説明

緩衝装置

【課題】高周波振動が継続的に入力されても減衰力低減効果を失うことがない緩衝装置を提供することである。
【解決手段】本発明における課題解決手段は、シリンダ1と、シリンダ1内に摺動自在に挿入されシリンダ1内を伸側室R1と圧側室R2に区画する隔壁部材2と、伸側室R1と圧側室R2とを連通する通路3a,3bと、圧力室R3と、圧力室R3内に移動自在に挿入されて圧力室R3を伸側圧力室7と圧側圧力室8とに区画するフリーピストン9とを備えた緩衝装置Dにおいて、上記伸側圧力室7から上記圧側圧力室8へ向かう流れのみを許容するとともに当該流れに抵抗を与える変位補償通路11を設けたことを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、緩衝装置の改良に関する。
【背景技術】
【0002】
従来、この種の緩衝装置にあっては、車両の車体と車軸との間に介装されて車体振動を抑制する目的で使用され、たとえば、シリンダと、シリンダ内に摺動自在に挿入されシリンダ内をピストンロッド側の伸側室とピストン側の圧側室に区画するピストンと、ピストンに設けられた伸側室と圧側室を連通する第一流路と、ピストンロッドの先端から側部に開通して伸側室と圧側室を連通する第二流路と、第二流路の途中に接続される圧力室を備えてピストンロッドの先端に取付けられたハウジングと、圧力室内に摺動自在に挿入され圧力室を伸側圧力室と圧側圧力室とに区画するフリーピストンと、フリーピストンを附勢するコイルばねとを備えて構成されている。すなわち、伸側圧力室は同じく第二流路を介して伸側室に連通されるとともに、圧側圧力室は第二流路を介して圧側室に連通されるようになっている。
【0003】
このように構成された緩衝装置は、圧力室がフリーピストンによって伸側圧力室と圧側圧力室とに区画されており、第二流路を介しては伸側室と圧側室とが直接的に連通されてはいないが、フリーピストンが移動すると伸側圧力室と圧側圧力室の容積比が変化し、フリーピストンの移動量に応じて圧力室内の液体が伸側室と圧側室へ出入りするため、見掛け上、伸側室と圧側室とが第二流路を介して連通されているが如くに振舞う。
【0004】
ここで、圧側室の圧力を基準として、緩衝装置の伸縮時における伸側室と圧側室との差圧をPとし、伸側室から流出する液体の流量をQとし、上記差圧Pと第一流路を通過する液体の流量Q1との関係である係数をC1とし、圧側室と伸側圧力室内の差圧をP1とし、差圧Pと差圧P1との差と伸側室から伸側圧力室内に流入する液体の流量Q2との関係である係数をC2とし、圧側室と圧側圧力室の差圧をP2とし、この差圧P2と圧側圧力室から圧側室に流出する液体の流量Q2との関係である係数をC3とし、フリーピストンの受圧面積である断面積をAとし、フリーピストンの圧力室に対する変位をXとし、コイルばねのばね定数をKとして、流量Qに対する差圧Pの伝達関数を求めると、式(1)が得られる。なお、式(1)中、sはラプラス演算子を示している。
【数1】

【0005】
さらに、上記式(1)で示された伝達関数中のラプラス演算子sにjωを代入して、周波数伝達関数G(jω)の絶対値を求めると、以下の式(2)が得られる。
【数2】

【0006】
上記各式から理解できるように、この緩衝装置における流量Qに対する差圧Pの伝達関数の周波数特性は、図8のボード線図に示したように、Fa=K/{2・π・A・(C1+C2+C3)}とFb=K/{2・π・A・(C2+C3)}の2つの折れ点周波数を持ち、また、F<Faの領域においては、伝達ゲインは略C1となり、Fa≦F≦Fbの領域においてはC1からC1・(C2+C3)/(C1+C2+C3)まで漸減するように変化して、F>Fbの領域においては一定となる。すなわち、流量Qに対する差圧Pの伝達関数の周波数特性は、低周波数域では伝達ゲインが大きくなり、高周波数域では伝達ゲインが小さくなる。
【0007】
したがって、この緩衝装置では、図9中の減衰特性で示すように、低周波数の振動の入力に対しては大きな減衰力を発生し、他方、高周波数の振動の入力に対しては小さな減衰力を発生することができるので、車両が旋回中等の入力振動周波数が低い場面においては高い減衰力を確実に発生可能であるとともに、車両が路面の凹凸を通過するような入力振動周波数が高い場面においては低い減衰力を確実に発生させて、車両における乗り心地を向上させることができる(たとえば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2008−215459号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、車両の車体と車軸との間に介装される緩衝装置では、車両における乗り心地を向上させる都合上、圧縮作動時に発生する減衰力よりも伸長作動時に発生する減衰力を大きくしている。
【0010】
したがって、このような緩衝装置にあっては、伸長作動時に圧縮される伸側室の圧力は、圧縮作動時に圧縮される圧側室の圧力よりも高くなる傾向にある。そして、伸側圧力室には伸側室の圧力が伝搬し、圧側圧力室には圧側室の圧力が伝搬するようになっていることから、高周波で伸縮を繰り返すと、伸側圧力室の圧力の方が圧側圧力室の圧力よりも高くなって、フリーピストンが圧側圧力室側へ偏って変位した状態となる。
【0011】
このようにフリーピストンの変位に偏りが生じると、フリーピストンの圧側圧力室側へのストローク余裕が小さくなり、フリーピストンがハウジングに当接して圧側圧力室への変位ができなくなる場合がある。また、特に、特開2008−215459号公報に開示された緩衝装置では、フリーピストンがストロークエンドまで達した際に急に変位が妨げられると減衰特性が急変するので、これを回避するために、フリーピストンの中立位置からのストローク量が大きくなると徐々に圧側室と圧側圧力室とを連通している流路の面積を減少させるようにして、フリーピストンを変位させづらくさせる配慮をしている。そのため、この緩衝装置において、フリーピストンの変位に偏りが生じると、常に上記流路の面積が減少した状態に置かれるので、フリーピストンは、動きづらい状況下で変位をしなくてはならない。
【0012】
すなわち、従来の緩衝装置では、高周波振動が継続して入力される状況下では、フリーピストンの変位に偏りが生じて、フリーピストンが変位しづらくなるかストロークエンドにまで達してしまう場合があり、減衰力低減効果を充分に発揮することができなくなる可能性がある。
【0013】
そこで、本発明は上記した不具合を改善するために創案されたものであって、その目的とするところは、高周波振動が継続的に入力されても減衰力低減効果を失うことがない緩衝装置を提供することである。
【課題を解決するための手段】
【0014】
上記した目的を解決するために、本発明における課題解決手段は、シリンダと、当該シリンダ内に摺動自在に挿入され当該シリンダ内を伸側室と圧側室に区画する隔壁部材と、上記伸側室と圧側室とを連通する通路と、圧力室と、上記圧力室内に移動自在に挿入されて当該圧力室を伸側流路を介して伸側室に連通される伸側圧力室と圧側流路を介して圧側室に連通される圧側圧力室とに区画するフリーピストンと、当該フリーピストンの上記圧力室に対する変位を抑制する附勢力を発生するばね要素とを備えた緩衝装置において、上記伸側圧力室から上記圧側圧力室へ向かう流れのみを許容するとともに当該流れに抵抗を与える変位補償通路を設けたことを特徴とする。
【発明の効果】
【0015】
本発明の緩衝装置によれば、高周波振動が継続して入力されてもフリーピストンの変位に偏りが生じないため、フリーピストンの圧側圧力室側へのストローク余裕を確保することができ、フリーピストンが圧側圧力室側への変位ができなくなることを防止することができる。この結果、本発明の緩衝装置によれば、高周波振動が継続的に入力されても、フリーピストンのストローク余裕が確保されるので、減衰力低減効果を失うことがない。
