説明

電磁波伝送媒体

【課題】加工がより容易で、屈曲による変形耐性もある電磁波伝送媒体を提供する。
【解決手段】管軸と直交する方向の断面が管軸方向で同一形状となる筒状管1を有する。筒状管1は、その内壁が表皮深さ以上の厚みを有する導電層で形成されており、断面形状が、筒軸を指向するn対のリッジ部1b〜1eを有し且つ各対のリッジ部1b〜1eがそれぞれ中心に対して対称をなす円形リッジ導波管形状であり、各対のリッジ部1b〜1eに、それぞれ高周波電力が給電される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、主として、マイクロ波帯以上、特に100GHz帯以上の高周波機器間もしくは高周波機器とデバイス間を接続する電磁波伝送媒体に関する。
【背景技術】
【0002】
その相対位置を正確に定めることができなかったり、一方又は双方の位置が変化したりする高周波機器同士を接続するための電磁波伝送媒体として、同軸線路や可撓性導波管がある。同軸線路は、可撓性に優れ、しかも比較的安価なために多用されているが、周波数が高くなるにつれて細径化が必要となり、伝送損失の増大、伝送特性維持のための機械加工精度の上昇、耐久性の低下等の問題が生じる。例えば、テフロン(登録商標)を絶縁体に使用し、同軸線路で遮断周波数fcを100[GHz]に選ぶと、その内径は、約1[mm]となる。このように細い同軸線路では、損失が増加するばかりでなく、わずかな機械的誤差が伝送特性に大きな影響を及ぼす。
【0003】
伝送損失防止の観点からは可撓性導波管が優れているが、可撓性導波管は、管壁部分が特殊形状(例えばベローズ状)に成形する必要があるため(特許文献1、2参照)、生産効率が著しく悪い。加えて、可撓性導波管では、例えば30[GHz]を超えてミリ波帯まで使用できるような構造を実現するためには複雑かつ高度な加工技術が必要となる。また、そのような細い可撓性導波管では、耐久性に欠ける。
【0004】
ベローズ状の金属製導波管ではなく、誘電体棒の表面に薄い導体をすき間無く張り付けた、断面楕円状の導波管も存在する(特許文献3)。このような導波管は、誘電体棒を作成した後にその表面に金属テープを巻いたり、あるいは、導電メッキを施したりするだけで導波管が得られるので、低コストで製造できる利点がある。しかしこのような導波管では、伝送損失が大きく、また、柔軟性が十分でない。さらに、断面が楕円状であるために曲げに対して伝送モードが不安定になり、特性が変化するという課題が残る。
【0005】
このような課題を解決するため、本発明者らは、使用する電磁波の周波数帯が高くても製造コストを上昇させることなく、曲げが生じても伝送モードに悪影響を与えない電磁波伝送媒体を開示した(特許文献4)。この電磁波伝送媒体は、筒状管が、管軸と直交する方向の断面形状が管軸方向で同一となるように成型され、且つ、リッジ部によってマッチングするインピーダンス範囲を広くすることができるので、導波管や同軸線路等に比べて加工が容易となる。また、リッジ部が、曲げが生じたときの補強材として作用するとともに、伝送モードを安定にすることができるので、曲げによる特性の劣化も抑制できるという優れた効果を奏する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】実公昭41−018451号公報
【特許文献2】実公昭45−018273号公報
【特許文献3】特開平8−195605号公報
【特許文献4】特開2010−16714号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献4に開示された電磁波伝送媒体は、上記のように優れた効果を奏するものであるが、この電磁波伝送媒体では、筒状管の断面形状が中心に対して非対称となる態様が存在するため、従前構造の同軸線路等よりは加工がしやすいものの、加工の容易性をより高め、且つ、全方向の屈曲による変形耐性を強化できる構造のものに改善する必要があった。
本発明は、上記の問題に鑑みてなされたものであり、その目的は、加工がより容易で、屈曲による変形耐性もある電磁波伝送媒体を提供することにある。
【課題を解決するための手段】
【0008】
本発明が提供する電磁波伝送媒体は、管軸と直交する方向の断面が管軸方向で同一形状となるように成型された筒状管を有し、前記筒状管は、その内壁が表皮深さ以上の厚みを有する導電体で形成されており、前記断面の形状が、前記筒軸を指向するn対(nは1以上の自然数)のリッジ部を有し且つ各対のリッジ部が線対称をなす閉曲面形状であり、各対のリッジ部には、それぞれ他の対のリッジ部と異なる部位から、独立に高周波電力が給電されることを特徴とする。
