していてもよいし、及び/又はエチレン部もしくはプロピレン部が無置換の単位Bと置換されている単位Bとの双方を含んでいてもよい。オキシエチレン基又はオキシプロピレン基のエチレン部もしくはプロピレン部は、置換基を有していてもよく、置換基の例には、ハロゲン原子(例えば、フッ素原子、塩素原子)が含まれる。また、置換もしくは無置換のオキシエチレン基、又は置換もしくは無置換のオキシプロピレン基の鎖長には分布があってもよい。
【0059】
式(Z)中、Z1は、単結合、又はカルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のアミノ基、スルフィド基、アルケニレン基、アルキニレン基及びアリーレン基から選ばれる二価の基、又は2以上の組み合わせからなる二価の基を表す。二価の連結基の例には、カルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のイミノ基、スルフィド基、C1〜C6のアルキレン基、C6〜C16のシクロアルキレン基、C2〜C8のアルケニレン基、C2〜C5のアルキニレン基、及びC6〜C10のアリーレン基、C3〜C10の複素環基から選択される一つ以上の組合せからなる二価の連結基であるのが好ましい。複数の組合せからなる連結基の例には、−CONH−、−CO−シクロヘキシレン−、−CO−Ph−(但しPhはフェニレン基であり、以下同様である)、−CO−C≡C−Ph−、−CO−CH=CH−Ph−、−CO−Ph−N=N−Ph−O−、−Cn2n−NR−、(nは1〜4のアルキル基であり、Rは水素原子又はC1〜C4のアルキル基であり、右側が末端側に結合するものとする)、−N,N’−ピラジリジレン−が含まれる。
【0060】
式(Z)中の−(B)m−Z1−Rの好ましい例には下記式(ECa)が含まれる。
【0061】
【化15】

【0062】
式(ECa)中、Cは炭素原子を表し、Oは酸素原子を表し、La(式(Z)中のZ1に相当する)は、単結合又は二価の連結基を表し;Xa1及びXa2はそれぞれ、水素原子、ハロゲン原子又は置換基を表し(好ましくは水素原子又はフッ素原子であり、より好ましくは水素原子である)、na1は2又は3であるが、複数のXa1及びXa2はそれぞれ同一でも異なっていてもよく;na2は1〜12(好ましくは1〜8、より好ましくは1〜4)の数であり、Ra(式(Z)中のRに相当する)は置換もしくは無置換のC7以下(好ましくはC4以下、より好ましくはC2以下である)のアルキル基である。
aはそれぞれ、単結合、又はカルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のアミノ基、チオ基、アルキレン基、アルケニレン基、アルキニレン基、及びアリーレン基から選択される一つ以上の組合せからなる二価の連結基を表す。
【0063】
上記式(Z)中、pは2以上の整数である。3以上であるのが好ましく、3〜8であるのがより好ましい。式(Z)の化合物は、所定の構造の側鎖を複数有することで、低摩擦係数を達成することができる。
【0064】
また、本発明は、下記式(Z’)で表される化合物にも関する。下記式(Z’)で表される化合物は、上記式(Z)で表される化合物の一態様である。
A−L’−{D1’−(E’)q'−D2’−(B)m'−Z1’−R}p' (Z’)
式中、Aはp価の鎖状あるいは環状残基を表し;
L’は、単結合又はオキシ基を表し、
p’は3以上の整数を表し;
1’はカルボニル基(−C(=O)−)を表し;
2’はカルボニル基(−C(=O)−)、カルバモイル基(−C(=O)N(Alk)−)を表し、互いに同一でも異なっていてもよく、但し、Alkは水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;
E’は、単結合、置換もしくは無置換の、C1〜C3のアルキレン基、C2〜C3のアルケニレン基、又は−Alk’−N(Ra)−(Alk’はC1〜C3のアルキレン基を表し、Raは水素原子又はC13のアルキル基を表す)を表し;
Rは、水素原子、C7以下の置換もしくは無置換のアルキル基を表し、互いに同一でも異なっていてもよい;
Bは、置換もしくは無置換のオキシエチレン基、又は置換もしくは無置換のオキシプロピレン基であり、複数個の連結するBは互いに異なっていてもよく、m’は1以上30以下の数であり;
1’は、単結合、オキシ基、又はカルボニル基を表す。
【0065】
式(Z’)中のAは、式(Z)中のAと同義であり、その例、及びその好ましい例も同様である。
【0066】
式(Z’)中、L’は、単結合又はオキシ基を表す。Aの種類にもよるが、Aの末端結合部位が酸素原子(例えば、Aがペンタエリスリトール等の多価アルコールの水酸基のHが脱落した残基である場合は、末端結合部位は酸素原子になる)である場合は、L’は単結合であるのが好ましく、一方、Aの末端結合部位が酸素原子以外である場合は、L’はオキシ基であるのが好ましい。即ち、式(Z’)中のD1’とAとがL’を介して又はL’を介さずとも(即ちL’が単結合)、オキシ基(−O−)により連結しているのが好ましい。この関係は、上記式(Z)中のA、L及びD1の関係でも同様である。
【0067】
式(Z’)中、D1’はカルボニル基(−C(=O)−)を表し、D2’はカルボニル基(−C(=O)−)、又はカルバモイル基(−C(=O)N(Alk)−)を表す。但し、Alkは水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し、好ましくは、水素原子又はC1〜C6のアルキル基であり、より好ましくは水素原子である。
【0068】
式(Z’)中、E’は、単結合、置換もしくは無置換の、C1〜C3のアルキレン基、C2〜C3のアルケニレン基、又は−Alk’−N(Ra)−(Alk’はC1〜C3のアルキレン基を表し、Raは水素原子又はC13のアルキル基を表す)を表す。E’は、置換もしくは無置換の、メチレン基、エチレン基、又はプロピレン基であるのが好ましく、無置換のメチレン基、エチレン基、又はプロピレン基であるのがより好ましい。
【0069】
式(Z’)中のRは、式(Z)中のRと同義であり、その例、及びその好ましい例も同様である。
式(Z’)中のBは、式(Z)中のBと同義であり、その例、及びその好ましい例も同様である。m’は1以上30以下の数である。m’は好ましくは1〜10の数であり、さらに好ましくは1〜8の数であり、よりさらに好ましくは1〜4である。
式(Z’)中、Z1’は、単結合、オキシ基、又はカルボニル基を表し、単結合であるのが好ましい。
式(Z’)中、p’は3以上の整数を表し、3〜8であることが好ましい。複数存在する−{D1’−(E’)q'−D2’−(B)m'−Z1’−R}は互いに同一でも異なっていてもよい。
【0070】
式(Z’)中、*−L’−{D1’−(E’)q'−D2’−(B)m'−Z1’−R}の好ましい例には、以下の基(a)〜(d)が含まれる。
【0071】
【化16】

【0072】
式中、xは1〜3の整数であり、yは2又は3であり、m’は1〜30の数であり、及びRaは水素原子又はC1〜C3のアルキル基であり、Rは水素原子又は置換もしくは無置換のC7以下のアルキル基である。好ましい例については、上記と同様である。
中でも、(a)が好ましい。
【0073】
以下に、式(Z)で表される化合物の例(式(Z’)で表される化合物の例も含まれる)を示すが、これらに限定されるものではない。
【0074】
【化17】

【0075】
【化18】

【0076】
【化19】

【0077】
【化20】

【0078】
【化21】

【0079】
【化22】

【0080】
【化23】

【0081】
【化24】

【0082】
【化25】

【0083】
【化26】

【0084】
【化27】

【0085】
以下に、式(AIX)、(AXa)及び(AXb)で表される化合物の例を示すが、これらに限定されるものではない。
【化28】

【0086】
前記式(Z)で表される化合物は、種々の有機合成反応を利用することで製造することができる。例えば、式(Z)中、Aが式(AI)〜(AIII)で表される基である化合物は、基本的にグリセロール、ペンタエリスリトールなどの多価アルコールと側鎖構造体との連結により形成されるが、通常はエステル反応を用いることが多い。例えば、多価アルコールと側鎖カルボン酸の酸塩化物や側鎖構造のイソシアナート、又は側鎖構造のハロゲン化アルキルとの縮合反応か、多価アルコールと無水コハク酸やメルドラム酸による開環型のエステル化によってカルボン酸を形成し、その酸塩化物と側鎖構造体のアルコールのエステル化等の種々の反応を組み合わせることで製造することができる。また側鎖構造部分は、長鎖アルキルアルコールやカルボン酸にエチレンオキサイドガスを付加させて得られるアルコールを用いるか、それにコハク酸、メルドラム酸、ハロカルボン酸を用いることで容易に製造することができる。
【0087】
また、Aがペンタエリスリトールの残基である化合物は、1)アルコールと二塩基酸もしくはその無水物を反応させたカルボン酸と、ペンタエリスリトールとをエステル化させる方法、2)ペンタエリスリトールに二塩基酸もしくはその無水物を反応させたテトラもしくはトリカルボン酸と、アルコールとをエステル化させる方法などにより合成することができる。
【0088】
特に、ペンタエリスリトールとコハク酸無水物の反応では、生じたテトラカルボン酸には、不純物が1〜40%含まれることがある。この不純物は、ペンタエリスリトール中のビスペンタエリスリトールもしくはジペンタエリスリトールの無水コハク酸が反応した化合物、またはペンタエリスリトール二分子と無水コハク酸が反応することによって生成するものであり、主には以下に示す化合物Dなどが考えられる。これらの不純物が含まれたまま、エステル化を行うと、最終化合物に高分子量の不純物が含有されるが、潤滑剤としての性能に影響はない。
【0089】
【化29】

【0090】
即ち、上記方法を利用して、前記式(AII)で表される化合物を合成すると、該化合物とともに、前記式(AIII)及び/又は下記式(AIII’)で表される化合物を含有する組成物が得られ、該組成物も、潤滑の技術分野に有用である。例えば、上記方法を利用することで、前記式(AII)で表される化合物を50〜95質量%、さらに前記式(AIII)及び/又は下記式(AIII’)で表される化合物を5〜50質量%含む組成物を調製することができる。
【0091】
【化30】

【0092】
式中、*は、―D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;Cは炭素原子を表し;X1〜X4、X11〜X14、及びX21〜X24はそれぞれ、水素原子、又はハロゲン原子を表し、同一でも異なっていてもよく;LはCH2もしくはCO(CH2kCOを表し、kは1〜10の整数を表す。この態様は、より小さな摩擦係数が求められる潤滑油の用途に好ましい。式(AIII')中の各基の定義及びその好ましい例については、前記式(Z)及び(AIII)中のそれぞれと同様である。例えば、上記化合物Dでは、LはCO(CH22COである。
【0093】
前記式(Z)で表される化合物の粘度圧力係数が小さいほど、高圧下での粘性は相対的に小さい。前記化合物の40℃における粘度圧力係数が、20GPa-1以下であるのが好ましい。15GPa-1以下であることはさらに好ましく、10GPa-1以下であることが特に好ましい。粘度圧力係数が小さいほど好ましいが、その分子の自由体積との相関関係があることが明らかにされており、有機化合物の上記条件の粘度圧力係数の下限値は5GPa-1程度と推察される。
【0094】
本発明の組成物は、前記式(Z)で表される化合物を含有することが特徴である。前記式(Z)で表される化合物そのものを単独で潤滑の技術分野に利用することもできるし、該化合物を主原料として含有するとともに、1種以上の添加剤を含有する組成物を潤滑の技術分野に利用することもできる。また、基油中に、前記式(Z)で表される化合物を添加した組成物も、潤滑の技術分野に利用することもできる。
【0095】
本発明の組成物は、低粘性流体として調製することができる。この低粘性流体がより薄膜化することで流体潤滑の低摩擦化に寄与し、流体潤滑領域では、その駆動機械はエネルギー的に高効率に駆動する。そして、高荷重、高圧力場では、共存する低粘性な油性媒体が弾塑性体膜から破断するとしても、次第に前記化合物が相対的により低粘性になり、その摩擦部位では、当該化合物による低粘性な弾性流体潤滑膜によって低摩擦係数が発現する。このような高荷重条件下では界面素材の弾性歪みによって接触面積が増大し、その部分の圧力も低化するため、一層穏和な条件が実現し、現行潤滑油では、既に境界潤滑領域に入る条件でも、前記化合物の低粘性の弾性流体潤滑膜によって両方の界面がほとんど接触しない良好な潤滑領域が維持されることになる。その結果、省燃費に繋がることになる。
【0096】
モリブデン系有機金属錯体を含む最近の省燃費型エンジンオイルは、40℃の粘性が30mPa・s以下の低粘性を示し、0W−20などのマルチグレード低粘性油として上市されている。本発明の組成物では、前記化合物が、混合している低粘性基油が破断する前に弾性流体潤滑膜を形成することで、高温での高圧力、高剪断条件下、同様の低摩擦、耐摩耗性の効果を発現させることができる。また、この厳しい条件でも実質的な低粘性は弾性流体膜によって発現され、穏和な条件では低粘性基油が優先的に機能するため、現行潤滑剤のような粘度指数向上剤に起因する中〜低温での粘性の増加が起こらない。
また、本発明の組成物の皮膜形成性は、界面との反応を基本的に利用していないので、界面の材質には制限されない。さらに、前記化合物は、基本的に、熱に強く、化学的にも安定であるために、相対的に顕著に高耐久性である。また、その摩擦部分が高荷重条件でなくなり、高温になれば、再び油性媒体中に分散することになり、総量は常に維持されることになる。必要なところに、必要なだけ蓄積し、低摩擦を発現し、要らなくなればまた油性媒体に分散されるという、極めてインテリジェントな潤滑剤組成物である。
【0097】
一方、前記化合物が高αを示す場合は、クラッチなどの摩擦によって動力を伝達するような部位に用いられるトラクションオイルとして、有効に機能する。従来の高機能トラクションオイルは、そのオイル全てが高粘度圧力係数であるような、剛直な構造の炭化水素が用いられてきたが、その欠点はそれ自身の常圧粘度も相対的に高くならざるを得ない点である。それは通常の状態の駆動効率を下げることになる。ところが、前記化合物のうち、高粘度圧力係数の素材を低粘性の油性媒体に分散させた組成物は、燃費効率と動力の効率的伝達の両立を可能にする。トランスミッションオイルの大部分を占める低粘性の油性媒体が、駆動力の伝達部分以外の領域の粘性による摩擦ロスを有効に低減できる。接触する部分にのみ高摩擦係数を発現する物質が蓄積するので、油性媒体と本発明の化合物の物性の様々な組合せが可能であり、トランスミッションの多くの要請を満足する組合せを安価に提供することが可能になる。
【0098】
なお、前記式(Z)で表される化合物の例には、Aが、式(AIX)、(AX−a)又は式(AX−b)で表されるモリブデン錯体又は亜鉛錯体が含まれる。また、前記式(Z)で表される化合物の例には、基油として利用可能な化合物も含まれる。前記式(Z)で表されるモリブデン錯体等を従来の基油に添加する態様、及び前記式(Z)で表される化合物を基油とし、従来のモリブデン錯体等を添加する態様のいずれも、本発明の範囲に含まれるし、並びに、基油及びモリブデン錯体等の双方が、前記式(Z)で表される化合物の態様も、勿論本発明の範囲に含まれる。
【0099】
2. 媒体
本発明の組成物は、前記式(Z)で表される化合物とともに、媒体を含んでいてもよい。混合されてもよい媒体について説明する。本発明において、「媒体」とは、一般的に「流動性液体」とよばれる媒体の全てを意味するものである。但し、室温又は使用される温度において、液状であることは必要とせず、液体以外にも固体及びゲル等のいずれの形態の材料も利用することができる。本発明において利用する媒体については特に制限はなく、用途に応じて種々の液体から選択することができる。より具体的には、潤滑油のベースオイルに用いられる鉱物油や食用油まで含めた動物性・植物性の油脂化合物;並びに、ポリオレフィン油、アルキルベンゼン油、アルキルナフタレン油、ビフェニル油、ジフェニルアルカン油、ジ(アルキルフェニル)アルカン油、エステル油、ポリグリコール油、ポリフェニルエーテル油、フッ素化合物(パーフルオロポリエーテル、フッ素化ポリオレフィン等)、シリコーン油、及びイオン流体等の各種化学合成油;等の種々の油から選択することができる。本発明の組成物を潤滑油の代替として利用する態様では、摩擦特性の点から、鉱物油、ポリオレフィン油、及びシリコーン油が好ましく用いられる。また、特に生体、骨の潤滑や、金属やセラミックスの圧延や切削加工には水、C12以下の直鎖又は分岐アルコール、エチレングリコール、ポリエチレングリコール等の親水性流体が好ましく用いられる。
【0100】
以下、油性媒体のそれぞれについて詳細に説明する。
鉱物油としては、石油精製業の潤滑油製造プロセスで通常行われている方法により得られる鉱物油を利用することができる。より具体的には、原油を常圧蒸留及び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、及び白土処理等から選択される1種又は2種以上の精製手段を適宜組み合わせて精製することによって得られる、パラフィン系又はナフテン系等の鉱物油を用いることができる。
また、油脂としては、例えば、牛脂、豚脂、ひまわり油、大豆油、菜種油、米ぬか油、ヤシ油、パーム油、パーム核油、あるいはこれらの水素添加物等を用いることができる。
【0101】
生分解性油としては、例えば、ナタネ油、ヒマワリ油、大豆油などの、植物の果実や種子などから採取される、生分解性を有する種々の植物油又は合成油を利用することができる。また、特開平6ー1989号公報に開示されているポリオールエステル油が好適に使用される。合成油であっても、生分解性の評価法であるCEC(欧州規格諮問委員会)規格Lー33ーT82に規定された方法に準じて、通常21日後の生分解率が67%以上(好ましくは80%以上)の生分解性を示すものは、生分解性油として利用することができる。
【0102】
また、ポリオレフィン油は、炭素原子数2〜12のオレフィンを1種又は2種以上重合させて得られるものから選択されるのが好ましい。また、エチレン、プロピレン、1ーブテン、2ーブテン、イソブテン、又は炭素原子数5〜12の直鎖状末端オレフィン(以下、α−オレフィンと呼ぶ)を1種又は2種以上重合させたものがより好ましい。
これらの中でも、エチレンとプロピレンとの共重合体;エチレンと炭素原子数5〜12のα−オレフィンとの共重合体;ポリブテン、ポリイソブテン、又は炭素原子数5〜12のα−オレフィンの重合体が好ましく、エチレンと炭素原子数5〜12のα−オレフィンの共重合体、炭素原子数5〜12のα−オレフィンの重合体がより好ましい。本明細書において、「エチレンと炭素原子数5〜12のα−オレフィンとの共重合体」とは、エチレンと炭素原子数5〜12のα−オレフィン1種、もしくは2種以上が重合した共重合体をいい、炭素原子数5〜12のα−オレフィンの重合体とは、炭素原子数5〜12のα−オレフィン1種が重合した単独重合体、もしくは2種以上が重合した共重合体をいう。
上記のエチレンと炭素原子数5〜12のα−オレフィンとの共重合体及び炭素原子数5〜12のα−オレフィンの重合体の平均分子量は500〜4000であることが好ましい。
【0103】
また、シリコーン油は、種々の有機ポリシロキサンから選択することができる。シリコーン油として使用可能な有機ポリシロキサンの例には、下記一般式、
【化31】