【図面の簡単な説明】
【0016】
【図1】一実施の形態における緩衝装置の縦断面図である。
【図2】流量に対する圧力の周波数伝達関数のゲイン特性を示したボード線図である。
【図3】緩衝装置の振動周波数に対する減衰特性を示した図である。
【図4】具体化した一実施の形態の緩衝装置の構造を示す図である。
【図5】具体化した一実施の形態の一変形例における緩衝装置のフリーピストンの一部の縦断面図である。
【図6】具体化した一実施の形態の他の変形例における緩衝装置の構造を示す図である。
【図7】具体化した一実施の形態の別の変形例における緩衝装置の構造を示す図である。
【図8】従来の緩衝装置の流量に対する圧力の周波数伝達関数のゲイン特性を示したボード線図である。
【図9】従来の緩衝装置の振動周波数に対する減衰特性を示した図である。
【発明を実施するための形態】
【0017】
以下、図に基づいて本発明を説明する。本発明の緩衝装置Dは、図1に示すように、シリンダ1と、シリンダ1内に摺動自在に挿入されシリンダ1内を伸側室R1と圧側室R2に区画する隔壁部材としてのピストン2と、伸側室R1と圧側室R2とを連通する通路3a,3bと、圧力室R3と、圧力室R3内に移動自在に挿入されて圧力室R3を伸側流路5を介して伸側室R1に連通される伸側圧力室7と圧側流路6を介して圧側室R2に連通される圧側圧力室8とに区画するフリーピストン9と、フリーピストン9の圧力室R3に対する変位を抑制する附勢力を発生するばね要素10と、伸側圧力室7から圧側圧力室8へ向かう流れのみを許容するとともに当該流れに抵抗を与える変位補償通路11とを備えて構成され、車両における車体と車軸との間に介装されて減衰力を発生し車体の振動を抑制するものである。なお、伸側室R1とは、車体と車軸が離間して緩衝装置Dが伸長作動する際に圧縮される室のことであり、圧側室R2とは、車体と車軸が接近して緩衝装置Dが収縮作動する際に圧縮される室のことである。
【0018】
そして、伸側室R1および圧側室R2さらには圧力室R3内には作動油等の液体が充満され、また、シリンダ1内の図中下方には、シリンダ1の内周に摺接して圧側室R2と気体室Gとを区画する摺動隔壁12が設けられている。
【0019】
なお、上記した伸側室R1、圧側室R2および圧力室R3内に充填される液体は、作動油以外にも、たとえば、水、水溶液といった液体を使用することもできる。
【0020】
また、ピストン2は、シリンダ1内に移動自在に挿通されたピストンロッド4の一端に連結され、ピストンロッド4は、シリンダ1の図中上端部から外方へ突出されている。なお、ピストンロッド4とシリンダ1との間は図示しないシールでシリンダ1内が液密状態とされている。図示したところでは、緩衝装置Dがいわゆる片ロッド型に設定されているため、緩衝装置Dの伸縮に伴ってシリンダ1内に出入りするピストンロッド4の体積は、気体室G内の気体の体積が膨張あるいは収縮し摺動隔壁12が図1中上下方向に移動することによって補償されるようになっている。このように緩衝装置Dは、単筒型に設定されているが、摺動隔壁12および気体室Gの設置に変えて、シリンダ1の外周や外部にリザーバを設けて当該リザーバによって上記ピストンロッド4の体積補償を行ってもよい。また、緩衝装置Dが片ロッド型ではなく、両ロッド型に設定されてもよい。
【0021】
さらに、通路3a,3bの途中には、オリフィスやリーフバルブ等の減衰力発生要素13a,13bが設けられており、通路3a,3bを通過する液体の流れに減衰力発生要素13a,13bによって抵抗を与えることができるようになっている。この減衰力発生要素13aは、詳しくは、図示はしないが、通路3aを伸側室R1から圧側室R2へ向かう液体の流れのみを許容する一方通行の通路に設定し、減衰力発生要素13bも、また、通路3bを圧側室R2から伸側室R1へ向かう液体の流れのみを許容する一方通行の通路に設定しており、減衰力発生要素13aが通路3aを通過する液体の流れに与える抵抗を減衰力発生要素13bが通路3bを通過する液体の流れに与える抵抗よりも大きくしている。つまり、緩衝装置Dが伸縮する際に、通路3a,3bのみを介して減衰力を発生する場合を考えると、伸長作動時には通路3aのみを液体が通過し、収縮作動時には通路3bのみを液体が通過するようになっており、ピストン速度が同じである場合、伸長作動時の減衰力の方が収縮作動時の減衰力よりも大きい。なお、減衰力発生要素13a,13bは、たとえば、周知のオリフィスとリーフバルブとを並列した構成とすればよく、この構成以外にも、たとえば、チョークとリーフバルブを並列させる構成やその他の構成を採用することもできるのは当然である。
【0022】
そして、圧力室R3は、この実施の形態の場合、ピストン2の下方に連結されて圧側室R2へ臨むハウジング14内に設けた中空部14aによって形成されており、当該中空部14aの側壁に摺接して中空部14a内を図1中上下方向に移動可能とされるフリーピストン9で中空部14aを図1中上方の伸側圧力室7と図1中下方の圧側圧力室8とに仕切っている。すなわち、フリーピストン9は、ハウジング14内に摺動自在に挿入されており、ハウジング14に対して図1中では上下方向に変位することができるようになっている。
【0023】
また、フリーピストン9は、圧力室R3を形成する中空部14aの下端部に一端が連結されて圧側圧力室8内に収容されるばね要素10における他端に連結され、これにより、フリーピストン9はハウジング14内で所定位置に位置決めされており、この所定位置(以下、単に「フリーピストン中立位置」という)から変位するとばね要素10からその変位量に比例した附勢力が作用することになる。上記したフリーピストン中立位置は、フリーピストン9が圧力室R3に対してばね要素10によって位置決められる位置であって、必ずしも中空部14aの上下方向における中間点に設定されなくともよい。ばね要素10は、伸側圧力室7に収容されてもよく、ばね要素10を伸側圧力室7と圧側圧力室8のそれぞれに収容される二つのばねで構成して、これらばねでフリーピストン9を挟持して中立位置へ位置決めしてもよい。
【0024】
なお、ハウジング14内は、図示したところでは、フリーピストン9によって上下に伸側圧力室7と圧側圧力室8に区画され、緩衝装置Dが伸縮して抑制する振動方向とフリーピストン9の移動方向が一致しており、緩衝装置D全体が図1中上下方向に振動することによって、フリーピストン9のハウジング14に対する上下方向の振動が励起されることを避けたい場合には、フリーピストン9の移動方向を緩衝装置Dの伸縮方向と直交する方向、すなわち、図1中左右方向に設定し、伸側圧力室7と圧側圧力室8を図1中横方向に配置するようにすることもできる。
【0025】
また、当該ハウジング14には、圧側室R2と圧側圧力室8とを連通する圧側通路6が設けられており、当該圧側流路6には絞り6aが設けられ、これを通過する液体の流れに抵抗を与えることができるようになっている。
【0026】
さらに、伸側室R1と伸側圧力室7は、ピストンロッド4の伸側室R1に臨む側部から開口してピストン2およびハウジング14を通じる伸側流路5を介して連通されている。このように、伸側室R1と伸側圧力室7とが伸側流路5によって連通され、圧側室R2と圧側圧力室8と圧側流路6によって連通され、伸側圧力室7と圧側圧力室8の容積はフリーピストン9がハウジング14内で変位することによって変化するので、この緩衝装置Dにあっては、上記した伸側流路5、伸側圧力室7、圧側圧力室8および圧側流路6からなる流路が、見掛け上、伸側室R1と圧側室R2を連通しており、伸側室R1と圧側室R2は、通路3a,3bの他にも上記した見掛け上の流路によっても連通されることになる。
【0027】