【0009】
本発明の電磁波伝送媒体の前記断面の形状は、より具体的には、前記筒状管の内径に相当する第1の円と、この第1の円の内壁にそれぞれ当該第1の円よりも内径が小さいn対の小円の外壁とを一体に接続した閉曲面形状であり、各小円がそれぞれ前記リッジ部をなす。
【0010】
ある実施の態様では、対向するリッジ部同士を結ぶ線が前記断面上で直交する2対のリッジ部を含み、一方の対のリッジ部の所定部位には第1周波数の高周波電力を給電するための第1給電点が存在しており、他方の対のリッジ部の一つであって前記第1給電点から1/2λ(λは伝送波長)だけ離れた部位には、前記第1周波数と異なる第2周波数の高周波電力を給電するための第2給電点が存在する。
【0011】
前記断面のサイズは、例えば、電磁波の自由空間速度がC、前記第1の円の断面内周を辿った円弧の長さの総計がL、前記筒状管の内部空間の誘電率がεである場合、前記内部空間に導入される電磁波を、遮断周波数fc(=1.84C/(√εL)で遮断するサイズである。前記内部空間は自由空間であっても良く、誘電体が充填されていても良い。
【発明の効果】
【0012】
本発明の電磁波伝送媒体は、筒状管が、管軸と直交する方向の断面形状が管軸方向で同一となるように成型され、且つ、リッジ部によってマッチングするインピーダンス範囲を広くすることができるので、周波数が高くなっても(例えば100GHz以上のミリ波帯でも)加工が容易であり、量産性に優れる効果がある。
また、本発明の電磁波伝送媒体の断面形状は、n対のリッジ部がそれぞれ筒状管の中心に対して対称をなす円形リッジ導波管形状なので、加工が容易で、全方向の屈曲による変形耐性を既存のものよりも高めることができる。
n対のリッジ部は、曲げが生じたときの補強材として作用するので、屈曲による変形耐性を既存のものよりも高まるとともに、伝送姿態を安定にすることができるので、特性の劣化を抑制することができる。さらに、各対のリッジ部の一方のリッジ部にそれぞれ高周波電力が給電されるので、n種類の高周波電力を同時に伝送することができる。
【図面の簡単な説明】
【0013】
【図1】本発明を適用した筒状管の第1実施形態の断面構造例を示す斜視図。
【図2】第1実施形態の筒状管の電界分布を示した説明図。
【図3】筒状管と同軸線路との結合構造体を示す側面断面図。
【図4】図3のB点での断面図。
【図5】図3のC点での断面図。
【図6】第1実施形態の筒状管の通過特性図。
【図7】参考として示した同軸線路の通過特性図。
【図8】第1実施形態の筒状管の信号分離度。
【図9】第1実施形態の筒状管の反射電力の変化を示した特性図。
【図10】筒状管の応用例として示した高周波デバイスの測定システムの説明図。
【図11】第2実施形態の筒状管の断面構造例を示す斜視図。
【図12】第2実施形態の筒状管の通過特性図。
【図13】第2実施形態の筒状管の反射電力の変化を示した特性図。
【図14】第3実施形態の筒状管の断面図。
【図15】第4実施形態の筒状管の断面図。
【図16】第4実施形態の筒状管の通過特性図。
【図17】第4実施形態の筒状管の反射電力の変化を示した特性図。
【図18】第4実施形態の筒状管の信号分離度。
【発明を実施するための形態】
【0014】
以下、図面を参照して、本発明の電磁波伝送媒体の実施の形態例を説明する。
[第1実施形態]
本発明を適用した電磁波伝送媒体は、可撓性の筒状管と、この筒状管の内壁にその外壁の一部を接続したn対(nは1以上の自然数)の内部導体とを主たる要素として含む。
図1は、nが2である筒状管において、管軸と直交する方向の断面形状例を示した斜視図である。図1に例示される筒状管1は、断面形状が、第1の円1aと、第1の円1aの内部で第1の円の中心(筒状管1の管軸)に対して対称に配置された第2の円1b及び第3の円1cの対と、第1の円1aの内部で第1の円の中心に対して対称で、第2の円1bの中心と第3の円1cの中心とを結ぶ軸線と直交する軸線上に位置する第4の円1d及び第5の円1eの対とを接続した閉曲面をなす。
第2〜第5の円1b〜1eの円弧で囲まれた空間を本明細書では陥没空間40と呼ぶ。第2〜第5の円1b〜1eの円弧角は、使用する周波数に応じて、それぞれ対象軸から左右方向にそれぞれ90度〜180度の範囲の値を採用し得る。180度の場合、陥没空間40は、第1の円1aの内壁に第2〜第5の円1b〜1eが内接した形となる。図1の断面形状は、筒状管1の管軸方向で同一となるように成型される。
【0015】