【0104】
(但し、式中、R51及びR52はそれぞれ、アルキル基、アリール基、又はアラルキル基を表わし、R1とR2は同一であっても、異なっていてもよい。)で示される繰り返し単位を有するポリマーが含まれる。該繰り返し単位の一種のみからなる、いわゆるホモポリマー型有機ポリシロキサンであってもよいし、二種以上の組み合せによるランダム型、ブロック型もしくはグラフト型のコポリマー型有機ポリシロキサンであってもよい。シリコーン油としては、常温で液体もしくはペースト状である直鎖状ポリシロキサン、例えば、メチルポリシロキサン、メチルフェニルポリシロキサン、エチルポリシロキサン、エチルメチルポリシロキサン、エチルフェニルポリシロキサン、ヒドロキシメチルポリシロキサン、アルキルポリジメチルシロキサン及び、環状ポリシロキサン、例えばオクタメチルシクロペンタシロキサン、デカメチルシクロペンタシロキサン、あるいはこれらの混合物より選択されることが好ましい。
【0105】
パーフルオロポリエーテル油は、脂肪族炭化水素ポリエーテルの水素原子をフッ素原子で置換した化合物から選択することができる。そのようなパーフルオロポリエーテル油の例には、下記式(Z)及び(XI)で示される側鎖を有するパーフルオロポリエーテル、及び下記式(XII)〜(XIV)で示される直鎖状のパーフルオロポリエーテルが含まれる。これらの1種を単独で使用することができ、また2種以上を混合して使用することもできる。なお、下記式中、m及びnは整数である。
【0106】
【化32】

【0107】
【化33】

【0108】
【化34】

【0109】
【化35】

【0110】
【化36】

【0111】
上記式(X)の市販品としてはフォンブリンY(モンテジソン社商品名)を、(XI)の市販品としてはクライトックス(デュポン社商品名)やバリエルタJ オイル(クリーバー社商品名)を、(XII)の市販品としてはフォンブリンZ(モンテジソン社商品名)を、(XIII)の市販品としてはフォンブリンM(モンテジソン社商品名)を、(XIV)の市販品としてはデムナム(ダイキン社商品名)等をそれぞれ例示できる。
【0112】
芳香族エステル油は、好ましくは下記一般式(XV)で表されるトリメリット酸エステル油から選択される。
【0113】
【化37】

【0114】
式中R54、R55、及びR56はそれぞれ、炭素原子数が6〜10の炭化水素基であり、R54、R55、及びR56は互いに同一であっても異なっていてもよい。なお、「炭化水素基」は、飽和又は不飽和の直鎖又は分岐アルキル基を意味する。
【0115】
また、芳香族エステル油は、下記一般式(XVI)で表されるピロメリット酸エステル油から選択されるのも好ましい。
【0116】
【化38】

【0117】
式中、R57、R58、R59、及びR60はそれぞれ、炭素原子数が6〜15の炭化水素基であり、R57、R58、R59、及びR60は互いに同一であっても異なっていてもよい。なお、「炭化水素基」は、飽和又は不飽和の直鎖又は分岐アルキル基を意味する。
【0118】
耐熱性に優れた基油としては、ポリフェニルエーテル油、シリコーン油、フッ素油等が知られているが、ポリフェニルエーテル油、フッ素油、及びシリコーン油は高価であり、フッ素油やシリコーン油は一般的に潤滑性が悪い。これに対して上記トリメリット酸エステル油やピロメリット酸エステル油のような芳香族エステル油は耐熱性、耐酸化性、耐摩耗性に優れた特性を有する。特に、上記一般式(XV)又は(XVI)で表される芳香族エステル油は流動点も低く、粘度指数も高いので、極低温から高温まで使用環境を要求される自動車電装補機用転がり軸受には好適に使用される。尚且つ、安価であり、入手も容易である。
このようなトリメリット酸エステルとして、花王(株)製「トリメックスT−08」、「N−08」、旭電化工業(株)製「アデカプルーバーT−45」、「T−90、PT−50」「UNIQEMA E MKARATE8130」、「EMKARATE9130」、「EMKARATE1320」等を市場から入手できる。また、ピロメリット酸エステルとして、旭電化工業(株)製「アデカプルーバーLX−1891」、「アデカプルーバーLX−1892」、Cognis社製「BISOLUBETOPM」等を市場から入手できる。これらは、流動点が低く、本発明に好適に使用できる。
【0119】
下記式のジフェニルエーテル油も好ましい。該ジフェニルエーテル油を用いることにより、耐熱性及び耐久性に優れた(例えば、160℃を越える高温でも優れた潤滑性を長期に維持できる)潤滑剤組成物を調製することができる。特に、自動車電装部品や自動車エンジン補機等の高温高速で使用される部位に好適に使用できる。
【0120】
【化39】