さらに、このハウジング14には、伸側圧力室7と圧側圧力室8とを連通する変位補償通路11が設けられている。この変位補償通路11は、伸側圧力室7と圧側圧力室8とを連通する連絡通路11aと、連絡通路11aの途中に設けられて伸側圧力室7から圧側圧力室8へ向かう液体の流れのみを許容する補償用逆止弁11bと、同じく連絡通路11aの途中に設けられて液体の流れに抵抗を与える弁要素としてのオリフィス11cとを備えて構成されている。なお、弁要素は、オリフィス以外にもチョークとしてもよいし、リーフバルブやポペット弁やニードル弁等とされてもよく、弁要素自体が逆止弁としての機能も備える場合には、補償用逆止弁を弁要素に統合するようにしてもよいのは当然である。また、弁要素と補償用逆止弁とを別体で設ける場合、連絡通路11aに直列配置すればよい。なお、この変位補償通路11は、図示したところでは、ハウジング14に設けられているが、フリーピストン9に設けるようにしてもよい。
【0028】
つづいて、緩衝装置Dの基本的な作動について説明する。緩衝装置Dがシリンダ1に対してピストン2が図1中上下動する伸縮作動を呈すると、ピストン2によって伸側室R1と圧側室R2の一方が圧縮され、伸側室R1と圧側室R2の他方が膨張されるので、伸側室R1と圧側室R2のうち圧縮される方の圧力が高まると同時に、伸側室R1と圧側室R2のうち容積拡大される方の圧力が低下して両者に差圧が生じて、伸側室R1と圧側室R2のうち圧縮側の液体は通路3a,3bと、これに加えて伸側流路5、伸側圧力室7、圧側圧力室8および圧側流路6からなる見掛け上の流路を介して伸側室R1と圧側室R2のうち拡大側に移動する。
【0029】
ここで、緩衝装置Dに入力される振動の周波数、すなわち、緩衝装置Dの伸縮方向の振動の周波数が低周波であっても高周波であっても、緩衝装置Dの伸長行程におけるピストン速度が同じである場合、低周波振動入力時の緩衝装置Dの振幅は、高周波振動入力時の緩衝装置Dの振幅よりも大きくなる。このように緩衝装置Dに入力される振動の周波数が低い場合、振幅が大きいため、伸縮1周期で伸側室R1と圧側室R2を行き交う液体の流量は大きくなる。この流量に略比例して、フリーピストン9が動く変位も大きくなるが、フリーピストン9はばね要素10で附勢されているため、フリーピストン9の変位が大きくなると、フリーピストン9が受けるばね要素10からの附勢力も大きくなり、その分、伸側圧力室7の圧力と圧側圧力室8の圧力に差圧が生じて、伸側室R1と伸側圧力室7の差圧および圧側室R2と圧側圧力室8の差圧が小さくなり、上記の見掛け上の流路を通過する流量は小さくなる。この見掛け上の流路を通過する流量が小さい分、通路3aの流量は大きくなるので、緩衝装置Dが発生する減衰力が大きいまま維持される。
【0030】
逆に、緩衝装置Dに高周波振動が入力される場合、振幅が低周波振動入力時よりも小さいため、伸縮1周期で伸側室R1と圧側室R2を行き交う液体の流量は小さく、フリーピストン9の動く変位も小さくなる。すると、フリーピストン9が受けるばね要素10から附勢力も小さくなる。その分、伸側圧力室7の圧力と圧側圧力室8の圧力がほぼ同等圧となり、伸側室R1と伸側圧力室7の差圧および圧側室R2と圧側圧力室8の差圧は低周波振動入力時よりも大きくなって、上記の見掛け上の流路を通過する流量が低周波振動入力時よりも増大する。この見掛け上の流路を通過する流量が増大した分は、通路3aの流量が減少することになるので、緩衝装置Dが発生する減衰力は低周波振動入力時の減衰力よりも小さくなる。
【0031】
このように、ピストン速度が低い場合には、流量に対する差圧の周波数伝達関数の周波数に対するゲイン特性は、従来例と同じく式(2)で示される図2に示すが如くの特性となる。また、振動周波数の入力に対する減衰力のゲインを示す緩衝装置Dにおける減衰力の特性は、図3に示すように、低周波数域の振動に対しては大きな減衰力を発生し、高周波数域の振動に対しては減衰力を小さくすることができ、緩衝装置Dの減衰力の変化を入力振動周波数に依存させることができる。なお、緩衝装置Dの収縮行程にあっても、上述の伸長行程と同様に、低周波数域の振動に対しては大きな減衰力を発生し、高周波数域の振動に対しては減衰力を小さくすることができ、緩衝装置Dの減衰力の変化を入力振動周波数に依存させることができる。そして、図3の減衰特性における小さい値を採る折れ点周波数Faの値を車両のばね上共振周波数の値以上であって車両のばね下共振周波数の値以下に設定し、大きい値を採る折れ点周波数Fbを車両のばね下共振周波数以下に設定することで、緩衝装置Dは、ばね上共振周波数の振動の入力に対しては高い減衰力を発生することができ、車両の姿勢を安定させて、車両旋回時に、搭乗者に不安を感じさせることを防止できるとともに、ばね下共振周波数の振動が入力されると必ず低い減衰力を発生することになるので、車軸側の振動の車体側への伝達を絶縁して、車両における乗り心地を良好なものとすることができる。
【0032】
上記したように、緩衝装置Dでは、高周波振動入力時には、見掛け上の流路を通過する液体の流量を多くするようになっているが、車両における乗り心地を向上させる都合上、圧縮作動時に発生する減衰力よりも伸長作動時に発生する減衰力を大きくする場合、高周波振動が継続して入力されると、伸長作動時に圧縮される伸側室R1の圧力は、圧縮作動時に圧縮される圧側室R2の圧力よりも高くなる傾向にあるため、伸側圧力室7の圧力の方が圧側圧力室8の圧力よりも高くなる。
【0033】
このように、伸側圧力室7の圧力が圧側圧力室8の圧力よりも高くなると、フリーピストン9が圧側圧力室8側へ偏って変位しようとするが、変位補償通路11における補償用逆止弁11bが開弁して連絡通路11aを介して伸側圧力室7と圧側圧力室8とが連通し、伸側圧力室7の圧力を圧側圧力室8へ逃がす。そのため、伸側圧力室7の圧力と圧側圧力室8の圧力の差が小さくなる。また、圧側圧力室8が伸側圧力室7の圧力よりも上回ると、補償用逆止弁11が閉じて振動中における緩衝装置Dの収縮作動時には圧側圧力室8の圧力が速やかに上昇して伸側圧力室7の圧力よりも上回るため、フリーピストン9を伸側圧力室7へ向けて附勢して伸側圧力室7を圧縮する方向へ変位させることができる。
【0034】
したがって、本発明の緩衝装置Dでは、高周波振動が継続して入力されて、伸側圧力室7の圧力が圧側圧力室8の圧力よりも高くなる状態となっても、変位補償通路11を介して伸側圧力室7の圧力が圧側圧力室8へ逃がすことができるので、フリーピストン9がフリーピストン中立位置から圧側圧力室8側へ偏って変位した状態となることを抑制できる。なお、伸側圧力室7がこのように補償用逆止弁11bが開弁しても弁要素としてのオリフィス11cが設けられているので、伸側圧力室7の圧力と圧側圧力室8の圧力には差が生じるため、緩衝装置Dの伸長作動時において、伸側圧力室7と圧側圧力室8の圧力に差が生じなくなってフリーピストン9が作動せず上記見掛け上の流路を介して伸側室R1から圧側室R2への液体の移動ができなってしまうことはない。つまり、緩衝装置Dの基本作動を損なうことなく、フリーピストン9の圧側圧力室8側への偏りを防止することができる。
【0035】
それゆえ、本発明の緩衝装置Dでは、高周波振動が継続して入力されてもフリーピストン9の変位に偏りが生じないため、フリーピストン9の圧側圧力室8側へのストローク余裕を確保することができ、フリーピストン9がハウジング14に当接して圧側圧力室8への変位ができなくなることを防止することができる。この結果、本発明の緩衝装置Dによれば、高周波振動が継続的に入力されても、フリーピストン9のストローク余裕が確保されるので、減衰力低減効果を失うことがない。
【0036】
また、この緩衝装置Dにあっては、高周波振動が継続的に入力されても、減衰力低減効果を発揮することができるので、悪路やでこぼこ道を車両が走行する場合にあっても、良好な乗心地を実現できる。
【0037】
なお、フリーピストン9に変位補償通路11を設ける場合には、ハウジング14に変位補償通路11を設ける場合に比較して、ハウジング14を小型化して緩衝装置Dをコンパクトにすることができる。