筒状管1のうち、第1の円1aに相当する部分は、その厚みが、少なくとも表皮深さ以上となる導電体で構成される。但し、電磁波を伝搬させるための伝送空間30と接する部分が導電体であれば良いので、樹脂等の加工しやすい部材の表面に表皮深さ以上の導電層を設けるようにしても良い。導電体又は導電層は、金、銀、銅のいずれか、あるいは、その組み合わせから成る。
「表皮深さ」は、表皮効果により高周波電流が表面の37%になる表面からの距離をいう。この距離で高周波電流が表面の値の1/e になる。eは自然対数の底(約2.72)であり、1/eが約0.37となる。導電体又は導電層で生ずる損失は、その表面から表皮深さの点まで一様に広がって流れていると仮定したときのオーム損失で近似的に与えられる。表皮深さは、ミリ波帯では、数ミクロン程度あるいはそれ以下となる。
【0016】
この実施形態の筒状管1は、両端部を有しており、一端側の1対の内部導体に、第1周波数の高周波電力を印加するとともに、もう1対の内部導体に、第1周波数と異なる第2周波数の高周波電力を印加することにより、図2に示されるように、第1周波数の高周波電力により生じる電界E1(破線)と第2周波数の高周波電力により生じる電界E2(実線)とが励起される。
【0017】
管軸を中心として対称となる1対の内部導体は、それぞれダブルリッジとして機能する。そこで、以後の説明では、その断面が第2の円1b及び第3の円1cの対から成る内部導体を第1ダブルリッジ、その断面が第4の円1d及び第5の円1eの対から成る内部導体を第2ダブルリッジと称する。また、それぞれの内部導体を特に区別する必要が無い場合は、「リッジ部」と呼ぶ。
電界E1の信号は、第1ダブルリッジを構成する内部導体間を最短で結ぶ方向に電界方向が拘束されたまま筒状管1の管軸方向に伝搬し、他方、電界E2の信号は、第2ダブルリッジを構成する内部導体間を最短で結ぶ方向に電界方向が拘束されたまま筒状管1の管軸方向に伝搬する。
【0018】
その結果、電界E1の信号及び電界E2の信号は、筒状管1の他端の断面内において、独立に取り出すことができる。これらの2つの信号が伝搬する間、信号の電界方向、すなわち電界E1,E2の方向は、互いに電気的に直交しているので、信号が相互に結合することがない。すなわち、垂直偏波と水平偏波の電磁波が基本的に互いに影響を及ぼすことが無いのと同じで、電界E1の信号及び電界E2の信号は、伝搬中、相互に干渉することが無い。仮に、2つの信号の間にクロストークが発生したとしても、それは断面形状の機械的対称性の誤差、あるいは、直交性の誤差に応じて発生するものなので、これらの機械的条件を調整することによって、低減が可能である。筒状管1が、軸周りあるいは軸と垂直の方向に屈曲していても、断面内の機械的対称性が維持されていれば、2つの信号は、互いに独立性を保ったまま、伝送される。
【0019】
<同軸線路との結合体>
筒状管1への高周波電力の給電は、同軸線路等を通じて行われる。図3は筒状管1と同軸線路との結合構造体を示す筒状管1の管軸方向の側面断面図であり、図4は図3のB点での断面図であり、図5は図3のC点での断面図である。
同軸線路において、接続媒体2の中心に具備された中央導体2aは、筒状管1の短絡面(A点)から所定の距離L1(=略1/4λ(λは伝搬波長)だけ離れた距離)の部位(B点)に、断面が円1dとなるリッジ部を貫通する接続媒体2を介して、断面が円1eとなるリッジ部に接続され、この方向に電界E1を励起させる。
【0020】
もう一本の同軸線路において、接続媒体2の中心に具備された中央導体2bは、B点からL2(=略1/2λ(λは伝搬波長)だけ離れた距離)の部位(C点)に、断面が円1cとなるリッジ部を貫通する接続媒体2を貫通して断面が円1bとなるリッジ部に接続され、この方向に電界E2を励起させる。
励起した電界E1,E2の信号は、それぞれ、電気的に直交しながら、筒状管1の伝送空間30内を筒状管の軸長方向に伝搬する。
受信側も図3〜図5と同じ位置関係の結合構造体により、電界E1,E2の信号が同軸線路に伝達される。
【0021】
<特性>
次に、筒状管1の特性について説明する。
第1の円1aの内径をD、第2〜5の円1b〜1eの外径をd、第2〜5の円の数をN(=4)、遮断周波数をfc、遮断波長をλcとすると、第2〜5の円1b〜1eが、第1の円1aと接している場合の遮断周波数fcは、近似的に以下の式で求めることができる。Cは電磁波の自由空間速度である。
fc=C/λc
=1.84C/(π√ε(D+Nd))
【0022】