【0121】
前記式中、R61及びR62はそれぞれ、同一又は異なる、直鎖もしくは分岐鎖パーフルオロアルキル基、又はその部分置換体を表す。ここで、パーフルオロアルキル基の部分置換体とは、フッ素原子又は水素原子の一部が塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、水酸基、チオール基、アルコキシ基、エーテル基、アミノ基、ニトリル基、ニトル基、スルホニル基、スルフィニル基あるいはエステル基、アミノ基、アシル基、アミド基、カルボキシル基等のカルボニル含有基等の置換基で置換されたもの、あるいは主鎖の一部がエーテル構造のものである。
【0122】
また、R61及びR62中の炭素原子数は、1〜25であり、好ましくは1〜10、さらに好ましくは1〜3である。炭素原子数が25より多くなると、原料の入手あるいは合成が困難となる。
更に、R&1及びR62中のフッ素原子数/炭素原子数の比は、0.6〜3、好ましくは1〜3、より好ましくは1.5〜3である。
【0123】
前記式中、R63、R64、及びR65中の1つは、水素原子で、残りの2つは同一又は異なる分岐アルキル基を表す。また、炭素原子数は10〜26、好ましくは12〜24である。炭素原子数が10未満では蒸発量が多くなり、26より多くなると低温での流動性が乏しくなり、使用上問題になる。具体的には、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ナノデシル基、エイコシル基等が挙げられ、これらの分岐を有するものでもよい。
油性媒体中に、上記式で表されるジフェニルエーテル油を、50〜100質量%利用してもよく、60〜80質量%利用してもよい。上記範囲であると耐熱性がより改善される。ジフェニルエーテル油と併用する油としては、エステル系合成油及びポリα−オレフィン油が好ましい。
【0124】
トラクションオイル用基油として利用されている材料を、油性媒体として利用することができる。トラクションオイル用基油は、通常炭化水素から選択される。シクロヘキサン環、デカリン環、ビシクロヘプタン環、ビシクロオクタン環等の環状構造を分子内に有する炭化水素が好ましい(特開2000−109871号公報参照)。
例えば、シクロヘキサン環を有する飽和炭化水素化合物の例には、特公平3−80191号、特公平2−52958号、特公平6−39419、特公平6−92323号等の各公報に記載の化合物が含まれ;デカリン環を有する飽和炭化水素化合物の例には、特公昭60−43392号、特公平6−51874公報の各公報に記載の化合物が含まれ;ビシクロヘプタン環を有する飽和炭化水素化合物の例には、特公平5−31914号、特公平7−103387号等の各公報に記載の化合物が含まれ、より具体的には、1−(1−デカリル)−2−シクロヘキシルプロパン;1−シクロヘキシル−1−デカリルエタン;1,3−ジシクロヘキシル−3−メチルブタン;2,4−ジシクロヘキシルペンタン;1,2−ビス(メチルシクロヘキシル)−2−メチルプロパン;1,1−ビス(メチルシクロヘキシル)−2−メチルプロパン;2,4−ジシクロヘキシル−2−メチルペンタンが含まれる。また、ビシクロオクタン環を有する飽和炭化水素化合物の例には、特開平5−9134号等公報に記載の化合物が含まれる。
【0125】
イオン性液体(イオン液体)は難燃性・不揮発性・高極性・高イオン伝導性・高耐熱性などの性質を有している。これらの性質から、環境に優しいグリーンケミストリー用反応溶媒や安全で高性能の次世代電解質としての用途が期待されている。本発明では、当該イオン性液体を油性媒体として利用することができる。イオン性液体(イオン液体)にはさまざまな種類があるが、アンモニウム塩、コリン塩、リン酸塩、ピラゾリン塩、ピロリジン塩、イミダゾリウム塩、ピリジン塩等の含窒素複素環化合物の四級塩、スルホニウム塩などがあげられる。
【0126】
本発明に用いる油性媒体は、一般に、燃料として用いるに有用な石油炭化水素、例えば内燃機関の場合のガソリンなどを用いることができる。そのような燃料は、典型的に様々な種類の炭化水素の混合物であり、その成分の例には、直鎖及び分岐鎖パラフィン、オレフィン、芳香族及びナフテン系炭化水素、及び火花点火ガソリンエンジンに用いられるに適する他の液状炭化水素系材料が含まれる。
このような組成物はいろいろな等級、例えば無鉛及び鉛含有ガソリンなどとして供給され、典型的には、通常の精製方法及びブレンド方法、例えば直留分溜、熱分解、水素化分解、接触分解及びいろいろな改質方法を利用して、石油の原油から誘導される。ガソリンは、ASTM D86蒸留方法で測定した時の初期沸点が、約20〜60℃の範囲で、最終沸点が約150〜230℃の範囲の液状炭化水素もしくは炭化水素−酸素化物の混合物として定義されるであろう。この酸素化物としては、例えば、メタノール、エタノール、イソプロパノール、t−ブタノール、及びC1〜C5混合アルコール等のアルコール;例えば、メチル−t−ブチルエーテル、t−アミルエチルエーテル、エチル−t−ブチルエーテル、及び混合エーテル等のエーテル;ならびに例えばアセトン等のケトン;が含まれる。
【0127】
本発明では、油性媒体として、上記例示した油の1種を単独で使用してもよいし、2種以上の異なるものを混合して使用してもよい。
【0128】
また、鉱物油は、樹脂製部材に対する濡れ性が不十分な場合があり、樹脂製部材に対する潤滑性や低摩擦性等の観点では、鉱油以外の油を油性媒体として用いるのが好ましく、具体的には、ポリオレフィン油、シリコーン油、エステル油、ポリグリコール油、ポリフェニルエーテル油が好ましい。
また、エステル油は、樹脂製部材やゴム製部材に悪影響を与える場合があり、樹脂製部材やゴム製部材に対する悪影響を防止するという観点では、エステル油以外の油を油性媒体に用いることが好ましく、具体的には、鉱油、ポリオレフィン油、シリコーン油、ポリグリコール油、ポリフェニルエーテル油が好ましい。
双方の観点では、ポリオレフィンが好ましく、中でも、エチレンとプロピレンとの共重合体;エチレンと炭素原子数5〜12のα−オレフィンとの共重合体;ポリブテン、ポリイソブテン、又は炭素原子数5〜12のα−オレフィンの重合体がより好ましく、エチレンと炭素原子数5〜12のα−オレフィンの共重合体、炭素原子数5〜12のα−オレフィンの重合体が更に好ましい。
【0129】
3. 本発明の組成物の調製方法
本発明の組成物は、前記式(Z)で表される化合物を、油性媒体中もしくは水性媒体中に添加し、溶解及び/又は分散させることで調製することができる。溶解及び/又は分散は、加温下で行ってもよい。前記式(Z)で表される化合物の添加量は、油性媒体の質量に対して、10質量%以上で添加されるのが好ましい。但し、この範囲に限定されるものではなく、上記化合物が、摩擦低減作用を示すのに充分な量であれば、上記範囲外であっても勿論よい。
本発明の組成物の一態様は、鉱物油、ポリ−α−オレフィン、合成エステル油、ジフェニルエーテル油、フッ素油、及びシリコーン油から選択される少なくとも1種類からなる油性媒体であり、式(Z)で表される化合物を10質量%以上含有する組成物である。
【0130】
本発明の組成物は、上記式(Z)の化合物及び油性媒体もしくは水性媒体とともに、本発明の効果を損なわない範囲で、1種以上の添加剤を含有していてもよい。該添加剤の例には、分散剤、洗浄剤、抗酸化剤、担体流体、金属不活性化剤、染料、マーカー、腐食抑制剤、殺生物剤、帯電防止添加剤、抗力低下剤、抗乳化剤、乳化剤、曇り防止剤、氷結防止添加剤、アンチノック添加剤、アンチバルブシートセッション添加剤、潤滑添加剤、界面活性剤、及び燃焼向上剤が含まれる。また、潤滑剤、例えば軸受油、ギヤ油、動力伝達油などに用いられている各種添加剤、すなわち摩耗防止剤、粘度指数向上剤、清浄分散剤、金属不活性化剤、腐食防止剤、消泡剤等を本発明の目的を損なわない範囲で適宜添加することができる。これらは、有機亜鉛化合物、モリブデン化合物、有機リン化合物、及び有機硫黄化合物から選択される少なくとも1種であってもよく、これらの化合物を添加すると、有機亜鉛化合物による酸化防止能の機能の追加、後三者による真の境界潤滑条件での摩耗抑制の点で好ましい。
【0131】
以下、いくつかの添加剤について、具体例を説明する。
磨耗防止剤:
内燃機関の潤滑油は、内燃機関のために適切な摩耗防止保護を提供するために摩耗防止剤及び/又は極圧(EP)添加剤の存在を必要とする。エンジン油のための仕様書は、油の摩耗防止特性の改善に関する傾向をますます示してきた。摩耗防止剤及びEP添加剤は、金属部品の摩擦及び摩耗を減少させることにより、この役割を果たす。異なる多くのタイプの摩耗防止剤が存在する一方で、数十年にわたって内燃機関のクランクケース油のための主たる摩耗防止剤は、一次金属成分が亜鉛又はジアルキルジチオ燐酸亜鉛(ZDDP)である金属アルキルチオホスフェート、特に金属ジアルキルジチオホスフェートである。ZDDP化合物は、一般に、式:Zn[Sn(S)(OR71)(OR72)]2(式中、R71及びR72は、C1〜C18アルキル基、好ましくはC2〜C12アルキル基である)の化合物である。これらのアルキル基は直鎖又は分岐であってもよい。ZDDPは、組成物中に、一般的には約0.4〜1.4質量%の量で用いられる。但し、この範囲に限定されるものではない。
【0132】
しかし、これらの添加剤の燐が触媒コンバーター中の触媒に、及び自動車の酸素センサーにも有害な影響を及ぼすことが分かっている。この影響を最少にする一方法は、燐のない摩耗防止剤をZDDPの一部又は全部の代わりに用いることである。したがって、様々な非燐添加剤も摩耗防止剤として用いることができる。硫化オレフィンは摩耗防止剤及びEP添加剤として有用である。硫黄含有オレフィンは、約3〜30個の炭素原子、好ましくは3〜20個の炭素原子を含む脂肪族、アリール脂肪族又は脂環式オレフィン炭化水素を含む種々の有機材料の硫化によって調製することが可能である。オレフィン化合物は少なくとも一個の非芳香族二重結合を含む。こうした化合物は式:
7374C=CR7576によって定義される。
式中、R73〜R76の各々は独立して水素又は炭化水素基である。好ましい炭化水素基はアルキル基又はアルケニル基である。環式環を形成させるためにR73〜R76のいずれか二個が連結していてもよい。硫化オレフィン及び硫化オレフィンの調製に関する追加情報は米国特許第4,941,984号明細書中に記載があり、参照することができる。
【0133】
チオ燐酸及びチオ燐酸エステルの多硫化物の潤滑油添加剤としての使用は、米国特許第2,443,264号明細書、米国特許第2,471,115号明細書、米国特許第2,526,497号明細書、及び米国特許第2,591,577号明細書に開示されている。摩耗防止剤、酸化防止剤及びEP添加剤としての二硫化ホスホロチオニルの添加は、米国特許第3,770,854号明細書で開示されている。モリブデン化合物(例えば、オキシモリブデンジイソプロピルホスホロジチオエートスルフィド)及び燐エステル(例えば、ジブチル水素ホスフィット)と組み合わせたアルキルチオカルバモイル化合物(例えば、ビス(ジブチル)チオカルバモイル)の潤滑油中の摩耗防止剤としての使用は米国特許第4,501,678号明細書で開示されている。米国特許第4,758,362号明細書には、改善された摩耗防止特性及び極圧特性を提供するためにカルバメート添加剤の使用が開示されている。摩耗防止剤としてのチオカルバメートの使用は、米国特許第5,693,598号明細書で開示されている。モリー硫黄アルキルジチオカルバメートトリマー錯体(R=C8〜C12アルキル)などのチオカルバメート/モリブデン錯体も有用な摩耗防止剤である。
【0134】
グリセロールのエステルを、摩耗防止剤として用いてもよい。例えば、モノオレエート、ジオレエート及びトリオレエート、モノパルミテート及びモノミリステートを用いてもよい。
【0135】
ZDDPと他の摩耗防止剤とを組み合わせてもよい。米国特許第5,034,141号明細書には、チオジキサントゲン化合物(例えばオクチルチオジキサントゲン)及び金属チオホスフェート(例えばZDDP)の組み合わせが摩耗防止特性を改善できることが開示されている。米国特許第5,034,142号明細書には、ZDDPと組み合わせた金属アルキオキシアルキルキサンテート(例えばニッケルエトキシエチルキサンテート)及びジキサントゲン(例えば、ジエトキシエチルジキサントゲン)の使用が摩耗防止特性を改善することが開示されている。
【0136】
好ましい摩耗防止剤には、ジチオ燐酸亜鉛及び/又は硫黄、窒素、硼素、モリブデンホスホロジチオエートなどの燐及び硫黄化合物、モリブデンジチオカルバメート、及びヘテロ環式化合物、例えば、ジメルカプトチアジアゾール、メルカプトベンゾチアジアゾール及びトリアジンなどを含む種々の有機モリブデン誘導体が挙げられ、脂環式化合物、アミン、アルコール、エステル、ジオール、トリオール及び脂肪酸アミンなども用いることが可能である。こうした添加剤は、約0.01〜6質量%、好ましくは約0.01〜4質量%の量で用いてもよい。
【0137】
粘度指数向上剤:
粘度指数向上剤(VI向上剤、粘度調整剤及び粘度向上剤としても知られている)は、高温運転適性及び低温運転適性を組成物に与える。これらの添加剤は、高温での剪断安定性及び低温での許容可能な粘度を付与する。
適する粘度指数改善剤の例として、高分子量炭化水素、ポリエステル及び粘度指数向上剤と分散剤の両方として機能する粘度指数向上剤分散剤が挙げられる。これらのポリマーの典型的な分子量は、約10,000〜1,000,000の間、より典型的には約20,000〜500,000、なおより典型的には約50,000〜200,000の間である。
【0138】
適する粘度指数向上剤の例には、メタクリレート、ブタジエン、オレフィン又はアルキル化スチレンのポリマー及びコポリマーが含まれる。ポリイソブチレンは一般に用いられる粘度指数向上剤である。適するもう一種の粘度指数向上剤は、ポリメタクリレート(例えば、種々の鎖長のアルキルメタクリレートのコポリマー)であり、その一部の配合物は、流動点降下剤としても機能する。適する他の粘度指数向上剤には、エチレンとプロピレンのコポリマー、スチレンとイソプレンの水素添加ブロックコポリマー及びポリアクリレート(例えば、種々の鎖長のアクリレートのコポリマー)が挙げられる。特定の例には、分子量50,000〜200,000のスチレン−イソプレン系ポリマー又はスチレン−ブタジエン系ポリマーが挙げられる。
【0139】
粘度指数向上剤は、約0.01〜8質量%、好ましくは約0.01〜4質量%の量で用いてもよい。
【0140】
酸化防止剤:
酸化防止剤は、併用される油の酸化劣化を遅らせる作用がある。こうした劣化は、金属表面上の堆積物、スラッジの存在又は潤滑油の粘度増加を招きうる。潤滑油組成物中で有用な様々な酸化防止剤については、例えば、「クラマン潤滑剤及び関連製品(Klamann in Lubricants and Related Products)」、フロリダ州ディアフィールドビーチのフェアラークヘミー(Verlag Chemie(Deerfield Beach,FL)、ISBN0ー89573ー177ー0)、並びに米国特許第4.798,684号明細書及び米国特許第5,084,197号明細書に記載があり、参照することができる。
【0141】
有用な酸化防止剤には、ヒンダードフェノールが挙げられる。これらのフェノール系酸化防止剤は、無灰(無金属)フェノール系化合物あるいは特定のフェノール系化合物の中性金属塩又は塩基性金属塩であってもよい。典型的なフェノール系酸化防止剤化合物は、立体的に封鎖されたヒドロキシル基を含む化合物であるヒンダードフェノール化合物であり、これらには、ヒドロキシル基が互いにoー位置又はpー位置にあるジヒドロキシアリール化合物の誘導体が挙げられる。典型的なフェノール系酸化防止剤には、C6+アルキル基で置換されたヒンダードフェノール及びこれらのヒンダードフェノールのアルキレン連結誘導体が挙げられる。この種のフェノール系材料の例には、2−t−ブチル−4−ヘプチルフェノール、2−t−ブチル−4−オクチルフェノール、2−t−ブチル−4−ドデシルフェノール、2,6−ジ−t−ブチル−4−ヘプチルフェノール、2,6−ジ−t−ブチル−4−ドデシルフェノール、2−メチル−6−t−ブチル−4−ヘプチルフェノール及び2−メチル−6−t−ブチル−4−ドデシルフェノールが挙げられる。有用な他のヒンダードモノフェノール系酸化防止剤には、例えば、ヒンダード2,6−ジ−アルキル−フェノール系プロピオン酸エステル誘導体を挙げることができる。ビス−フェノール系酸化防止剤も、本発明と組み合わせて有利に用いることが可能である。オルト連結フェノールの例には、2,2'−ビス(6−t−ブチル−4−ヘプチルフェノール)、2,2'−ビス(6−t−ブチル−4−オクチルフェノール)及び2,2'−ビス(6−t−ブチル−4−ドデシルフェノール)が挙げられる。パラ連結ビスフェノールには、例えば、4,4'−ビス(2,6−ジ−t−ブチルフェノール)及び4,4'−メチレン−ビス(2,6−ジ−t−ブチルフェノール)が挙げられる。
【0142】
使用可能な非フェノール系酸化防止剤には、芳香族アミン酸化防止剤を挙げることができ、これらは、それ自体単独又はフェノールと組み合わせてのいずれかで用いてもよい。非フェノール系酸化防止剤の典型的な例には、式:R787980N[式中、R78は脂肪族基、芳香族基又は置換芳香族基であり、R79は芳香族基又は置換芳香族基であり、R80はH、アルキル、アリール又はR81S(O)x82(ここで、R81はアルキレン、アルケニレン又はアラルキレン基であり、R82は、より高級のアルキル基又はアルケニル、アリール又はアルカリール基であり、xは0、1又は2である)]の芳香族モノアミンなどのアルキル化芳香族アミン及び非アルキル化芳香族アミンが挙げられる。脂肪族基R78は1〜約20個の炭素原子を含んでもよく、好ましくは約6〜12個の炭素原子を含む。脂肪族基は飽和脂肪族基である。好ましくは、R78とR79の両方は芳香族基又は置換芳香族基であり、芳香族基は、ナフチルなどの縮合環芳香族基であってもよい。芳香族基R78及びR79は、Sなどの他の基と合わせて連結してもよい。
【0143】
典型的な芳香族アミン系酸化防止剤は、少なくとも約6個の炭素原子のアルキル置換基を有する。脂肪族基の例には、ヘキシル、ヘプチル、オクチル、ノニル及びデシルが挙げられる。一般に、脂肪族基は約14個を上回る炭素原子を含まない。本組成物中で有用なアミン系酸化防止剤の一般タイプには、ジフェニルアミン、フェニルナフチルアミン、フェノチアジン、イミドジベンジル及びジフェニルフェニレンジアミンが挙げられる。二種以上の芳香族アミンの混合物も有用である。高分子アミン酸化防止剤も用いることが可能である。本発明において有用な芳香族アミン酸化防止剤の特定の例には、p,p'−ジオクチルジフェニルアミン、t−オクチルフェニル−アルファ−ナフチルアミン、フェニル−アルファ−ナフチルアミン及びp−オクチルフェニル−アルファ−ナフチルアミンが挙げられる。
【0144】
硫化アルキルフェノール及びそれらのアルカリ金属塩又はアルカリ土類金属塩も有用な酸化防止剤である。低硫黄過酸化物分解剤は酸化防止剤として有用である。
【0145】
本発明の組成物中に用いられる酸化防止剤のもう一つのクラスは油溶性銅化合物である。適するいかなる油溶性銅化合物も潤滑油中にブレンドしてもよい。適する銅酸化防止剤の例には、銅ジヒドロカルビルチオホスフェート又は銅ジヒドロカルビルジチオホスフェート及びカルボン酸の銅塩(天然又は合成)が挙げられる。適する他の銅塩には、銅ジチオカルバメート、スルホネート、フェネート及びアセチルアセトネートが挙げられる。アルケニルコハク酸又は酸無水物から誘導された塩基性、中性又は酸性銅(I)及び/又は銅(II)塩は特に有用であることが知られている。
【0146】
好ましい酸化防止剤には、ヒンダードフェノール、アリールアミン、低硫黄過酸化物分解剤及び他の関連成分が挙げられる。これらの酸化防止剤は、タイプ別に個々に、又は互いに組み合わせて用いてもよい。こうした添加剤は、約0.01〜5質量%、好ましくは約0.01〜1.5質量%の量で用いてもよい。
【0147】
清浄剤:
清浄剤は潤滑油組成物中に一般的に用いられる。典型的な清浄剤は、分子の長鎖親油性部分及び分子のより小さいアニオン部分又は疎油性部分を含むアニオン材料である。清浄剤のアニオン部分は、典型的には、サルファ酸、カルボン酸、燐酸、フェノール又はそれらの混合物などの有機酸から誘導される。対イオンは、典型的には、アルカリ土類金属又はアルカリ金属である。
【0148】
実質的に化学量論量の金属を含む塩は中性塩と表現され、0〜8の全塩基価(ASTMD2896によって測定されるTBN)を有する。多くの組成物は、過剰の金属化合物(例えば、金属水酸化物又は金属酸化物)と酸性ガス(二酸化炭素など)の反応によって達成される大量の金属塩基を含有して、過塩基化されている。有用な清浄剤は、中性であることが可能であるか、軽く過塩基化されうるか、又は非常に過塩基化されうる。
【0149】
少なくとも多少の清浄剤が過塩基化されることが望ましい。過塩基化された清浄剤は、燃焼プロセスによってもたらされた酸性不純物を中和するのを助け、油中に閉じ込められることになる。典型的には、過塩基化された材料は、当量基準で約1.05:1〜50:1の清浄剤の金属イオン対アニオン部分の比を有する。より好ましくは、比は約4:1〜約25:1である。得られた清浄剤は、典型的には約150以上、多くの場合に約250〜450以上のTBNを有する過塩基化された清浄剤である。好ましくは、過塩基化するカチオンは、ナトリウム、カルシウム又はマグネシウムである。異なるTBNの清浄剤の混合物を本発明において用いることが可能である。
【0150】
好ましい清浄剤には、スルフェート、フェネート、カルボキシレート、ホスフェート及びサリシレートのアルカリ金属塩又はアルカリ土類金属塩が挙げられる。
【0151】
スルホネートは、アルキル置換芳香族炭化水素のスルホン化によって典型的に得られるスルホン酸から調製してもよい。炭化水素の例には、ベンゼン、トルエン、キシレン、ナフタレン、ビフェニル及びそれらのハロゲン化誘導体(例えば、クロロベンゼン、クロロトルエン及びクロロナフタレン)のアルキル化によって得られるものが挙げられる。アルキル化剤は、典型的には約3〜70個の炭素原子を有する。アルカリールスルホネートは、典型的には約9〜約80個以上の炭素原子、より典型的には約16〜60個の炭素原子を含む。
【0152】
潤滑油中の清浄剤及び分散剤として有用な、種々のスルホン酸の過塩基化された金属塩の多くが開示されている。分散剤/清浄剤として有用な過塩基性化されたスルホネートの多くが同様に開示されている。本発明にこれらを用いることもできる。
【0153】
アルカリ土類金属フェネートは清浄剤のもう一つの有用なクラスである。これらの清浄剤は、アルカリ土類金属水酸化物又は酸化物(例えば、CaO、Ca(OH)2、BaO、Ba(OH)2、MgO、MG(OH)2)とアルキルフェノール又は硫化アルキルフェノールの反応によって製造することが可能である。有用なアルキル基には、直鎖又は分岐C1〜C30アルキル基、好ましくはC4〜C20アルキル基が挙げられる。適するフェノールの例には、イソブチルフェノール、2−エチルヘキシルフェノール、ノニルフェノール及び1−エチルデシルフェノールなどが挙げられる。出発アルキルフェノールが、それぞれ独立して直鎖又は分岐である1個を上回るアルキル置換基を含んでもよいことが注意されるべきである。非硫化アルキルフェノールを用いる時、硫化製品は技術上周知された方法によって得てもよい。これらの方法には、アルキルフェノールと硫化剤(元素硫黄及び二塩化硫黄などの硫黄ハロゲン化物などを含む)の混合物を加熱し、その後、硫化フェノールをアルカリ土類金属塩基と反応させることを含む。
【0154】
カルボン酸の金属塩も清浄剤として有用である。これらのカルボン酸清浄剤は、塩基性金属化合物を少なくとも一種のカルボン酸と反応させ、反応生成物から遊離水を除去することにより調製してもよい。これらの化合物は、所望のTBNレベルをもたらすために過塩基化してもよい。サリチル酸から製造された清浄剤はカルボン酸から誘導された清浄剤の好ましい一つのクラスである。有用なサリチル酸には、長鎖アルキルサリシレートが挙げられる。組成物の有用な一つの系統は以下の式のものである。
【0155】
【化40】