【0038】
以上では、緩衝装置Dの基本的な構造を説明したが、以下、より構造を具体化した緩衝装置D1について説明する。
【0039】
具体的な緩衝装置D1は、基本的には、図4に示すように、シリンダ21と、シリンダ21内に摺動自在に挿入されシリンダ21内を2つの作動室である伸側室R4および圧側室R5に区画する隔壁部材としてのピストン22と、一端がピストン22に連結されるピストンロッド23と、ピストン22に形成された伸側室R4および圧側室R5を連通する通路22a,22bと、ピストンロッド23の先端に固定されて内部に圧力室R6を形成するハウジング24と、ハウジング24内に移動自在に挿入されて圧力室R6を伸側流路25を介して伸側室R4に連通される伸側圧力室27と圧側流路26を介して圧側室R5に連通される圧側圧力室28とに区画するフリーピストン29と、フリーピストン29のハウジング24に対する変位を抑制する附勢力を発生するばね要素としてのコイルばね51,52と、伸側圧力室27から圧側圧力室28へ向かう流れのみを許容するとともに当該流れに抵抗を与える変位補償通路30とを備えて構成されている。なお、図示はしないが、図1に示した緩衝装置Dと同様に、シリンダ21の下方には、摺動隔壁が設けられており気体室が設けられている。
【0040】
以下、各部について詳細に説明すると、ピストンロッド23は、その図4中下端側に小径部23aが形成されるとともに、小径部23aの先端側には螺子部23bが形成されている。
【0041】
そして、ピストンロッド23には、小径部23aの先端から開口しピストンロッド23の側部に抜ける伸側流路25が形成されている。なお、図示したところでは、この伸側流路25の途中には、抵抗となる弁を設けていないが、絞り等の弁を設けるようにしてもよい。
【0042】
ピストン22は、環状に形成されるとともに、その内周側にピストンロッド23の小径部23aが挿入されている。また、このピストン22には、伸側室R4と圧側室R5とを連通する通路22a,22bが設けられ、通路22aの図4中上端はピストン22の図4中上方に積層される減衰力発生要素である積層リーフバルブV1にて閉塞され、他方の通路22bの図4中下端もピストン22の図4中下方に積層される減衰力発生要素である積層リーフバルブV2によって閉塞されている。
【0043】
この積層リーフバルブV1,V2は、共に環状に形成され、内周側にはピストンロッド23の小径部23aが挿入され、積層リーフバルブV1の撓み量を規制する環状のバルブストッパ31とともにピストン22に積層されている。
【0044】
そして、積層リーフバルブV1は、緩衝装置D1の収縮作動時に圧側室R5と伸側室R4の差圧によって撓んで開弁し通路22aを開放して圧側室R5から伸側室R4へ移動する液体の流れに抵抗を与えるとともに、緩衝装置D1の伸長作動時には通路22aを閉塞するようになっており、他方の積層リーフバルブV2は、積層リーフバルブV1とは反対に緩衝装置D1の伸長作動時に通路22bを開放し、収縮作動時には通路22bを閉塞する。すなわち、積層リーフバルブV1は、緩衝装置D1の収縮作動時における圧側減衰力を発生する減衰力発生要素であり、他方の積層リーフバルブV2は、緩衝装置Dの伸長作動時における伸側減衰力を発生する減衰力発生要素である。また、積層リーフバルブV1,V2で通路22a,22bを閉じた状態にあっても、図示はしない周知のオリフィスによって伸側室R4と圧側室R5とが連通されるようになっており、オリフィスは、たとえば、積層リーフバルブV1,V2の外周に切欠を設けたり、積層リーフバルブV1,V2が着座する弁座に凹部を設けたりするなどして形成される。なお、緩衝装置D1のピストン速度が同じ場合、積層リーフバルブV1よりも積層リーフバルブV2の方が液体の流れに与える抵抗を大きくしてある。
【0045】
そして、ピストンロッド23の螺子部23bには、順に上記したバルブストッパ31、積層リーフバルブV1、ピストン22および積層リーフバルブV2が組み付けられ、この積層リーフバルブV2の下方から、圧力室R6を形成するハウジング24が螺着される。このハウジング24によって、ピストン22、積層リーフバルブV1,V2およびバルブストッパ31がピストンロッド23に固定される。このように、ハウジング24は、内部に圧力室R5を形成するだけでなく、ピストン22をピストンロッド23に固定する役割をも果たしている。
【0046】
ハウジング24は、ピストンロッド23の螺子部23bに螺合される鍔33付のナット部32と、ナット部32における鍔33の外周に開口部が加締められて一体化される有底筒状の外筒35とを備えて構成されている。そして、ナット部32および外筒35で圧側室R5内に圧力室R6を画成している。なお、ナット部32と外筒35との一体化に際し、上記加締め加工以外にも溶接等の他の方法を採用することも可能である。
【0047】
そして、上記のように形成される圧力室R6内には、フリーピストン29が摺動自在に挿入されて、圧力室R6は、図4中上方側の伸側圧力室27と下方側の圧側圧力室28に区画されている。
【0048】
また、ナット部32は、上述のように側方に鍔33を備え、その内周には筒状の螺子部34が形成され、この螺子部34をピストンロッド23の螺子部23bに螺着することによって、ハウジング24をピストンロッド23の小径部23aに固定することが可能なようになっている。ゆえに、外筒35の下端外周の断面形状を真円以外の形状、たとえば、一部を切欠いた形状や、六角形等の形状として係合部35bを形成してあって、当該係合部35bの外周に係合する工具を用いてハウジング24をピストンロッド23に螺着する作業を容易としている。なお、外筒35の外周形状の全部を真円以外の形状に設定してもよい。
【0049】
外筒35は、有底筒状であって、その外筒底部35aには、圧側流路26の一部を構成する固定オリフィス36が設けられ、外筒35の側部には圧側室R5をハウジング24内へ連通する二つの可変オリフィス37,38が設けられている。
【0050】
他方、フリーピストン29は、有底筒状のフリーピストン本体40と、フリーピストン本体40の底部40aに設けられて当該底部40aにおける伸側圧力室側端から圧側圧力室側端へ貫通するようにした設けた貫通孔40bと、当該貫通孔40b内に摺動自在に挿入されるスプール41とを備えて構成されている。
【0051】
フリーピストン本体40は、有底筒状とされており、底部40aに貫通孔40bを備え、当該底部40aを図4中下方へ向け筒部40cの外周をハウジング24における外筒35の内周に摺接させてハウジング24内に挿入されている。フリーピストン本体40の貫通孔40b内には摺動自在にスプール41が挿入されており、フリーピストン29は、上記のようにハウジング24内に摺動自在に挿入されると圧力室R6内を伸側圧力室27と圧側圧力室28とに区画する。なお、フリーピストン本体40の底部40aを図4中下方へ向けてハウジング24内に収容することで、フリーピストン29のナット部32への干渉を避けることができる。さらに、フリーピストン本体40は、この実施の形態の場合、筒部40cの外周に環状溝40dと、フリーピストン本体40の底部40aから環状溝40dへ通じる孔40eを備えている。
【0052】
また、このフリーピストン本体40の底部40aとナット部32との間、および、当該底部40aと外筒35における外筒底部35aとの間には、それぞれ、ばね要素としてのコイルばね51,52が介装されている。これらコイルばね51,52は、フリーピストン29を挟持して弾性支持し、当該フリーピストン29の圧力室R6に対する変位量に応じてその変位を抑制する附勢力を作用させるようになっており、フリーピストン29を圧力室R6内で中立位置に位置決めている。なお、ばね要素としては、フリーピストン29を弾性支持できればよいので、コイルばね51,52以外のものを採用してもよく、たとえば、皿ばね等の弾性体を用いてフリーピストン29を弾性支持するようにしてもよい。