【0156】
式中、Rは水素原子又は炭素原子数1〜約30のアルキル基であり、nは1〜4の整数であり、Mはアルカリ土類金属である。好ましいR基は、少なくともC11、好ましくはC13以上のアルキル鎖である。Rは、清浄剤の機能を妨げない置換基で任意に置換されてもよい。Mは、好ましくは、カルシウム、マグネシウム又はバリウムである。より好ましくは、Mはカルシウムである。
【0157】
ヒドロカルビル置換サリチル酸は、コルベ反応によってフェノールから調製してもよい。これらの化合物の合成に関する追加的情報については、米国特許第3,595,791号明細書を参照することができる。ヒドロカルビル置換サリチル酸の金属塩は、水又はアルコールなどの極性溶媒中での金属塩の複分解によって調製してもよい。
【0158】
アルカリ土類金属ホスフェートも清浄剤として有用である。
【0159】
清浄剤は、単純清浄剤、あるいは混成(ハイブリッド)清浄剤又は複合清浄剤として知られている清浄剤であってもよい。後者の清浄剤は、別個の材料をブレンドする必要なしに2種の清浄剤の特性を提供することが可能である。例えば、米国特許第6,034,039号明細書を参照することができる。好ましい清浄剤には、カルシウムフェネート、カルシウムスルホネート、カルシウムサリシレート、マグネシウムフェネート、マグネシウムスルホネート、マグネシウムサリシレート及び他の関連成分(硼素化清浄剤を含む)が挙げられる。全清浄剤濃度は、典型的には約0.01〜約6.0質量%、好ましくは約0.1〜0.4質量%である。
【0160】
分散剤:
エンジン運転中、油不溶性酸化副生物が生じる場合がある。分散剤は、これらの副生物を溶液中に保つのを助け、こうして金属表面上の副生物の堆積物を減らす。分散剤は、事実上、無灰又は灰生成性であってもよい。好ましくは、分散剤は無灰である。いわゆる無灰分散剤は、燃焼しても灰を実質的に全く生じない有機材料である。例えば、非−金属含有分散剤又は硼素化無金属分散剤は無灰と考えられる。それに反して、上で論じた金属含有清浄剤は燃焼すると灰を生成する。
【0161】
適する分散剤は、典型的には、比較的高い分子量の炭化水素鎖に結合された極性基を含む。極性基は、典型的には、窒素、酸素又は燐の少なくとも一種の元素を含む。典型的な炭化水素鎖は50〜400個の炭素原子を含む。
【0162】
分散剤の例には、フェネート、スルホネート、硫化フェネート、サリシレート、ナフテネート、ステアレート、カルバメート、チオカルバメート、燐誘導体が含まれる。分散剤として特に有用な材料は、長鎖置換アルケニルコハク酸化合物、通常は置換無水コハク酸とポリヒドロキシ化合物又はポリアミノ化合物の反応によって典型的に製造されたアルケニルコハク酸誘導体である。油への溶解度を付与する分子の親油部分を構成する長鎖基は、通常はポリイソブチレン基である。この種の分散剤の多くの例は商業的に且つ文献において周知されている。こうした分散剤を記載している代表的な米国特許は、米国特許第3,172,892号明細書、米国特許第3,215,707号明細書、米国特許第3,219,666号明細書、米国特許第3,316,177号明細書、米国特許第3,341,542号明細書、米国特許第3,444,170号明細書、米国特許第3,454,607号明細書、米国特許第3,541,012号明細書、米国特許第3,630,904号明細書、米国特許第3,632,511号明細書、米国特許第3,787,374号明細書、及び米国特許第4,234,435号明細書等である。他のタイプの分散剤は、米国特許第3,036,003号明細書、米国特許第3,200,107号明細書、米国特許第3,254,025号明細書、米国特許第3,275,554号明細書、米国特許第3,438,757号明細書、米国特許第3,454,555号明細書、米国特許第3,565,804号明細書、米国特許第3,413,347号明細書、米国特許第3,697,574号明細書、米国特許第3,725,277号明細書、米国特許第3,725,480号明細書、米国特許第3,762,882号明細書、米国特許第4,454,059号明細書、米国特許第3,329,658号明細書、米国特許第3,449,250号明細書、米国特許第3,519,565号明細書、米国特許第3,666,730号明細書、米国特許第3,687,849号明細書、米国特許第3,702,300号明細書、米国特許第4,100,082号明細書及び米国特許第5,705,458号明細書に記載されている。分散剤については、欧州特許出願第471071号明細書中にも記載がある。
【0163】
ヒドロカルビル置換コハク酸化合物は普及している分散剤であり、本発明に用いることができる。炭化水素置換基中に好ましくは、少なくとも50個の炭素原子を有する炭化水素置換コハク酸化合物と、少なくとも1当量のアルキレンアミンとの反応によって調製されるコハク酸イミド、コハク酸エステル又はコハク酸エステルアミンは、特に有用である。
【0164】
コハク酸イミドは、アルケニル無水コハク酸とアミンとの間の縮合反応によって形成される。モル比はポリアミンに応じて異なることが可能である。例えば、アルケニル無水コハク酸対TEPAのモル比は、約1:1から約5:1まで異なることが可能である。代表的な例は、米国特許第3,087,936号明細書、米国特許第3,172,892号明細書、米国特許第3,219,666号明細書、米国特許第3,272,746号明細書、米国特許第3,322,670号明細書、米国特許第3,652,616号明細書、米国特許第3,948,800号明細書、及びカナダ特許第1,094,044号明細書に示されている。
【0165】
コハク酸エステルは、アルケニル無水コハク酸とアルコール又はポリオールとの間の縮合反応によって形成される。モル比は、用いられるアルコール又はポリオールに応じて異なることが可能である。例えば、アルケニル無水コハク酸とペンタエリスリトールの縮合製品は有用な分散剤である。
【0166】
コハク酸エステルアミドは、アルケニル無水コハク酸とアルカノールアミンとの間の縮合反応によって形成される。例えば、適するアルカノールアミンには、エトキシル化ポリアルキルポリアミン、プロポキシル化ポリアルキルポリアミン及びポリエチレンポリアミンなどのポリアルケニルポリアミンが挙げられる。一例はプロポキシル化ヘキサメチレンジアミンである。代表的な例は、米国特許第4,426,305号明細書に示されている。
【0167】
前パラグラフで用いられたアルケニル無水コハク酸の分子量は、典型的には800〜2,500の間の範囲である。上の製品は、硫黄、酸素、ホルムアルデヒド、オレイン酸などのカルボン酸及びボレートエステル又は高度硼素化分散剤などの硼素化合物などの種々の試薬と後反応させることが可能である。分散剤は、分散剤反応製品モル当たり硼素約0.1〜約5モルで硼素化することが可能である。
【0168】
マンニッヒ塩基分散剤は、アルキルフェノール、ホルムアルデヒド及びアミンの反応から製造される。米国特許第4,767,551号明細書の記載を参照することができる。加工助剤ならびにオレイン酸及びスルホン酸などの触媒も反応混合物の一部であることが可能である。アルキルフェノールの分子量は、800〜2,500の範囲である。代表的な例は、米国特許第3,697,574号明細書、米国特許第3,703,536号明細書、米国特許第3,704,308号明細書、米国特許第3,751,365号明細書、米国特許第3,756,953号明細書、米国特許第3,798,165号明細書及び米国特許第3,803,039号明細書に示されている。
【0169】
本発明において有用な典型的な高分子量脂肪酸変性マンニッヒ縮合製品は、高分子量アルキル置換ヒドロキシ芳香族化合物又はHN(R)2基含有反応物から調製することが可能である。
【0170】
高分子量アルキル置換ヒドロキシ芳香族化合物の例は、ポリプロピルフェノール、ポリブチルフェノール及び他ポリアルキルフェノールである。これらのポリアルキルフェノールは、フェノールのベンゼン環上に平均で600〜100,000の分子量を有するアルキル置換基を与えるためにBF3などのアルキル化触媒の存在下で、高分子量ポリプロピレン、ポリブチレン又は他のポリアルキレン化合物によるフェノールのアルキル化によって得ることが可能である。
【0171】
HN(R)2基含有反応物の例は、アルキレンポリアミン、主としてポリエチレンポリアミンである。マンニッヒ縮合製品の調製において用いるために適する少なくとも一個のHN(R)2基を含む他の代表的な有機化合物は周知されており、それらには、モノアミノアルカン及びジアミノアルカンならびにそれらの置換類似体、例えば、エチルアミン及びジエタノールアミン、芳香族ジアミン、例えば、フェニレンジアミン、ジアミノナフタレン、ヘテロ環式アミン、例えば、モルホリン、ピロール、ピロリジン、イミダゾール、イミダゾリジン及びピペリジン、メラミン及びそれらの置換類似体が挙げられる。
【0172】
アルキレンポリアミド反応物の例には、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラアミン、テトラエチレンペンタアミン、ペンタエチレンヘキサアミン、ヘキサエチレンヘプタアミン、ヘプタエチレンオクタアミン、オクタエチレンノナアミン、ノナエチレンデカアミン及びデカエチレンウンデカアミンならびに前述した式:H2N−(Z−NH−)nH(前の式のZは二価エチレンであり、nは1〜10である)におけるアルキレンポリアミンに対応する窒素含有率を有するこうしたアミンの混合物が挙げられる。プロピレンジアミン及びジ−、トリ−、テトラ−、ペンタプロピレントリ−、テトラ−、ペンタ−及びヘキサアミンなどの対応するプロピレンポリアミンも適する反応物である。アルキレンポリアミンは、通常、アンモニアとジクロロアルカンなどのジハロアルカンの反応により得られる。従って、2〜11モルのアンモニアと、2〜6個の炭素原子及び異なる炭素上に塩素を有する1〜10モルのジクロロアルカンの反応から得られたアルキレンポリアミンは、適するアルキレンポリアミン反応物である。
【0173】
有用なアルデヒド反応物の例には、ホルムアルデヒド(パラホルムアルデヒド及びホルマリンとしても)などの脂肪族アルデヒド、アセトアルデヒド及びアルドール(b−ヒドロキシブチルアルデヒド)が含まれる。ホルムアルデヒド反応物又はホルムアルデヒド産出反応物は好ましい。
【0174】
ヒドロカルビル置換アミン無灰分散剤添加剤は当業者に周知されている。例えば、米国特許第3,275,554号明細書、米国特許第3,438,757号明細書、米国特許第3,565,804号明細書、米国特許第3,755,433号明細書、米国特許第3,822,209号明細書及び米国特許第5,084,197号明細書を参照することができる。
【0175】
好ましい分散剤には、モノコハク酸イミド、ビスコハク酸イミド及び/又はモノコハク酸イミドとビスコハク酸イミドの混合物から誘導されたものを含む硼素化コハク酸イミド及び非硼素化コハク酸イミドが挙げられる。ここで、ヒドロカルビルコハク酸イミドは、約500〜約5000、好ましくは約1000〜3000、より好ましくは約1000〜2000、なおより好ましくは約1000〜1600のMnを有するポリイソブチレンなどのヒドロカルビレン基又はこうしたヒドロカルビレン基の混合物から誘導される。好ましい他の分散剤には、コハク酸エステル及びアミド、アルキルフェノール−ポリアミン連結マンニッヒ付加体、それらの封止誘導体及び他の関連化合物が挙げられる。こうした添加剤は、約0.1〜20質量%、好ましくは約0.1〜8質量%の量で用いてもよい。
【0176】
流動点降下剤:
流動点降下剤は、流体が流れるか、又は流体を流動させることができる最低温度を下げる作用がある。適する流動点降下剤の例には、ポリメタクリレート、ポリアクリレート、ポリアリールアミド、ハロパラフィンワックスと芳香族化合物の縮合製品、ビニルカルボキシレートポリマーならびにジアルキルフマレート、脂肪酸のビニルエステル及びアリルビニルエーテルのターポリマーが挙げられる。米国特許第1,815,022号明細書、米国特許第2,015,748号明細書、米国特許第2,191,498号明細書、米国特許第2,387,501号明細書、米国特許第2,655,479号明細書、米国特許第2,666,746号明細書、米国特許第2,721,877号明細書、米国特許第2,721,878号明細書及び米国特許第3,250,715号明細書には、有用な流動点降下剤及び/又は流動点降下剤の調製が記載されている。こうした添加剤は、約0.01〜5質量%、好ましくは約0.01〜1.5質量%の量で用いてもよい。
【0177】
腐食防止剤:
腐食防止剤は、組成物に接触している金属部品の劣化を減少させるために用いられる。適する腐食防止剤にはチアジアゾールが挙げられる。例えば、米国特許第2,719,125号明細書、米国特許第2,719,126号明細書及び米国特許第3,087,932号明細書の記載を参照することができる。こうした添加剤は、約0.01〜5質量%、好ましくは約0.01〜1.5質量%の量で用いてもよい。
【0178】
シール適合剤:
シール適合剤は、流体中で化学反応又はエラストマー中で物理的変化を引き起こすことによりゴム弾性シールを膨潤させるのを助ける。適するシール適合剤には、有機ホスフェート、芳香族エステル、芳香族炭化水素、エステル(例えば、ブチルベンジルフタレート)及びポリブテニル無水コハク酸が挙げられる。こうした添加剤は、約0.01〜3質量%、好ましくは約0.01〜2質量%の量で用いてもよい。
【0179】
消泡剤:
消泡剤は、安定した泡の生成を遅らせる作用がある。シリコーン及び有機ポリマーは典型的な消泡剤である。例えば、シリコーン油などのポリシロキサン又はポリジメチルシロキサンは消泡特性を提供する。消泡剤は市販されており、抗乳化剤などの他の添加剤に加えて従来通り少量で用いてもよい。組み合わされたこれらの添加剤の量は、通常は1%未満、多くの場合に0.1%未満である。
【0180】
錆防止添加剤(又は腐食防止剤):
錆防止添加剤(又は腐食防止剤)は、水又は他の異物による化学的浸食に対して潤滑された金属表面を保護する添加剤である。多様なこれらの錆防止添加剤は市販されている。こうした錆防止剤は、「クラマン潤滑剤及び関連製品(Klamann in Lubricants and Related Products)」、フロリダ州ディアフィールドビーチのフェアラークヘミー(Verlag Chemie(Deerfield Beach,FL)、ISBN0−89573−177−0に述べられている。
【0181】
錆防止添加剤の一つのタイプは、金属表面を優先的に濡らし、よって油膜で金属表面を保護する極性化合物である。錆防止添加剤のもう一つのタイプは、油のみが金属表面に触れるように油中水エマルジョン中に錆防止添加剤を導入することにより水を吸収する。錆防止添加剤のなおもう一つのタイプは、金属に化学的に接着して非反応性表面をもたらす。適する添加剤の例には、ジチオ燐酸亜鉛、金属フェノレート、塩基性金属スルホネート、脂肪酸及びアミンが挙げられる。こうした添加剤は、約0.01〜5質量%、好ましくは約0.01〜1.5質量%の量で用いてもよい。
【0182】
摩擦調整剤:
摩擦調整剤は、添加される組成物の摩擦係数を変えることができるあらゆる材料である。摩擦低減剤、摩擦係数を下げる摩擦調整剤は、本発明の組成物と組み合わせると特に有利である。摩擦調整剤は、金属含有化合物又は材料、及び無灰化合物又は材料、あるいはそれらの混合物を含んでもよい。金属含有摩擦調整剤は金属塩又は金属−配位子錯体を含んでもよい。ここで、金属はアルカリ金属、アルカリ土類金属又は遷移群金属を含んでもよい。こうした金属含有摩擦調整剤は低灰特性も有してよい。遷移金属には、Mo、Sb、Sn、Fe、Cu、Zn及びその他を挙げることができる。配位子には、アルコール、ポリオール、グリセロール、部分エステルグリセロール、チオール、カルボキシレート、カルバメート、チオカルバメート、ジチオカルバメート、ホスフェート、チオホスフェート、ジチオホスフェート、アミド、イミド、アミン、チアゾール、チアジアゾール、ジチアゾール、ジアゾール、トリアゾールのヒドロカルビル誘導体、及び有効量のO、N、S又はPを個々に又は組み合わせて含む他の極性分子官能基を挙げることができる。特に、例えば、Mo含有ジチオカルバメート[Mo(DTC)]、Mo−ジチオホスフェート[Mo(DTP)]、Mo−アミン[Mo(Am)]、Mo−アルコレート、Mo−アルコール−アミドなどのMo含有化合物は特に有効でありうる。
【0183】
無灰摩擦調整剤は、極性基を含む化合物であり、例えば、ヒドロキシル基含有ヒドロカルビル基油、グリセリド、部分グリセリド及びグリセリド誘導体なども含んでもよい。摩擦調整剤中の極性基は、有効量のO、N、S又はPを個々に又は組み合わせて含むヒドロカルビル基を含んでもよい。他の摩擦調整剤として、例えば、脂肪酸の塩(灰含有誘導体と無灰誘導体の両方)、脂肪アルコール、脂肪酸アミド、脂肪酸エステル、ヒドロキシル含有カルボキシレート、及び匹敵する合成長鎖ヒドロカルビル酸、アルコール、アミド、エステル及びヒドロキシカルボキシレートなどが挙げられる。場合によって、脂肪有機酸、脂肪アミン及び硫化脂肪酸は適する摩擦調整剤として用いてもよい。
【0184】
摩擦調整剤の有用な濃度は、約0.01質量%〜15質量%の範囲であってもよく、多くの場合、好ましい範囲は約0.1質量%〜5質量%である。モリブデン含有材料の濃度は、Mo金属濃度に関して記載されることが多い。Moの有利な濃度は、約10ppm〜3000ppm以上の範囲であってもよく、多くの場合、好ましい範囲は約20ppm〜2000ppmであり、場合によって、より好ましい範囲は約30〜1000ppmである。すべてのタイプの摩擦調整剤は、単独で、又は本発明の材料との混合物中で用いてもよい。多くの場合、二種以上の摩擦調整剤の混合物、又は摩擦調整剤と別の表面活性材料の混合物も望ましい。
【0185】
グリース組成物の添加剤:
本発明の組成物は、グリース組成物として調製してもよい。当該態様では、グリースの用途に適応した場合の実用性能を確保するため、さらに必要に応じて、増ちょう剤等を本発明の目的を損なわない範囲で適宜添加することができる。グリース組成物の一態様は、前記式(Z)の化合物を50〜90質量%程度と、増ちょう剤を10〜50質量%含有する組成物である。以下、グリース組成物として調製する際に添加可能な添加剤について説明する。
【0186】
添加可能な増ちょう剤の例には、金属石けん、複合金属石けん等の石けん系増ちょう剤、ベントン、シリカゲル、ウレア系増ちょう剤(ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物等)の非石けん系増ちょう剤などのあらゆる増ちょう剤が使用可能である。これらの中でも、樹脂製部材を損傷させるおそれが小さいことから、石けん系増ちょう剤、ウレア系増ちょう剤が好ましく用いられる。
【0187】
石けん系増ちょう剤としては、例えば、ナトリウム石けん、カルシウム石けん、アルミニウム石けん、リチウム石けん等が挙げられるが、これらの中でも、耐水性や熱安定性の点から、リチウム石けんが好ましい。リチウム石けんとしては、例えば、リチウムステアレートやリチウム−12−ヒドロキシステアレート等が挙げられる。
【0188】
また、ウレア系増ちょう剤としては、例えば、ウレア化合物、ウレア・ウレタン化合物、ウレタン化合物又はこれらの混合物等が挙げられる。
【0189】
ウレア化合物、ウレア・ウレタン化合物及びウレタン化合物としては、例えば、ジウレア化合物、トリウレア化合物、テトラウレア化合物、ポリウレア化合物(ジウレア化合物、トリウレア化合物及びテトラウレア化合物は除く)、ウレア・ウレタン化合物、ジウレタン化合物又はこれらの混合物等が挙げられる。好ましくはジウレア化合物、ウレア・ウレタン化合物、ジウレタン化合物又はこれらの混合物が挙げられる。
【0190】
固体潤滑剤としては、例えば、ポリテトラフルオロエチレン、窒化ホウ素、フラーレン、黒鉛、フッ化黒鉛、メラミンシアヌレート、二硫化モリブデン、Mo−ジチオカーバメート、硫化アンチモン、アルカリ(土類)金属ほう酸塩等が挙げられる。
【0191】
ワックスとしては、例えば、天然ワックス、鉱油系ないしは合成系の各種ワックスが例示でき、具体的にはモンタンワックス、カルナウバワックス、高級脂肪酸のアミド化合物、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、ポリオレフィンワックス、エステルワックス等が挙げられる。
【0192】
その他、金属不活性化剤としてベンゾトリアゾール、ベンズイミダゾール、チアジアゾールなどが知られていて、これらを添加することができる。
【0193】
前記グリース組成物には、増粘剤を添加することができる。増粘剤としては、例えば、ポリメタクリレート、ポリイソブチレン、ポリスチレン等が挙げられる。
ポリ(メタ)アクリレートは、寒冷地での冷時異音防止の効果も知られている。
【0194】
一般に食品機械等の回転支承部には潤滑剤封入転がり軸受等が用いられる。しかしながら、これらの鉱油系グリース組成物は、機械運転中に飛散して食品に接触する可能性もあり、食品衛生上好ましいとは言えない。また、グリース中に細菌が混入するおそれもあり、食品に影響を与える可能性も十分に考えられる。このような問題を解決するグリース組成物として、抗菌剤として抗菌性ゼオライトを含有するグリース組成物等が知られている。また、安全性のために天然抗菌剤が好ましい。具体的には、キトサン類、カテキン類、孟宗竹、カラシ、ワサビ精油等が代表的である。その他、リンゴ、ブドウ、柑橘類に多く含まれるコロイド状のペクチン、必須アミノ酸であるL − リジンが直鎖状につながったポリリジン、サケ、マス、ニシン等の成熟精巣に含まれる塩基性のたんぱく質であるプロタミン、オランダビユの種実の抽出物、ローズマリー、セイジ、タイム等のシソ科植物の乾燥した葉部から得られる香辛料、ハトムギの疎水性有機溶媒抽出物、イリオモテアザミ根茎抽出エキス、ハチの巣から得られるプロポリス等多数の抗菌性物質が使用できる。
その中でも、各種の食中毒に効果が大きいカテキン類が好適である。その中でも茶葉に含まれる水溶性成分である、エピガロカテキン、エピカテキン、エピカテキンガレート、エピガロカテキンガレート、カテキン等が好ましい。一般的にはこれらカテキン類は水溶性であるので、界面活性剤を少量添加して使用するのが好ましいが、グリース組成物の場合、増ちょう剤が界面活性剤としての役割も果たすため、さらに界面活性剤を添加する必要はない。
【0195】
また、グリース組成物は、摺動部近傍に配置されるゴムに対しても高い適合性を有する。かかるゴムとしては、特に限定されないが、具体的には、ニトリル、クロロプレン、フッ素、エチレン−プロピレン、アクリル及びこれらの複合物等が挙げられる。
【0196】
転がり軸受に起こる静電気は、その放射ノイズが複写機の複写画像に歪みなどの悪影響を及ぼすことが知られているが、導電性物質の共存はその抑制に効果的である。導電性物質は、グリース全量の2〜10質量%添加される。導電性物質の中でも、カーボンブラック及びグラファイトが好適であり、それぞれ単独で、あるいは両者を混合して使用することができる。混合して使用する場合は、合計量で上記の添加量とする。また、カーボンブラック及びグラファイトは、平均粒径10〜300nmのものが好ましい。
また、導電性物質は、極圧剤の項で述べた耐剥離剤としても効果があることが知られている。この導電性物質は、特開2002−195277号公報等に記載されているように、水素イオンが原因の白色剥離を抑える効果がある。
【0197】
グリースの断熱性をあげるために、中空フィラーやシリカ粒子を加えたり、逆に伝熱、放熱性を促進するために銅などの金属粉を添加することも知られている。
難燃性が改善されたグリースとしては、アルカリ金属又はアルカリ土類金属の酸化物、炭酸塩等の粉体をリチウム石けんグリースに添加したもの、シリコーングリースに炭酸カルシウムと白金化合物を添加したもの、グリースに吸水性ポリマーと水を含ませたものが知られている。
【0198】
4. 本発明の組成物の性質
4.−1 粘性
本発明の組成物は、40℃での粘性が100mPa・s以下であるのが好ましく、50mPa・s以下であることがより好ましく、30mPa・s以下であることがさらに好ましい。粘性は小さいほど低燃費に寄与し、好ましいが、使用する基油の粘度、本発明の化合物の構造、添加量、共存添加剤により大きく変化し、使用環境により適正な粘性が求められるため、それに合わせることが必要である。しかし、本発明は、現行技術における粘度指数向上剤による高温での基油の低粘性化の抑制を必要としないため、粘度指数向上剤の添加ゆえの低温での高粘性化は起こらないため、低粘性基油の効果が直接的に燃費に寄与することになることが特徴の一つでもある。
【0199】
4.−2 元素組成
本発明の組成物は、構成元素が、炭素、水素、酸素及び窒素だけからなることが好ましい。前記式式(Z)の化合物は、炭素、水素及び酸素のみからで構成することができる。また、油性媒体として用いる油も、炭素、水素及び酸素のみから構成される材料は種々ある。これらを組み合わせることにより、構成元素が、炭素、水素、酸素及び窒素だけからなる組成物を調製することができる。現行の潤滑油は、通常、リン、硫黄、重金属を含んでいる。燃料と共に潤滑油も燃焼する2ストロークエンジンに用いられる潤滑油は、環境負荷を配慮して、リンと重金属は含まれないが、硫黄は4ストロークエンジンに用いられる潤滑油の半分量程度含まれている。即ち、現行の潤滑技術では、最低でも硫黄分による境界潤滑膜の形成は必須であると推察されるが、硫黄元素を含んでいることによって、排気ガス浄化のための触媒への負荷は非常に大きい。この排気ガス浄化触媒には、プラチナやニッケルが使用されているが、リンや硫黄の被毒作用は大きな問題になっている。その点からも潤滑油の組成物を構成する元素が、炭素、水素、酸素及び窒素だけからなることのメリットは非常に大きい。さらに炭素、水素、酸素だけからなることはエンジンオイル以外の産業機械、特に食品製造関連機器の潤滑油には最適である。現行技術では、摩擦係数を犠牲にして環境に配慮した元素組成をとっている。これは、冷却のために大量の水を必要とする金属の切削・加工用潤滑油にも非常に好ましい技術である。それはどうしても潤滑油がミストとなって外気中に浮遊・揮散したり、処理廃液が自然系に排出される場合が多いため、潤滑性と環境保護の両立のためには、現行の潤滑油を、炭素、水素、及び酸素だけから構成される本発明の組成物に代替することは、非常に好ましい。
【0200】
4.−3 液晶性
本発明の組成物は、液晶性を示すことが、潤滑性能の観点から好ましい。その理由は、組成物が液晶性を発現することで、摺動部分において分子が配向し、その異方性低粘性の効果で、さらに低摩擦係数を発現するからである(例えば、河田 憲、大野 信義 富士フイルム研究報告 No.51 2006年 PP80−85.参照のこと)。
液晶性については、式(Z)で表される化合物が単独でサーモトロピックな液晶性を発現するものであってもよく、また油性媒体とともにリオトロピックな液晶性を発現してもよい。
【0201】
5. 本発明の組成物の用途
本発明の組成物は、潤滑油として有用である。例えば、2つの摺動面間に供給され、摩擦を低減するために用いることができる。本発明の組成物は、摺動面に皮膜を形成し得る。摺動面の材質としては、鋼鉄では、具体的には、機械構造用炭素鋼、ニッケルクロム鋼材・ニッケルクロムモリブデン鋼材・クロム鋼材・クロムモリブデン鋼材・アルミニウムクロムモリブデン鋼材などの構造機械用合金鋼、ステンレス鋼、マルチエージング鋼などが挙げられる。
【0202】
鋼鉄以外の各種金属、又は金属以外の無機もしくは有機材料も広く用いられる。
金属以外の無機もしくは有機材料としては、各種プラスチック、セラミック、カーボン等、及びその混合体などが挙げられる。より具体的には、鋼鉄以外の金属材料としては、鋳鉄、銅・銅−鉛・アルミニウム合金、その鋳物及びホワイトメタルが挙げられる。
有機材料としては、すべての汎用プラスチック、エンジニアリングプラスチック、例えば高密度ポリエチレン(HDPE)、ポリアミド、ポリアセタール(POM)、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリフェニレンエーテル、ポリフェニレンサルファイド(PPS)、フッ素樹脂、四フッ化エチレン樹脂(PFPE)、ポリアリレート、ポリアミドイミド(PAI)、ポリエーテルイミド、ポリピロメリットイミド、ポリエーテルエーテルケトン(PEEK)、ポリサルホン、ポリエーテルサルホン、ポリイミド(PI)、ポリスチレン、ポリエチレン、ポリプロピレン、フェノール樹脂、AS樹脂、ABS樹脂、AES樹脂、AAS樹脂、ACS樹脂、MBS樹脂、ポリ塩化ビニル樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリエステル樹脂、メタクリル樹脂、ABS/ポリカーボネートアロイ等に適用される。
【0203】
これらの樹脂は、各種部品や部材として成形品や樹脂層を形成し、これらが他の樹脂や金属と接触する個所にこのグリース組成物が適用される。具体的には、例えば電動パワーステアリング、ドアミラー等によって代表される自動車電装品の摺動部、軸受、樹脂ギヤ部、ラジカセ、VTR、CDプレーヤ等音響機器の樹脂ギヤ部、レーザービームプリンターによって代表されるプリンター、複写機、ファックス等のOA機器の樹脂ギヤ部、自動車用各種アクチュエータ、エアシリンダ内部の摺動部などを形成する樹脂材料と他の樹脂材料又は金属材料との接触個所に有効に適用される。
【0204】
無機材料としては、炭化珪素、窒化珪素、アルミナ、ジルコニア、炭化チタン(TiC)、炭化ジルコニア(ZrC)、窒化チタン(TiN)などのセラミックス;及びカーボン材料が挙げられる。またこれらの混合体として、プラスチックにガラス、カーボン又はアラミドなどの繊維を複合化した有機−無機複合材料、セラミックと金属の複合材料サーメットなどが挙げられる。
【0205】
一部が鉄鋼以外の材料からなっている場合としては、鋼材の表面の少なくとも一部が、鉄鋼以外の金属材料、又は金属材料以外の有機もしくは無機材料からなる膜で被覆されていてもよい。被覆膜としては、ダイヤモンドライクカーボンの薄膜等の磁性材料薄膜、及び有機もしくは無機多孔質膜などが挙げられる。
【0206】
また、前記二面の少なくとも一方の面に、多孔性焼結層を形成して、かかる多孔質層に本発明の組成物を含浸させて、摺動時に摺動面に潤滑剤組成物が適宜供給されるように構成してもよい。前記多孔質層は、金属材料、有機材料及び無機材料のいずれからなっていてもよい。具体的には、焼結金属、ジルコン酸カルシウム(CaZrO3)とマグネシア(MgO)の微粒子が互いに強く結合して形成されるような多孔質セラミックス、シリカとホウ酸系成分を熱的に相分離させることにより得られる多孔質ガラス、超高分子量ポリエチレン粉末の焼結多孔質成形体、四フッ化エチレン等フッ素樹脂系多孔質膜、ミクロフィルターなどに用いられるポリスルホン系多孔質膜、予め成形体の貧溶媒とその成形体形成モノマーを重合時相分離を起こさせて形成される多孔質膜などが挙げられる。
【0207】
金属又は酸化金属焼結層としては、銅系、鉄系又はTiO2系の粉末を焼結することに
より形成される多孔質層が挙げられる。銅系金属焼結層は、鋳鉄基板の上に銅粉末(例えば、88質量%)、スズ(例えば、10質量%)及び黒鉛(例えば、2質量%)の混合物を設置し、250MPaで圧縮形成したものを還元気流中で、高温、例えば770℃程度で、約一時間焼結することによって形成することができる。また、鉄系金属焼結層は、鋳鉄基板上に、鉄粉末に銅粉末(例えば、3質量%)及び化学炭素(0.6質量%)を添加した混合物を設置して、250MPaで圧縮成形したものを還元気流中で高温、例えば770℃程度で、約一時間焼結することによって形成することができる。また、TiO2焼結層は、Ti(OC817−n)(例えば、33質量%)、TiO2の微粉末(例えば、57質量%)及びPEO(分子量MW=3000)の混合物を、鋳鉄上に設置して、UV光を照射しつつ560℃に3時間加熱焼結することによって形成される。
なお、これらの多孔質層によって被覆される材料については特に限定されず、上述したセラミックス、樹脂、有機−無機複合材料や、勿論鋼鉄であってもよい。
【0208】
前記ダイヤモンドライクカーボン薄膜等の磁性材料薄膜等の被膜は、表面処理によって形成することができる。表面処理の詳細については、日本トライボロジー学会編 トライボロジーハンドブック 第一版 (2001年)B編 第三章 表面改質 544−574頁に記載されていて、本発明の機械要素の作製にいずれも利用することができる。表面処理は、一般的に、表面改質によるトライボロジー特性の改善を目的になされるものであるが、機械要素の駆動には低摩擦や耐摩耗性だけでなく、駆動する環境の要請に応じて低騒音、耐食、化学安定、耐熱、寸法安定、低アウトガス、生体親和、抗菌など多様な材料特性が併せて要求されることが多く、従って、本発明においては、表面処理は、トライボロジー特性の改善を目的になされるものに限定されない。表面処理法としては、
1) 真空蒸着、イオンプレーティング、スパッタリング、イオン注入による物理蒸着(PhisicalVaporDeposition)法による、アルミニウム、銅、銀、金、クロム、モリブデン、タンタルまたその合金膜、窒化チタン、窒化クロム、炭化チタン、炭化クロム等のセラミックス、酸化アルミニウム、二酸化珪素、ケイ化モリブデン、酸化タンタル、チタン酸バリウム等の酸化膜の形成;
2) 熱、プラズマ、光などによる化学蒸着(ChemicalVaporDeposition)法を用いた各種金属、WC、TiC、B4Cなどの炭化物、TiN、Si34などの窒化物、TiB2、W23などのホウ化物、Al23、ZrO2などの酸化物膜、CrW、Ti金属を含有したアモルフォスカーボン膜、フッ素含有カーボン膜、プラズマ重合膜の形成;
3) 浸炭、窒化、浸硫、ホウ化処理などの拡散被覆法(化学反応法)による表層部分の耐摩耗性、耐焼きつき性などの特性を付与する方法;及び
4) 電気めっき、無電解めっきなどのめっき法による金属、複合金属膜などがあげられる。
【0209】
本発明の組成物は、種々の用途に利用できる。例えば、燃焼機関用燃料、内燃機関用エンジンオイル、切削用オイル、自動車等の車両のエンジン油、ギヤ油、自動車用作動油、船舶・航空機用潤滑油、マシン油,タービン油、軸受用オイル、油圧作動油、圧縮機・真空ポンプ油、冷凍機油例えば、往復動式や回転式の密閉型圧縮機を有するエアコンや冷蔵庫、自動車用エアコンや除湿機、冷凍庫、冷凍冷蔵倉庫、自動販売機、ショーケース、化学プラント等の冷却装置などに用いられる。
また塩素系化合物を含まない金属加工用潤滑油剤として、例えば鉄鋼材料やAl合金などの金属材料を熱間圧延したり切削等の加工を行なう際に、またアルミニウムの冷間圧延油、切削油、研削油、引き抜き加工油、プレス加工油等の金属加工油や金属の塑性加工油として、特に高速、高負荷加工時の摩耗、破損、表面あれの抑止剤として、またブローチ加工,ガンドリル加工のような低速・重切削に適用可能な金属加工油組成物としても有用で有る。
また各種グリース用潤滑油、磁気記録媒体用潤滑剤、マイクロマシン用潤滑剤や人工骨用潤滑剤等に利用することができる。また、組成物の元素組成を炭水化物とすることができるため、例えば、乳化、分散化、可溶化剤としてケーキミックス、サラダドレッシング、ショートニングオイル、チョコレート等に広く利用されている、ポリオキシエチレンエーテルを含むソルビタン脂肪酸エステルを食用油を基油とした組成物を潤滑油とすることで、全く人体に無害の高性能潤滑油を食品製造ラインの製造機器や医療機器部材の潤滑に用いることができる。
また、本発明の組成物を水系に乳化して分散したり、極性溶媒中や樹脂媒体中に分散することで、切削油や圧延油として用いることができる。
また、本発明の組成物は離型剤として、種々の用途に利用できる。例えば、ポリカーボネート樹脂、難燃性ポリカーボネート樹脂、電子写真装置や静電記録装置などで使用される画像形成用トナーの主成分である結晶性ポリエステル樹脂、各種成形用熱可塑性樹脂組成物及び半導体封し用エポキシ樹脂組成物などの離型剤として用いられる。離型剤の一態様は、ポリカーボネート樹脂等の樹脂100質量部に対して、前記式(Z)で表される化合物を0.01〜10質量部(好ましくは0.1〜5質量部)含有する態様である。
また、衣料などの繊維製品に予め練りこんだり、塗布することにより、該繊維製品に付着した汚れの離脱を促進して繊維製品の汚れを防止する防汚剤としても用いることができる。
【実施例】
【0210】
以下に実施例に基づき本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
【0211】
1.例示化合物の合成例
1.−1 例示化合物AII−4の合成例
ペンタエリスリトール6.8g(0.05モル)、無水コハク酸20g(0.2モル)をトルエン20mLに溶解させ、150℃に加熱し、3時間攪拌した。これを60℃に冷却し、塩化チオニル17.6mL(0.15モル)を添加した。5分後、80℃に加熱し、さらに2時間攪拌し、冷却後、減圧下、トルエンと過剰の塩化チオニルを溜去した。これにトルエン60mLに希釈したトリエチレングリコールモノエチルエーテル36.5g(0.205モル)を添加し、水冷下、これにトルエン10mLに希釈したピリジン22.8g(0.288モル)を徐々に添加した。80℃で3時間加熱後、濃縮後冷却し、酢酸エチル−水系から酢酸エチル層に抽出、これを希塩酸、水で洗浄し、硫酸マグネシウムで乾燥した。これを濃縮し、酢酸エチル:イソプロピルアルコール(95:5)の展開溶剤によりシリカクロマトグラフィーで精製し、22.4gの淡黄色オイル(例示化合物AII−4)を得た。
【0212】
1.−2 例示化合物AII−45の合成例
ペンタエリスリトール テトラ(3−カルボキシプロピオレート)の合成
ペンタエリスリトール34.0g(0.25モル)、無水コハク酸120.1g(1.2モル)を150℃に加熱し、1時間攪拌した。これを室温に冷却し、酢酸エチル250mLとアセトン250mLを添加し、三日間静置した。析出した結晶を減圧濾過し、酢酸エチルとアセトンの等量混合溶媒で洗浄し、白色結晶98.6gを得た。
【0213】
例示化合物AII−45の合成
ペンタエリスリト−ル テトラ(3−カルボキシプロピオレ−ト)2.68g(0.005モル)に、ジメチルホルムアミド2滴と塩化チオニル1.76mL(0.015モル)、トルエン10mLを添加した。5分間攪拌後、80℃に加熱し、さらに2時間攪拌し、冷却後、減圧下、トルエンと過剰の塩化チオニルを溜去した。これにトルエン20mLに希釈したテトラエチレングリコールモノブチルエーテル5g(0.02モル)を添加し、水冷下、これにピリジン2mLを徐々に添加した。室温下1時間攪拌後、80℃で3時間加熱した。濃縮後冷却し、ジクロロメタン−水系からジクロロメタン層に抽出、これを希塩酸、水で洗浄し、硫酸マグネシウムで乾燥した。これを濃縮し、酢酸エチル:イソプロピルアルコール(95:5)の展開溶剤によりシリカクロマトグラフィーで精製し、5.4gの淡黄色オイル(例示化合物AII−45)を得た。
【0214】
1.−3 例示化合物AII−4の他の合成例
ペンタエリスリトール(和光純薬社製:純度96%)340.0gと無水コハク酸(和光純薬社製)1201.0gと反応容器中に仕込み、オイルバス150℃につけて、1時間反応させた。この反応混合物に酢酸エチル2500mLとアセトン2500mLと加え、攪拌し、室温で再結晶を行った。生じた白色固体をろ過し、乾燥したところ、Aの粗体990.0gを得た。
【0215】
【化41】