【0053】
そして、上記環状溝40dは、フリーピストン29がばね要素としてのコイルばね51,52によって弾性支持されて中立位置にあるときには必ず上記可変オリフィス37,38に対向して圧側圧力室28と圧側室R5を連通するとともに、フリーピストン29がストロークエンドまで変位する、すなわち、ナット部32の鍔33或いは外筒35の内周に設けた段部35cに当接するまで変位するとフリーピストン29の外周で完全にラップされて閉塞されるようになっている。すなわち、圧側流路26は、環状溝40d、孔40e、可変オリフィス37,38および固定オリフィス36で構成されている。なお、可変オリフィス37,38を二つ設けているが、その数は任意である。
【0054】
つまり、この具体的な緩衝装置D1の場合、フリーピストン29の中立位置からの変位量が増加していくと、可変オリフィス37,38の開口全てが環状溝40dに対向する状況からフリーピストン29の外周に対向し始める状況に移行して徐々に可変オリフィス37,38の流路面積が減少し始め、圧側流路26における流路抵抗が徐々に増加する。そして、この実施の形態では、フリーピストン29の変位量の増加に伴って徐々に可変オリフィス37,38の流路面積が減少し、フリーピストン29がストロークエンドに達すると、可変オリフィス37,38が完全にフリーピストン29の外周で閉塞されて、圧側流路26における流路抵抗が最大となり圧側圧力室28が固定オリフィス36のみによって圧側室R5に連通されるようになっている。
【0055】
つづいて、スプール41は、貫通孔40b内に摺動可能に挿入される円柱状のスプール本体41aと、スプール本体41aの圧側圧力室側端に設けたフランジ41bと、スプール本体41aの伸側圧力室側端の外周に設けた環状のストッパ41cと、スプール本体41aの伸側圧力室側端から開口する縦穴41dと、スプール本体41aの側部であってフランジ41bよりも図4中上方となる伸側圧力室側から開口して縦孔41dへ通じる横孔41eとを備えて構成されている。
【0056】
スプール41の軸方向長さは、フリーピストン本体40の底部40aの軸方向長さよりも長く、ストッパ41cとフランジ41bとの間の長さも、フリーピストン本体40の底部40aの軸方向長さよりも長い。
【0057】
このスプール41は、伸側圧力室27の圧力が作用する受圧面積と圧側圧力室28の圧力が作用する受圧面積が等しく、伸側圧力室27内の圧力が圧側圧力室28の圧力よりも高いと、圧側圧力室方向へ押圧されて、図4中下方へストロークし、反対に、圧側圧力室28内の圧力が伸側圧力室27の圧力よりも高いと、伸側圧力室方向へ押圧されて、上方へストロークして図4に図示した状態となる。なお、上記した各受圧面積を等しくしているが、これに限定されるものではなく、たとえば、伸側圧力室27の圧力が作用する受圧面積よりも圧側圧力室28の圧力が作用する受圧面積を小さくして、伸側圧力室27の圧力が圧側圧力室28の圧力を所定値上回るとスプール41が圧側圧力室方向へストロークするように設定することも可能である。
【0058】
そして、スプール41が圧側圧力室方向となる図4中下方へストロークしてストッパ41cがフリーピストン本体40の底部40aの図4中上面に当接すると、スプール41は、それ以上の圧側圧力側方向へのストロークが規制される。このように、ストッパ41cがフリーピストン本体40の底部40aに当接している状態では、少なくとも横孔41eが圧側圧力室28に臨んで、横孔41eおよび縦孔41dを介して圧側圧力室28と伸側圧力室27とが連通されるようになっている。このように、縦孔41dと横孔41eは、連絡通路を形成している。なお、縦孔41dにおける断面積は、当該縦孔41dを通過する液体の流れに抵抗を与えることができるように設定されており、弁要素として機能している。この実施の形態では、縦孔41dを弁要素としているが、横孔41eを弁要素としてもよいし、縦孔41dと横孔41eの双方が連絡通路のみならず弁要素として機能してもよく、また、縦孔41d或いは横孔41eにオリフィス等の絞りを設けてこれを弁要素としてもよい。上記したところから、伸側圧力室27の圧力が圧側圧力室28の圧力よりも大きい場合、スプール41が図4中下方へ移動し縦孔41dおよび横孔41eで形成される連絡通路によって伸側圧力室27と圧側圧力室28とが連通されるが、縦孔41dが弁要素として機能しているので、伸側圧力室27の圧力と圧側圧力室28の圧力には差が生じ、この差圧に見合ってコイルばね52が縮んでフリーピストン29が図4中下方へ移動することになる。
【0059】
また、スプール41が伸側圧力室方向となる上方へストロークし、図4に示したように、フランジ41bがフリーピストン本体40の底部40aの図4中下面に当接すると、スプール41は、それ以上の伸側圧力室方向へのストロークが規制される。このように、フランジ41bがフリーピストン本体40の底部40aに当接している状態では、少なくとも横孔41eがフリーピストン本体40の貫通孔40bの内周に対向して閉塞され、横孔41eおよび縦孔41dを介しての圧側圧力室28と伸側圧力室27の連通が断たれるようになっている。したがって、この実施の形態では、スプール41が補償用逆止弁として機能している。上記したところから、圧側圧力室28の圧力が伸側圧力室27の圧力よりも大きい場合、スプール41が図4中上方へ移動し縦孔41dおよび横孔41eで形成される連絡通路が遮断され、伸側圧力室27の圧力と圧側圧力室28の圧力の差圧に見合ってコイルばね51が縮んでフリーピストン29が図4中上方へ移動することになる。
【0060】
なお、ストッパ41cとフランジ41bは、スプール41の貫通孔40bからの抜け止めとしても機能している。スプール41が伸側圧力室方向へ移動して横孔41eが貫通孔40bの内周に完全に対向すると連絡通路が遮断されるので、スプール41の移動の規制は、環状のフランジ41bではなく、ピンやその他、底部40aに当接可能な部品で行うことができ、ストッパ41cにおいても同様である。しかしながら、スプール41が外周に環状のフランジ41bを備えていることで、圧側圧力室28の圧力が伸側圧力室27の圧力よりも高く、スプール41が図4中上方へ押圧されてフランジ41bがフリーピストン本体40の底部40aに密着することで、連絡通路を密に遮断することができる。
【0061】
また、上記したところでは、スプール41に設けた縦孔41dと横孔41eとで連絡通路と弁要素とを形成し、スプール41が補償用逆止弁として機能しているので、変位補償通路30は、フリーピストン29におけるスプール41に具現化している。なお、図5に示すように、フリーピストン本体40の底部40aに弁要素も兼ねる連絡通路53を設けておき、スプール41のフランジ41bで連絡通路53の圧側圧力室側端を開閉するようにして補償用逆止弁を構成してもよい。この場合、弁要素を兼ねる連絡通路を図5中破線で示すように貫通孔40bに連なる切欠溝で形成することもできる。
【0062】
さて、緩衝装置D1は、以上のように構成されるが、続いて緩衝装置D1の作動について説明する。
【0063】
(A)フリーピストン29における中立位置からの変位量が可変オリフィス37,38を閉塞し始めない範囲内にある場合の緩衝装置D1における動作。
【0064】
この場合、フリーピストン29は、圧側流路26の抵抗を変化させることなく変位することが可能である。そして、緩衝装置D1へ入力される振動周波数が低い場合と高い場合で、ピストン速度が同じであるという条件下で考えると、まず、入力周波数が低い場合、入力される振動の振幅が大きくなり、フリーピストン29の振幅も、可変オリフィス37,38を閉塞し始めない範囲内で大きくなる。
【0065】