【0216】
上記粗体Aの純度を液体クロマトグラフィー(HPLC: 島津製作所、商品名:Class−VP/カラム:資生堂社製、商品名:CallcellPak C8UG120)を用い、水/テトラヒドロフラン(THF)=58/42溶媒を用い、流量1mL/分、カラム温度40℃、注入量10μL、サンプル濃度3g/L、測定波長210nmで純度測定したところ、85%の純度であった。
【0217】
上記粗体A 134.0gとトルエン300mLを反応容器に仕込み、内温80℃に加熱した。これに塩化チオニル(和光純薬社製)143.0gを加え、80℃で90分攪拌した。この混合物を20℃まで冷却し、トリエチレングリコールモノエチルエーテル(東京化成社製)214.0gとトルエン500mLを加え、さらにピリジン137.0gとトルエン70mLの混合物を滴下した。80℃まで加熱し、1時間攪拌し、減圧下トルエンを蒸留した。残存物を酢酸エチル200mLと1%塩酸水40mLと水60mLで抽出し、さらに有機層を水100mLで2回抽出した。有機層をエバポレーションし、最後にろ過を行った。黄色オイル状のBの粗体260gを得た。
【0218】
【化42】

【0219】
超伝導核磁気共鳴吸収装置(NMR、Bruker社製、商品名:AVANCE400)を用い、上記Bの粗体を重クロロホルム中で1H−NMRと13C−NMRを測定した。それぞれのチャートを図1と図2に示す。この測定結果より、上記構造の化合物B、即ち例示化合物AII−4、に相当する化合物が主成分として得られていることを確認した。
【0220】
一方、このBの粗体をゲルパーミエーションクロマトグラフィー(GPC: 東ソ−株式会社製、商品名:HLC−8020/カラム4本:東ソー株式会社製、商品名:TSKguardcolumn SuperHZ−H、TSKgel SuperHZM−H、TSKgel SuperHZ4000、TSKgel SuperHZ2000)を用い、テトラヒドロフラン(THF)溶媒を用い、標準ポリスチレン換算の重量平均分子量(Mw)、分子量分布(Mw/Mn)を求めた。なお、Mnは数平均分子量を表す。カラム温度=40℃、サンプル濃度=0.1重量%、サンプル注入量=10mL、溶媒流量=20mLの条件で測定を行った。図3にこのGPCチャートを示す。
【0221】
生成物の82重量%である主成分は、Mn=1500、Mw=1520であり、及び生成物の18重量%の副成分はMn=2640、Mw=2780であった。この主成分はBであり、副成分はペンタエリスリトールの不純物であるビスペンタエリスリトール及び/もしくはジペンタエリスリトールが無水コハク酸と反応し、さらにエステル化され生じた化合物Cと考えられる(化合物C中、LはCH2OCH2、CH2OCH2OCH2及び/もしくはCH2OCOCH2CH2COOCH2を表す)。
【0222】
【化43】

【0223】
なお以下の試験例で使用した例示化合物AII−4は、純品のAII−4である。
【0224】
1.−4 例示化合物AII−7の合成例
例示化合物AII−45の合成と同様に、ペンタエリスリトール テトラ(3−カルボキシプロピオレート)を出発原料に用い、アルコールを竹本油脂(株)製の平均重合数n=20のポリエチレングリコールモノブチルエーテルを用いた以外は、全て同様の操作で例示化合物AII−7を合成した。淡黄色結晶(融点33℃)であった。
【0225】
上記方法と同様にして、種々の例示化合物を合成した。それらのいくつかについて、そのNMRスペクトルデータ、IRデータを示す。
例示化合物AII−1:
1H NMR(400MHz, CDCl3): δ4.25(8H,t),4.13(8H,s),3.70(8H,m),3.64(8H,m),3.56(8H,m), 3.39(12H,s),2.65(16H,m)。
FT-IR (neat)cm-1: 3614(w), 3461(w), 2879(s), 1986(b), 1744(s), 1454(s), 1392(s), 1349(s), 1254(b), 1156(s), 1028(s), 933(m), 858(s)cm-1
【0226】
例示化合物AII−2:
1H NMR(400MHz,CDCl3) δ4.25(8H,t), 4.13(8H,s), 3.70(8H,t), 3.64(8H,m), 3.59(8H,m), 3.53(8H,q), 2.64(16H,m), 1.21(12H,t)。
FT-IR (neat)cm-1: 3461(w), 2974(s), 2871(s), 1749(s), 1454(s), 1388(s), 1350(s), 1251(b), 1165(s), 1036(s), 941(m), 860(m)cm-1
【0227】
例示化合物AII−3:
1H NMR(300MHz,CDCl3) δ4.24(8H,t), 4.13(8H,s), 3.67(32H,m), 3.55(8H,m), 3.38(12H,s), 2.64(16H,m)。
FT-IR (neat)cm-1: 3520(b), 2878(s), 1972(b), 1746(s), 1455(s), 1390(s), 1350(s), 1253(s), 1162(s), 1033(s), 942(m), 856(s)cm-1
【0228】
例示化合物AII−4:
1H NMR(400MHz,CDCl3) δ4.24(8H,t), 4.13(8H,s), 3.70(8H,t), 3.66(24H,m), 3.60(8H,m), 3.53(8H,q), 2.64(16H,m), 1.21(12H,t)。
FT-IR (neat)cm-1: 3513(b), 3464(w), 2972(s), 2870(s), 1960(b), 1746(s), 1454(s), 1387(s), 1349(s), 1249(b), 1162(s), 1036(s), 945(s), 861(m)cm-1
【0229】
例示化合物AII−5:
1H NMR(300MHz,CDCl3) δ4.24(8H,t), 4.13(8H,s), 3.67(32H,m), 3.58(8H,m),3.46 (8H,m), 2.64(16H,m), 1.57(8H,tt), 1.36(8H,tq), 0.91(12H,t)
FT-IR (neat)cm-1: 3615(w), 3465(w), 2957(s), 2870(s), 1971(b), 1748(s), 1459(s), 1412(s), 1388(s), 1350(s), 1252(s), 1163(s), 1037(s), 860(s), 739(w)cm-1
【0230】
2. 試験例1(化合物の評価)
例示化合物及び比較例用化合物について、オプティモール社の往復動型摩擦摩耗試験機(SRV)を用いて、下記の条件で、潤滑特性を評価した。
往復動型(SRV)摩擦摩耗試験による評価及び測定法:
摩擦係数は、往復動型(SRV)摩擦摩耗試験機を用いて以下に示す試験条件で評価した。
・試験片(摩擦材) :SUJ−2
・プレート :24mm径×7mm厚、表面粗さ0.45〜0.65μm
・シリンダー :15mm径×22mm幅、表面粗さ〜0.05μm
・温度 :30〜150℃
・荷重 :50N、75N、100N、200N及び400N
・振幅 :1.5mm
・振動数 :50Hz
・温度及び荷重の時間変化パターン
温度は、初期設定は30℃もしくは融点より上(液体状態)とし、一定時間保持したら、10分毎に10℃ずつ150℃まで昇温し、その後10分毎に10℃ずつ各素材の融点近傍まで降温した。
圧力(荷重)は、90℃で二回、120℃及び150℃で各一回、一分毎に50N→75N→100N→200N→400N→50Nと変化させた。
【0231】
評価に用いた例示化合物は、AII−1、2、3、4及び5である。また、比較例用化合物として、アルキレンオキシ基を有しないペンタエリスリトール テトラ(2−エチルヘキサノエート)(C(CH2OCOCH2(C25)C49−n)4:比較例用化合物C−1)と、ペンタエリスリトールとエーテル結合し、カルボニル基が例示化合物AII−4より一つ少ないC{CH2OC24CO2(C24O)3254(比較例用化合物C−2)及びペンタエリスリトールとはエステル結合しているが、一塩基酸のエステルでカルボニル基が例示化合物AII−4より一つ少ないC{CH2OCOC24O(C24O)3254(比較例用化合物C−3)とをそれぞれ用いた。
測定結果を、図4〜図8に示す。
【0232】
図4〜図8に示す測定結果をみると、例示化合物AII−1〜5は、比較例用化合物C−1〜3と比較して、摩擦係数が小さいことが理解できる。
式(Z)の例示化合物AII−5は、最初の降温時の融点近傍で急激に摩擦係数が上昇しているが、この原因は(弾性)流体潤滑ゆえの界面粗さの影響が摺動初期に温度変動に対して敏感にでているためと考えている。その後は、AII−1〜4と同様、摩擦係数が比較例用か化合物C−1〜3と比較して低くなっていることが理解できる。
【0233】
また、各化合物の摩擦摺動試験後の試験片の摺動部の摩耗深さを、レーザ顕微鏡で評価した結果を以下に示す。
【0234】
【表1】

【0235】
表に示した結果から、以下のことが理解できる。
式(Z)の例示化合物を利用すると、摩耗深さは極めて浅く、摺動痕自体がほとんど見られなかった。一方、比較例用化合物を利用すると、いずれも明瞭な摺動痕が見られた。即ち、摩耗深さに関しても、例示化合物と比較例用化合物とでは、明瞭な差異を生じた。
【0236】
3. 試験例2
・ グリース組成物の性能評価
下記表に示す例示化合物を用い、下記表に示す組成のグリース試料を調製した。また、下記表に示す組成の比較例用グリース試料C−1を調製した。
摩擦試験を実施し、摩擦係数及び摩耗痕深さを測定した。なお、実施例における摩擦係数は、往復動型摩擦試験機(SRV摩擦摩耗試験機)を用いて測定し、下記の試験条件で摩擦試験を行った。実施例のグリース試料の結果を下記表3に、比較例用グリース試料C1結果を下記表4に示した。
試験条件:
試験条件はボール−オンプレートの条件で行った。
試験片(摩擦材):SUJ−2
プレート:φ24×6.9mm
ボール:φ10mm
温度:70℃
荷重:100N
振幅:1.0mm
振動数:50Hz
試験時間:試験開始30分後を測定。
【0237】
【表2】

【0238】
【表3】

【0239】
上記表に示す結果から、本発明の実施例のグリース組成物試料は、その摩擦低減効果と摩耗抑制効果を顕著に示すことが理解できる。
【0240】
4. 試験例3
・ 本発明の組成物の離型剤としての性能評価
ポリカーボネート樹脂(住友ダウ社製、分子量20500)100質量部、下記表に示す各例示化合物、又は比較化合物C−1のそれぞれの0.4質量部を、タンブラーで混合した後、二軸押出機を用いて、溶融温度280℃の条件下、それぞれペレット化した。
射出成形機を用いて幅200×長さ250×深さ400mm、厚さ2.5mmの箱状成形品(抜き勾配:2゜)を成形し、離型時イジェクターにかかる負荷を電圧として記録し、得られた電力値を力(kgf)に変換して離型抵抗を求めた。結果を下記表に示す。離型抵抗が450kgf以下であると、実用的に合格といえる。
【0241】
【表4】

【0242】
上記表に示す結果から、本発明の組成物の実施例が、離型性に優れていることが理解できる。
【0243】
5. 試験例4
・本発明の組成物の内燃機関用潤滑油としての評価
下記表に示す各例示化合物それぞれ、基油(100ニュートラル油、100℃における粘度4.4mm/s2)、下記表に示す種類と量の各成分、及び金属系清浄剤としてカルシウムスルホネート2.0質量%を含有する潤滑油組成物を調製し、摩擦係数を測定した。結果を下記表に示す。なお、潤滑油組成物の摩擦係数は、往復動すべり摩擦試験機[SRV摩擦試験機]を用い、振動数50Hz、振幅1.5mm、荷重50N、温度65℃、試験時間30分において測定した。
【0244】
【表5】

【0245】
上記実施例の潤滑油組成物試料No.1〜4を用いた場合は、いずれも摩擦係数が低く良好な摩擦特性を示している。これに対して、比較例の潤滑油組成物試料No.C1〜C4では、モリブデンジチオカーバメート(MoDTC)や硫化オキシモリブデンオルガノホスホロジチオエート(MoDTP)等の有機モリブデン化合物を含有しているので、いずれも摩擦係数が高く、摩擦特性が不十分であることが理解できる。本発明の実施例の潤滑油組成物は摩擦鉄面に吸着する作用は無いが、中低油温且つ低速回転の運転条件下でも、摩擦面に強力に吸着すると言われているモリブデン化合物を含有する潤滑剤組成物と同等又はそれ以上に、摩擦係数を低減させる作用を有していることが理解できる。
従って、本発明の潤滑油組成物は、自動車のエンジンなどの内燃機関用、ギヤ油、自動変速機液、ショックアブソーバ油などの自動車用潤滑油として好適に用いることができる。
【0246】
6.試験例5
・ 本発明の組成物の金属加工用潤滑油としての性能評価
表の各例に示すような組成(重量%)を有する各種金属加工用潤滑油組成物を調製し、これら組成物について、下記に示す方法により各種試験を行った。
圧延材料としてJIS A−1050 H18(0.8mm厚)を用いた。
基油は、3.2mm2/s(40℃)の鉱物油を、油性剤として、ラウリルアルコ−ル及びミリスチルアルコ−ル(6:4)を用いた。
(i) 圧延性試験
下記の条件により試験圧延を行い、圧下率、{(材料の初期厚み−圧延された材料の残り厚み)/材料の初期厚み}×100%、を徐々に上げていき、焼きつきやヘリングボ−ンが発生不能になる前の圧下率(限界圧下率)を測定した。
圧下率: 40%〜(一定時間毎に上昇)
圧延速度: 50m/min
(ii) ロールコーティング量の測定試験
下記の条件により、長さ300mのコイルを3コイル連続で圧延し、その後にロール表面に生成したロールコーティングを水酸化ナトリウム5%水溶液に溶解させ、溶解液中のアルミニウムを原子吸光法によって定量した。その値よりロールコーティング量を求めた。
圧下率: 50%
圧延速度: 300m/min
(iii) 摩耗粉発生量の測定試験
下記の条件により、長さ300mのコイルを3コイル連続で圧延した。試験後の油中のアルミニウム量を原子吸光法により測定し、油中のアルミニウム濃度を求めた。また圧延後のアルミニウム表面に付着している摩耗粉を脱脂綿により拭き取り、ふき取った摩耗粉を原子吸光法により測定し、圧延後の板表面に付着している摩耗粉量を求めた。油中のアルミニウム量、板表面付着摩耗粉量ともに、圧延材1m2を圧延する際の値に換算し、両者の合計を摩耗粉発生量とした。
圧下率: 50%
圧延速度: 300m/min
以上の試験結果を以下の表に示す。
【0247】
【表6】