フリーピストン29の振幅が上記の範囲で大きくなると、フリーピストン29がコイルばね51,52から受ける附勢力が大きくなり、緩衝装置D1が伸長する場合、圧側圧力室28内の圧力は、伸側圧力室27内の圧力よりも上記コイルばね51,52の附勢力分だけ小さくなり、逆に、緩衝装置D1が収縮する場合には、伸側圧力室28内の圧力は、圧側圧力室27内の圧力よりも上記コイルばね51,52の附勢力分だけ小さくなる。
【0066】
このように、緩衝装置D1が低周波振動を呈すると伸側圧力室27と圧側圧力室28にコイルばね51,52の附勢力に見合った差圧が生じているので、伸側室R4と伸側圧力室27の差圧および圧側室R5と圧側圧力室28の差圧が小さくなり、伸側流路25、圧側流路26、伸側圧力室27および圧側圧力室28でなる見掛け上の流路を通過する流量は小さい。この見掛け上の流路を通過する流量が小さい分、通路22a,22bの流量は大きくなるので、緩衝装置D1が発生する減衰力が大きいまま維持される。
【0067】
逆に、緩衝装置D1への入力周波数が高い場合、入力される振動の振幅が小さくなり、フリーピストン29の振幅はより小さくなる。フリーピストン29の振幅が小さくなると、フリーピストン29がコイルばね51,52から受ける附勢力が小さくなり、緩衝装置D1が伸長行程にあっても収縮行程にあっても、伸側圧力室27内の圧力と圧側圧力室28内の圧力とが略等しくなる。すると、伸側室R4と伸側圧力室27の差圧および圧側室R5と圧側圧力室28の差圧は大きくなるので、伸側流路25および圧側流路26を通過する流量も多くなる。
【0068】
緩衝装置D1へ入力される振動の周波数が低い場合には、見掛け上の流路を通過する流量は小さく、入力周波数が高い場合には、見掛け上の流路を通過する流量は大きくなり、入力速度が同じであれば、伸側室R4から圧側室R5或いは圧側室R5から伸側室R4へ流れる流量は、入力周波数によらず等しくならなければならないため、通路22a,22bの積層リーフバルブV1,V2を通過する流量は、入力周波数が低い場合には多くなって減衰力が高く、反対に、入力周波数が高い場合には少なくなって減衰力は低くなる。したがって、緩衝装置D1の減衰特性は、上記した緩衝装置Dと同様に図3に示すように、推移することになる。
【0069】
したがって、この緩衝装置D1にあっても、減衰力の変化を入力振動周波数に依存させることができ、ばね上共振周波数の振動の入力に対しては高い減衰力を発生することで車両の姿勢を安定させて、車両旋回時に搭乗者に不安を感じさせることを防止できるとともに、ばね下共振周波数の振動が入力されると必ず低い減衰力を発生させて車軸側の振動の車体側への伝達を絶縁して、車両における乗り心地を良好なものとすることができる。
【0070】
そして、伸側圧力室27の圧力が圧側圧力室28の圧力よりも高くなると、フリーピストン29が圧側圧力室28側へ偏って変位しようとするが、補償用逆止弁として機能するスプール41が図4中下方へ移動して縦孔41dおよび横孔41eでなる連絡通路が開放されて変位補償通路30を介して伸側圧力室27と圧側圧力室28とが連通し、伸側圧力室27の圧力を圧側圧力室28へ逃がすことができる。そのため、伸側圧力室27の圧力と圧側圧力室28の圧力の差が小さくなる。また、圧側圧力室28が伸側圧力室27の圧力よりも上回ると、補償用逆止弁として機能するスプール41が図4中上方へ移動して連絡通路が閉じて振動中における緩衝装置D1の収縮作動時には圧側圧力室28の圧力が速やかに上昇して伸側圧力室27の圧力よりも上回るため、フリーピストン29を伸側圧力室27へ向けて附勢して伸側圧力室27を圧縮する方向へ変位させることができる。
【0071】
したがって、本発明の緩衝装置D1では、高周波振動が継続して入力されて、伸側圧力室27の圧力が圧側圧力室28の圧力よりも高くなる状態となっても、変位補償通路30を介して伸側圧力室27の圧力が圧側圧力室28へ逃がすことができるので、フリーピストン29がフリーピストン中立位置から圧側圧力室28側へ偏って変位した状態となることを抑制できる。なお、連絡通路である縦孔41dが弁要素として機能しているので、伸側圧力室27の圧力と圧側圧力室28の圧力には差が生じるため、緩衝装置D1の伸長作動時において、伸側圧力室27と圧側圧力室28の圧力に差が生じなくなってフリーピストン29が作動せず上記見掛け上の流路を介して伸側室R4から圧側室R5への液体の移動ができなってしまうことはない。つまり、緩衝装置D1の基本作動を損なうことなく、フリーピストン29の圧側圧力室8側への偏りを防止することができる。
【0072】
それゆえ、本発明の緩衝装置D1では、高周波振動が継続して入力されてもフリーピストン29の変位に偏りが生じないため、フリーピストン29の圧側圧力室28側へのストローク余裕を確保することができ、フリーピストン29がハウジング24に当接して圧側圧力室28への変位ができなくなることを防止することができる。この結果、本発明の緩衝装置D1によれば、高周波振動が継続的に入力されても、フリーピストン29のストローク余裕が確保されるので、減衰力低減効果を失うことがない。
【0073】
また、この緩衝装置D1にあっては、高周波振動が継続的に入力されても、減衰力低減効果を発揮することができるので、悪路やでこぼこ道を車両が走行する場合にあっても、良好な乗心地を実現できる。
【0074】
なお、フリーピストン29に変位補償通路30が設けられているので、ハウジング24に変位補償通路を設ける場合に比較して、ハウジング24を小型化して緩衝装置D1をコンパクトにすることができる。
【0075】
さらに、この場合、スプール41の外周にフランジ41bを設けており、当該フランジ41bで連絡通路を密に閉塞することができるので、圧側圧力室28の圧力が伸側圧力室27の圧力より高い場合に、圧側圧力室28の圧力が伸側圧力室27へ漏洩することがなく、フリーピストン29を中立位置へ速やかに戻すことが可能となる。
【0076】
(B)フリーピストン29の中立位置からの変位量が圧側流路26の流路抵抗を増加させる範囲内となる場合の緩衝装置D1における動作
可変オリフィス37,38は、緩衝装置D1が伸長しても収縮しても、フリーピストン29が中立位置から変位して、その変位量に応じて、徐々に流路面積を小さくし、フリーピストン29が上下のいずれかストロークエンドに到達すると完全に閉塞されて流路面積を固定オリフィス36の流路面積と同じくして最小とする状況となる。
【0077】
つまり、フリーピストン29が可変オリフィス37,38を閉塞し始めた後は変位量に応じて圧側流路26の流路抵抗を徐々に大きくし、フリーピストン29がストロークエンドに到達すると流路抵抗が最大となる。
【0078】
ここで、フリーピストン29がストロークエンドまで変位するのは、伸側圧力室27もしくは圧側圧力室28への液体の流出入量が多い場合であり、具体的には、緩衝装置D1の伸縮の振幅が大きい場合である。
【0079】
緩衝装置D1に入力される振動周波数が比較的高い場合、緩衝装置D1は、フリーピストン29が可変オリフィス37,38を閉塞し始める位置へ変位するまでは、比較的低い減衰力を発生しているが、フリーピストン29が可変オリフィス37,38を閉塞し始める位置を越えて変位するようになると、徐々に圧側流路26の流路抵抗が徐々に大きくなっていくので、フリーピストン29のそれ以上のストロークエンド側への移動速度が減少されて、見掛け上の流路を介しての液体の移動量も減少し、その分通路22a,22bを通過する液体量が増加することになり、緩衝装置D1の発生減衰力は徐々に大きくなっていく。
【0080】
そして、フリーピストン29がストロークエンドに達すると、それ以上、見掛け上の流路を介しての液体の移動はなくなり、緩衝装置D1の伸縮方向を転ずるまでは液体は通路22a,22bのみを通過することになり、緩衝装置D1は、最大の減衰係数で減衰力を発生することになる。