【0248】
上記表に示す結果から、本発明の実施例の金属加工用潤滑油組成物試料No.1〜4は、高速度・高加工率でのアルミニウム加工に耐え得るものであり、かつ作業環境を改善でき、金属石鹸の生成や摩耗粉の発生を顕著に抑制できることが理解できる。
【0249】
7. 試験例6
・ 本発明の組成物の焼結軸受での摩擦性能評価
ガラス容器に供試焼結軸受を2個共存させ、下記表に示す各潤滑油試料(4mL)中に浸漬し、これを150℃の恒温槽中で300時間加熱した。なお、供試焼結軸受としては、内径3mm×外径6mm×高さ2.5mmの焼結軸受(日立粉末冶金製:EAK−3)を用いた。該軸受の構成金属の成分は、Cu:50〜55重量%,Sn:1〜3重量%,P:0.1〜0.5重量%,C:1.0重量%以下,その他0.5重量%以下,残部Feである。
各潤滑油試料中で軸受を浸漬加熱後、軸受の摩擦係数を測定した。結果を下記表に示す。
試験条件は、軸:SUS420J2、荷重:30gf、回転数:2000rpm、クリアランス:15μm、雰囲気温度:25℃である。
【0250】
【表7】

【0251】
上記表に示した結果から、前記式(Z)で表される化合物を含有する潤滑油試料を用いると、軸受の摩擦係数が大幅に低くなり、さらに酸化防止剤を併用すると摩擦係数の抑制効果が発現することが理解できる。軸受の摩擦係数が低下することは、該軸受を用いた記憶装置や家電機器等の省電力、長寿命化に寄与する。
【0252】
8. 試験例7
・本発明のモリブデン系錯体の評価
下表に示す組成の本発明のモリブデン系錯体含油潤滑油組成物(実施例用試料No.2〜5)、及び基油のみからなる比較例用試料No.1をそれぞれ調製した。各試料について、試験例1の評価に用いたオプティモール社製SRV往復動摩擦試験機により、荷重400N、振動数50Hz、振幅1.5mm、油温75℃/30分及び130℃/24時間の条件で摩擦特性の試験を行った。
下記表中、各成分の欄の数値は質量%を意味する。
【0253】
【表8】

【0254】
上表に示す結果から、本発明のモリブデン系錯体を含有する潤滑油組成物(試料No.2〜5)は、基油のみと比較して優れた低摩擦性能を示すことが理解できる。さらに、前記(Z)で表される化合物を基油に用いるほうが、鉱物油を基油とするより好ましいことも分かった。

【特許請求の範囲】
【請求項1】
少なくとも1種の下記式(Z)で表される化合物を含む組成物:
A−L−{D1−(E)q−D2−(B)m−Z1−R}p (Z)
式中、Aはp価の鎖状あるいは環状残基を表し;
Lは、単結合、オキシ基、下記式(A−a)で表される、置換もしくは無置換のオキシメチレン基、又は下記式(A−b)で表される、置換もしくは無置換のオキシエチレンオキシ基を表し、下記式中、Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し
−(O−C(Alk)2)− (A−a)
−(O−C(Alk)2C(Alk)2O)− (A−b);
pは2以上の整数を表し;
1はカルボニル基(−C(=O)−)又はスルホニル基(−S(=O)2−)を表し、互いに同一でも異なっていてもよく;
2はカルボニル基(−C(=O)−)、スルホニル基(−S(=O)2−)、カルボキシル基(−C(=O)O−)、スルホニキシル基(−S(=O)2O−)、カルバモイル基(−C(=O)N(Alk)−)、又はスルファモイル基(−S(=O)2N(Alk)−)を表し、互いに同一でも異なっていてもよく、但し、Alkは水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;
Eは、置換もしくは無置換の、アルキレン基、シクロアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、二価の複素芳香族環基、複素非芳香族環基、イミノ基、アルキルイミノ基、オキシ基、スルフィド基、スルフェニル基、スルホニル基、ホスホリル基、及びアルキル置換シリル基から選ばれる二価の基、又は2以上の組合せからなる二価の基を表し、qは0以上の整数を表し、qが2以上のとき、Eは互いに異なっていてもよく;
Rは、水素原子、C7以下の置換もしくは無置換のアルキル基を表し、互いに同一でも異なっていてもよく;
Bは置換もしくは無置換のオキシエチレン基、又は置換もしくは無置換のオキシプロピレン基であり、複数個の連結するBは互いに異なっていてもよく、mは1以上の数であり;
1は、単結合、又はカルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のアミノ基、スルフィド基、アルケニレン基、アルキニレン基及びアリーレン基から選ばれる二価の基、又は2以上の組み合わせからなる二価の基を表す。
【請求項2】
式(Z)中、Aが、ペンタエリスリトール、グリセロール、オリゴペンタエリスリトール、キシリトール、ソルビトール、イノシトール、トリメチロールプロパン、ジトリメチロールプロパン、ネオペンチルグリコール、又はポリグリセリンの残基である請求項1に記載の組成物。
【請求項3】
式(Z)中、Aが、下記式(AI)〜(AIII)のいずれかで表される基である請求項1に記載の組成物:
【化1】

式中、*は、−L−D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;Cは炭素原子を表し;R0は水素原子又は置換基を表し;X1〜X4、X11〜X14、及びX21〜X24はそれぞれ、水素原子、又はハロゲン原子を表し、同一でも異なっていてもよく;n1〜n3はそれぞれ0〜5の整数を表し;m4は0〜8の整数を表す。
【請求項4】
式(AII)で表される化合物を50〜95質量%、さらに式(AIII)及び/又は下記式(AIII’)で表される化合物を5〜50質量%を含む請求項3に記載の組成物:
【化2】

式中、*は、―D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;Cは炭素原子を表し;X1〜X4、X11〜X14、及びX21〜X24はそれぞれ、水素原子、又はハロゲン原子を表し、同一でも異なっていてもよく;LはCH2もしくはCO(CH2kCOを表し、kは1〜10の整数を表す。
【請求項5】
式(Z)中、Aが、下記式(AIV)〜(AVIII)のいずれかで表されるポリマー又はオリゴマーの残基である請求項1に記載の組成物:
【化3】

式中、*は、―L−D1−(E)q−D2−(B)m−Z1−Rとの結合部位を意味し;式中の各炭素原子に結合している水素原子はそれぞれ、C1〜C4のアルキル基又はハロゲン原子に置換されていてもよく、2以上の置換基を有する場合は同一でも異なっていてもよく;Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;p1〜p5はそれぞれ2以上の数を表し;rは1〜3の整数を表す。
【請求項6】
式(Z)中、Aが、亜鉛もしくはモリブデンにイオン結合又は配位結合したジチオカルバミン酸又はジチオリン酸の残基である請求項1に記載の組成物。
【請求項7】
式(Z)中、−(B)m−Z1−Rがそれぞれ、下記式(ECa)で表され、同一でも異なっていてもよい有機基である請求項1〜6のいずれか1項に記載の組成物:
【化4】

式(ECa)中、Cは炭素原子を表し、Oは酸素原子を表し、式(Z)中のRに相当するRaは置換もしくは無置換のC7以下のアルキル基を表し;式(Z)中のZ1に相当するLaは、単結合、又はカルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のアミノ基、スルフィド基、アルケニレン基、アルキニレン基及びアリーレン基から選ばれる二価の基、又は2以上の組み合わせからなる二価の基を表し;Xa1及びXa2はそれぞれ、水素原子、又はハロゲン原子を表し、na1は2又は3であるが、na1が2以上のとき、複数のXa1及びXa2はそれぞれ同一でも異なっていてもよく;na2は1〜12の数である。
【請求項8】
式(Z)中、Z1に相当するLaが、単結合、又はカルボニル基、スルホニル基、ホスホリル基、オキシ基、置換もしくは無置換のアミノ基、チオ基、アルキレン基、アルケニレン基、アルキニレン基、及びアリーレン基から選択される一つ以上の組合せからなる二価の連結基である請求項7に記載の組成物。
【請求項9】
式(Z)中のRが、C4以下の直鎖アルキル基を含む基である請求項1〜8のいずれか1項に記載の組成物。
【請求項10】
式(Z)中の(B)mのmが、2〜6である請求項1〜9のいずれか1項に記載の組成物。
【請求項11】
式(Z)で表わされる化合物の40℃における粘度圧力係数が15GPa-1以下である請求項1〜10のいずれか1項に記載の組成物。
【請求項12】
式(Z)で表わされる化合物の少なくとも一種とともに、水、C12以下の直鎖もしくは分岐状のアルコール、エチレングリコール、ポリエチレングリコール、鉱物油、ポリ−α−オレフィン、ポリオールエステル、(ポリ)フェニルエーテル、イオン液体、シリコーン油、フッ素油、又はこれらから選択される2種以上とを含有する請求項1〜11のいずれか1項に記載の組成物。
【請求項13】
全成分のそれぞれの構成元素が、炭素、水素、酸素及び窒素から選択される1種以上のみである請求項1に記載の組成物。
【請求項14】
式(Z)で表わされる化合物を、10質量%以上含有する請求項1〜13のいずれか1項に記載の組成物。
【請求項15】
40℃での粘性が30mPa・s以下である請求項1〜14のいずれか1項に記載の組成物。
【請求項16】
有機亜鉛化合物、モリブデン化合物、有機リン化合物、及び有機硫黄化合物から選択される少なくとも1種をさらに含有する請求項1〜12及び14〜15のいずれか1項に記載の組成物。
【請求項17】
無機材料もしくはそれらの多孔質材料、又は樹脂もしくはそれらの多孔質材料の摺動界面の潤滑に用いられる請求項1〜16のいずれか1項に記載の組成物。
【請求項18】
離型剤である請求項1〜17のいずれか1項に記載の組成物。
【請求項19】
燃焼機関用燃料である請求項1〜17のいずれか1項に記載の組成物。
【請求項20】
内燃機関用エンジンオイルである請求項1〜17のいずれか1項に記載の組成物。
【請求項21】
軸受用オイルである請求項1〜17のいずれか1項に記載の組成物。
【請求項22】
グリース用オイルである請求項1〜17のいずれか1項に記載の組成物。
【請求項23】
切削用オイルである請求項1〜17のいずれか1項に記載の組成物。
【請求項24】
請求項1〜23のいずれか1項に記載の組成物を、2つの面間に配置すること、及び2つの面を摺動させて、少なくとも一方の面に前記組成物からなる被膜を形成することを含む被膜形成方法。
【請求項25】
下記式(Z’)で表される化合物:
A−L’−{D1’−E’−D2’−(B)m'−Z1’−R}p' (Z’)
式中、Aはp価の鎖状あるいは環状残基を表し;
L’は、単結合又はオキシ基を表し、
p’は3以上の整数を表し;
1’はカルボニル基(−C(=O)−)を表し;
2’はカルボニル基(−C(=O)−)、カルバモイル基(−C(=O)N(Alk)−)を表し、互いに同一でも異なっていてもよく、但し、Alkは水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;
E’は、単結合、置換もしくは無置換の、C1〜C3のアルキレン基、C2〜C3のアルケニレン基、又は−Alk’−N(Ra)−(Alk’はC1〜C3のアルキレン基を表し、Raは水素原子又はC13のアルキル基を表す)を表し;
Rは、水素原子、C7以下の置換もしくは無置換のアルキル基を表し、互いに同一でも異なっていてもよい;
Bは、置換もしくは無置換のオキシエチレン基、又は置換もしくは無置換のオキシプロピレン基であり、複数個の連結するBは互いに異なっていてもよく、m’は1以上30以下の数であり;
1’は、単結合、オキシ基、又はカルボニル基を表す。
【請求項26】
式(Z)中、Aが、ペンタエリスリトール、グリセロール、オリゴペンタエリスリトール、キシリトール、ソルビトール、イノシトール、トリメチロールプロパン、ジトリメチロールプロパン、ネオペンチルグリコール、又はポリグリセリンの残基である請求項25に記載の化合物。
【請求項27】
式(Z)中、Aが、下記式(AI)〜(AVIII)のいずれかで表される基である請求項25に記載の化合物:
【化5】

式中、*は、―D1’−(E’)q'−D2’−(B’)m'−Z1’−Rとの結合部位を意味し;Cは炭素原子を表し;R0は水素原子又は置換基を表し;X1〜X4、X11〜X14、及びX21〜X24はそれぞれ、水素原子、又はハロゲン原子を表し、同一でも異なっていてもよく;m4は0〜2の整数を表す。
【化6】

式中、*は、−L’−D1’−(E’)q'−D2’−(B’)m'−Z1’−Rとの結合部位を意味し;式中の各炭素原子に結合している水素原子はそれぞれ、C1〜C4のアルキル基又はハロゲン原子に置換されていてもよく、2以上の置換基を有する場合は同一でも異なっていてもよく;Alkは、水素原子、C1〜C6のアルキル基、又はシクロアルキル基を表し;p1〜p5はそれぞれ2以上の数を表し;rは1〜3の整数を表す。
【請求項28】
前記式(Z)中の、*−L’−{D1’−E’−D2’−(B)m'−Z1’−R}が、以下の(a)〜(b)のいずれかの基である請求項25〜27のいずれか1項に記載の化合物:
【化7】

式中、xは1〜3の整数であり、yは2又は3であり、m’、Ra、及びRについては、式(Z’)中のそれぞれと同義である。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−6531(P2011−6531A)
【公開日】平成23年1月13日(2011.1.13)
【国際特許分類】
【出願番号】特願2009−149422(P2009−149422)
【出願日】平成21年6月24日(2009.6.24)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】