【0081】
すなわち、フリーピストン29がストロークエンドまで変位してしまうような高周波数で大振幅の振動が緩衝装置D1に対し入力されても、フリーピストン29の中立位置からの変位量が任意の変位量を超えるとフリーピストン29がストロークエンドに達するまでに緩衝装置D1は徐々に発生減衰力を大きくするので、低い減衰力から急激に高い減衰力に変化することが無くなる。つまり、フリーピストン29がストロークエンドに達して圧力室R6を介して伸側室R4と圧側室R5の液体の交流ができなくなるときに急激に減衰力の大きさが変化してしまうことがなくなり、低減衰力から高減衰力への減衰力変化がなだらかとなる。さらに、フリーピストン29が圧力室R6における両端側のストロークエンドまで到る際に、徐々に発生減衰力を大きくするので、減衰力の急激な変化を抑制する機能は、緩衝装置D1の伸圧の両行程で発揮される。
【0082】
したがって、この緩衝装置D1にあっては、高周波数で振幅が大きい振動が入力されても、発生減衰力がなだらかに変化することになって、搭乗者に減衰力の変化によるショックを知覚させずにすみ、車両における乗り心地を向上することができ、特に、急激な減衰力変化によって車体が振動しボンネットが共振して異音が発生してしまう事態も防止でき、この点でも車両における乗り心地を向上することができる。
【0083】
このように、ピストン速度が高速となって、固定オリフィス36、可変オリフィス37,38における流路抵抗が大きくなりすぎる状況とならない場合には、この具体的な緩衝装置D1は、上記(A)および(B)で説明したように、入力される振動周波数に依存した減衰力を発揮するとともに、フリーピストン29がストロークエンドまで変位する際には、減衰力を徐々に高めて、低下していた減衰力が性急に大きくなるような減衰力変化を抑制することができるのである。
【0084】
そして、この緩衝装置D1にあっては、変位補償通路30が伸側圧力室27の圧力が圧側圧力室28の圧力よりも高いと伸側圧力室27の圧力を圧側圧力室28へ逃がすので伸側圧力室27の圧力の高止まりを抑制でき、速やかにフリーピストン29を中立位置へ戻すことができるので、フリーピストン29がストロークエンドまで変位してもフリーピストン29の戻り遅れを生じさせない。したがって、この緩衝装置D1にあっては、可変オリフィス37,38が全開されない状態が長時間に亘って発生することがなく、減衰力が長時間に亘って高止まりすることを防止することができる。
【0085】
このように、具体的な緩衝装置D1にあっては、フリーピストン29がストロークエンドまで変位する事態が生じても、減衰力が高止まりすることを防止できるから、車軸から車体への振動の伝達を絶縁する効果が消失してしまうといった不具合を解消でき、車両における乗り心地をより一層向上することができる。
【0086】
なお、図6に示した具体的な緩衝装置の一変形例における緩衝装置D2ように、変位補償通路60を構成してもよい。この変位補償通路60は、フリーピストン61に設けられており、緩衝装置D2は、フリーピストン61の構成のみを緩衝装置D1と異にしている。
【0087】
この緩衝装置D2におけるフリーピストン61は、図6に示すように、有底筒状であって底部61aに設けた連絡通路62と、当該底部61aの圧側圧力室側に連絡通路62を開閉して弁要素と補償用逆止弁として機能するリーフバルブ63とを備えて構成されている。そして、変位補償通路60は、上記した連絡通路62およびリーフバルブ63とで構成されている。
【0088】
フリーピストン61は、底部61aと底部61aの外周に連なる筒部61bとを備えて有底筒状とされ、筒部61bの外周には環状溝61cが設けられ、底部61aから当該環状溝61cへ通じる孔61dを備えている。この環状溝61cと孔61dは、それぞれ、上記した緩衝装置D1におけるフリーピストン29における環状溝40dと孔40eに相当しており、これらと同様の機能を発揮する。
【0089】
また、フリーピストン61の底部61aの中央には、ロッド挿通孔61eが設けられていて、このボルト挿通孔61eには、リーフバルブ63をフリーピストン61の底部61aに固定するためのガイドボルト64が挿通される。
【0090】
ガイドボルト64は、先端に螺子部64bが形成される軸部64aと、軸部64aの基端に設けたフランジ状の頭部64cとを備えている。リーフバルブ63は、環状であって、ガイドボルト64の軸部64aの外周に環状のシム65とともに装着される。そして、フリーピストン61のボルト挿通孔61eにガイドボルト64の軸部64aを挿通して螺子部64bにナット66を螺着すると、リーフバルブ63は、内周がナット66と頭部64cとで挟持されてフリーピストン61の底部61aに固定される。したがって、フリーピストン61は、外周の撓みが許容された状態でフリーピストン61の底部61aの圧側圧力室側に積層され、連絡通路62の開口端を閉塞している。よって、伸側圧力室27の圧力が圧側圧力室28の圧力よりも上回って、リーフバルブ63の外周を撓ませるようになるとリーフバルブ63の外周が底部61aから離れて連絡通路62が開放され、伸側圧力室27と圧側圧力室28とが連通されることになる。
【0091】
なお、リーフバルブ63を底部61aに積層して連絡通路62を閉塞している状態で、リーフバルブ63を撓ませて当該リーフバルブ63に初期撓みを与えておく場合には、初期撓みの量によって、リーフバルブ63が撓んで連絡通路62を開放する際の開弁圧(伸側圧力室27と圧側圧力室28の差圧)を設定することができる。また、リーフバルブ63は、複数枚の環状板を積層して構成した積層リーフバルブとされてもよい。
【0092】
上記のように変位補償通路60を構成することで、伸側圧力室27の圧力が圧側圧力室28の圧力よりも高くなると、リーフバルブ63が撓んで連絡通路62が開放され、伸側圧力室27の圧力を圧側圧力室28へ逃がすことができる。また、圧側圧力室28が伸側圧力室27の圧力よりも上回ると、リーフバルブ63が連絡通路62を遮断する。
【0093】
したがって、この緩衝装置D2では、上記した緩衝装置D1と同様に、高周波振動が継続して入力されて、伸側圧力室27の圧力が圧側圧力室28の圧力よりも高くなる状態となっても、変位補償通路60を介して伸側圧力室27の圧力が圧側圧力室28へ逃がすことができ、フリーピストン61がフリーピストン中立位置から圧側圧力室28側へ偏って変位した状態となることを抑制できる。なお、リーフバルブ63が弁要素として機能して連絡通路62を通過する液体の流れに抵抗を与えるため、緩衝装置D2の伸長作動時において、伸側圧力室27と圧側圧力室28の圧力に差が生じなくなってフリーピストン61が作動せず上記見掛け上の流路を介して伸側室R4から圧側室R5への液体の移動ができなってしまうことはない。つまり、緩衝装置D2の基本作動を損なうことなく、フリーピストン61の圧側圧力室8側への偏りを防止することができる。
【0094】
それゆえ、この緩衝装置D2によれば、高周波振動が継続して入力されてもフリーピストン61の変位に偏りが生じないため、フリーピストン61の圧側圧力室28側へのストローク余裕を確保することができ、フリーピストン61がハウジング24に当接して圧側圧力室28への変位ができなくなることを防止することができる。この結果、緩衝装置D2によれば、高周波振動が継続的に入力されても、フリーピストン61のストローク余裕が確保されるので、減衰力低減効果を失うことがない。
【0095】
また、この緩衝装置D2にあっては、高周波振動が継続的に入力されても、減衰力低減効果を発揮することができるので、悪路やでこぼこ道を車両が走行する場合にあっても、良好な乗心地を実現できる。
【0096】
なお、フリーピストン61に変位補償通路60が設けられているので、ハウジング24に変位補償通路を設ける場合に比較して、ハウジング24を小型化して緩衝装置D2をコンパクトにすることができる。
【0097】
さらに、緩衝装置D2では、リーフバルブ63が撓んでも伸側圧力室27および圧側圧力室28の容積を殆ど変動させることがないので、微振幅の振動の入力に対してもフリーピストン61が作動して周波数に依存した減衰力を発揮することができる。なお、緩衝装置D1では、フリーピストン29に対してスプール41が移動する場合、スプール41が伸側圧力室27と圧側圧力室28の一方へ突出して他方から退出するため、これら伸側圧力室27と圧側圧力室28の容積が変化する。このように、スプール41の移動によって、伸側圧力室27と圧側圧力室28の容積が変化するということは、フリーピストン29が動かずとも、スプール41の移動によって、上記容積変化に見合った液体が上記した見掛け上の流路を通過して伸側室R4と圧側室R5とを行き来することができることである。つまり、緩衝装置D1にあっては、スプール41が移動限界までストロークするまではフリーピストン29が作動せずに、振動入力に対してフリーピストン29の作動が遅れたり、微振幅の振動に対してスプール41の移動によって見掛け上の流路を液体が通過し減衰力が過少となって周波数に依存した減衰力を発揮できなくなったりする場合がある。これに対して、緩衝装置D2にあっては、上述のように、リーフバルブ63が連絡通路62を開閉する際に、伸側圧力室27および圧側圧力室28の容積を殆ど変動させることがないので、フリーピストン61の作動遅れを生じず、微振幅振動の入力に対しても、減衰力が過少となることなく、周波数に依存した減衰力を発揮することができる。
【0098】
また、上記したリーフバルブ63の内周をガイドボルト64で固定的に支持せず、図7に示す緩衝装置D3のように、リーフバルブ63を軸部64aの外周に軸方向に移動可能に装着して、頭部64cとリーフバルブ63との間にバルブ附勢要素としてのコイルばね67を介装するようにしてもよい。この場合、リーフバルブ63は、コイルばね67が発生する附勢力でフリーピストン61の底部61aへ押圧されていて、伸側圧力室27の圧力が圧側圧力室28の圧力を上回って、差圧がコイルばね67の附勢力に打ち勝つと、底部61aから離間して連絡通路62を開放するようになっている。つまり、コイルばね67の附勢力でリーフバルブ63の開弁圧が設定されており、伸側圧力室27と圧側圧力室28の差圧が開弁圧に達すると、リーフバルブ63が底部61aから離間して連絡通路62が開放され、伸側圧力室27と圧側圧力室28が連通され、伸側圧力室27の圧力を圧側圧力室28へ逃がすようになっている。なお、図中では、バルブ附勢要素をコイルばねとしているが、皿ばねやゴム等の圧縮に対してこれに抗する附勢力を発揮するものあればよい。
【0099】
緩衝装置D3は、緩衝装置D2と同様の作動を呈して緩衝装置D2と同様の作用効果を奏することができる。緩衝装置D3では、バルブ附勢要素としてのコイルばね67を設けることで、リーフバルブ63の開弁圧を容易に設定することができ、緩衝装置D3のピストン速度が低速のときには、リーフバルブ63が開弁しないように開弁圧を設定することで、周波数に依存した減衰力を得やすくなるとともに、高周波数の振動に対してはピストン速度も高速となるためリーフバルブ63が開弁してフリーピストン61の圧側圧力室28側への偏りを抑制する機能を発揮することができる。なお、緩衝装置D2にあっても、リーフバルブ63に初期撓みを与えておくことで開弁圧を調節することができるので、緩衝装置D3と同様の開弁圧の設定が可能である。
【0100】
また、コイルばね67がリーフバルブ63を押圧する位置は、リーフバルブ63の内周であってもよく、その場合には、リーフバルブ63は、外周を撓ませて連絡通路62を開放することも可能であり、コイルばね67の附勢力の設定にもよるが、リーフバルブ63がコイルばね67を縮ませて底部61aから離間するよりも低い差圧で外周を撓ませて連絡通路62を開放させることもできる。このようにすると、弁要素の液体の通過する流れに与える特性を、連絡通路62の開き始めはリーフバルブ63によるバルブ特性とし、コイルばね67が縮んでリーフバルブ63の全体が底部61aから離間すると連絡通路62の断面積と長さの設定によって決まるポート特性へと変化させることができ、当該弁要素の特性のチューニングの自由度が向上し、緩衝装置D3の減衰力特性をより車両に適した減衰力特性とすることができる。
【0101】
以上で、本発明の実施の形態についての説明を終えるが、本発明の範囲は図示されまたは説明された詳細そのものには限定されないことは勿論である。
【産業上の利用可能性】
【0102】
本発明の緩衝装置は、車両の制振用途に利用することができる。
【符号の説明】
【0103】
1,21 シリンダ
2,22 隔壁部材
2a,2b,22a,22b 通路
5,25 伸側流路
6,26 圧側流路
7,27 伸側圧力室
8,28 圧側圧力室
9,29,61 フリーピストン
10 ばね要素
11,30,60 変位補償通路
11a,62 連絡通路
11b 補償用逆止弁
11c 弁要素としてのオリフィス
40 フリーピストン本体
40b 貫通孔
41 スプール
51,52 ばね要素としてのコイルばね
63 リーフバルブ
67 バルブ附勢要素としてのコイルばね
D,D1,D2,D3 緩衝装置
R1、R4 伸側室
R2、R5 圧側室
R3,R6 圧力室

【特許請求の範囲】
【請求項1】
シリンダと、当該シリンダ内に摺動自在に挿入され当該シリンダ内を伸側室と圧側室に区画する隔壁部材と、上記伸側室と圧側室とを連通する通路と、圧力室と、上記圧力室内に移動自在に挿入されて当該圧力室を伸側流路を介して伸側室に連通される伸側圧力室と圧側流路を介して圧側室に連通される圧側圧力室とに区画するフリーピストンと、当該フリーピストンの上記圧力室に対する変位を抑制する附勢力を発生するばね要素とを備えた緩衝装置において、上記伸側圧力室から上記圧側圧力室へ向かう流れのみを許容するとともに当該流れに抵抗を与える変位補償通路を設けたことを特徴とする緩衝装置。
【請求項2】
上記変位補償通路は、上記伸側圧力室と上記圧側圧力室とを連通する連絡通路と、連絡通路の途中に設けられて上記伸側圧力室から上記圧側圧力室へ向かう流れのみを許容する補償用逆止弁と、同じく連絡通路の途中に設けられて流れに抵抗を与える弁要素とを備えたことを特徴とする請求項1に記載の緩衝装置。
【請求項3】
上記変位補償通路は、上記フリーピストンに設けられることを特徴とする請求項1または2に記載の緩衝装置。
【請求項4】
上記フリーピストンは、フリーピストン本体と、当該フリーピストン本体の伸側圧力室側端から圧側圧力室側端へ貫通する貫通孔と、当該貫通孔に摺動自在に挿入されるスプールとを備え、上記連絡通路を上記弁要素とともに当該スプール或いはフリーピストン本体に設け、当該スプールで上記補償用逆止弁を形成したことを特徴とする請求項2または3に記載の緩衝装置。
【請求項5】
上記連絡通路を上記フリーピストンに設け、当該フリーピストンの圧側圧力室側に上記連絡通路を開閉して上記弁要素と上記補償用逆止弁として機能するリーフバルブを設けたことを特徴とする請求項2または3に記載の緩衝装置。
【請求項6】
上記リーフバルブは、上記フリーピストンに離間自在に積層され、当該リーフバルブを上記フリーピストンへ向けて附勢するバルブ附勢要素を設けたことを特徴とする請求項5に記載の緩衝装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−7425(P2013−7425A)
【公開日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2011−140064(P2011−140064)
【出願日】平成23年6月24日(2011.6.24)
【出願人】(000000929)カヤバ工業株式会社 (2,151)
【Fターム(参考)】