また、第2〜5の円1b〜1eが第1の円1aと接する条件に対し、第2〜5の円1b〜1eの中心が外側にオフセットしていることによって、互いの円が部分的に重複し、円弧が欠損する位置に配置されている場合、断面の内周を辿って計った円弧の総計Lを用い、遮断周波数fc、及び、遮断波長λcを、以下のように置き換えることができる。
fc=C/λc
=1.84C/(√εL)
【0023】
遮断周波数fcは、同軸線路と逆に、使用周波数よりも低い周波数でなければならないから、同軸線路で太さの制約が課されるのに対し、筒状管1では、細さの制約が課せられる。このため、ごく高い周波数においては、加工上、格段に有利となる。また、伝送特性インピーダンスは、d/Dで定まるが、筒状管1の場合、d/Dは、0.25〜0.5の程度に選択することができる。この比は、外形サイズ、遮断周波数、損失、可撓性の関係から総合的に決定する。
【0024】
また、相対的に小さい第2〜5の円1b〜1eが、相対的に大きな第1の円と接する条件に対し、第2〜5の円1b〜1eの中心が、やや外側にオフセットしていることによって、互いの円が部分的に重複し、円弧の一部が欠損する。第2〜5の円1b〜1eの内接位置からの中心のずれ寸法/第2〜5の円1b〜1eの半径をオフセット量とすると、このオフセット量は、当該筒状管1のねじれ、曲げに対し、偏波が安定に伝送できることを目的として、0(第2〜5の円1b〜1eが第1の円1aに内接する位置)乃至0.5(第2〜5の円1b〜1eが第1の円1aに半分埋没する位置)以上の値が選択される。
【0025】
すなわち、当該筒状管1のねじれ、曲げが生じないか、生じても著しく小さい場合、オフセット量は、1(第2〜5の円1b〜1eが完全に第1の円1aに埋没し、実質的に存在しない状態)であっても良いが、当該伝送媒体のねじれ、曲げが増加する場合、これに耐えて偏波を安定に伝送するためには、オフセット量を0に近づくように減少させる必要がある。オフセット量が0に近づいて伝送空間30の断面積が減少し、接する円弧のなす角が鋭角になると、筒状管1の内壁面に流れる電流密度と表皮効果とが増加し、損失増加の原因となる。また、内部への凸が深くなると、その製作の困難度合いが増す。このような製作上の難易度と電気的特性(ねじれ、曲げに対する伝送姿態安定性と伝送損失)を勘案し、好ましくは、0.25〜0.75の間で、オフセット量を選択する。
【0026】
次に、D=2mm、d=0.6mm、オフセット=0.03mm/0.3mmに選んだ、d/D=0.3、オフセット=0.1、銅製の筒状管1の特性を具体的に説明する。
図6は、線路長5mmあたりの通過特性図であり、100GHz〜330GHzの範囲の例を示している。
また、図7は、330GHzまで使用できる同軸線路の通過特性図である。
このように高い周波数の信号を伝送する場合、同軸線路は、その外部導体の直径は0.3mmを下回る必要があるが、本実施形態の筒状管1は、その6倍のサイズで足りるため、加工が格段に容易になることがわかる。
また、同軸線路の場合、例えば150GHzにおける通過損失は100mm当たり少なくとも3dBを上回る程度であるのに対し、本実施形態の筒状管1では約0.7dBであり、大幅に通過損失を低減できることがわかる。
【0027】
図8は、図6と同じ条件で構成した筒状管1の信号分離度の一例を、100GHz〜330GHzの範囲で示した特性図である。本実施形態の筒状管1は、120GHz〜300GHzの広帯域にわたり、概ね50dBの信号分離度が実現できており、実用上、独立な2つの信号を同時に伝送できることがわかる。
【0028】
図9は、図6と同じ条件で構成した筒状管1の反射電力の一例を、100GHz〜330GHzの範囲で示した特性図である。反射電力も、広帯域にわたって良好であることがわかる。
【0029】
<応用例>
図10は、本実施形態の筒状管1を、高周波デバイスの測定システムに応用した場合の説明図である。図示の測定システムは、高周波測定器3と二端子対高周波デバイス6との間に、同軸線路4と、信号(S)及び接地(G)を組み合わせた高周波2信号配列を有する試験探針5を介して、独立した2つの信号を同時に伝送できる筒状管1を設けている。筒状管1は同軸線路4よりも低損失なので、その分、距離を延長し、且つ、2つの信号を1本の柔軟で耐久性に優れ、廉価な伝送路で共用伝送できるので、測定システムにおける伝送路の取り回しは格段に円滑となり、測定の利便性を高めることができる。
【0030】
<製法>
筒状管1は、以下のようにして製造することができる。
まず、上記の閉曲面内の伝送空間30を残すような抜き型を作成し、この抜き型を用いて、基体を引き抜き成型する。これにより、外被シース(第1の円1aの外壁)と2対のダブルリッジとが形成され、全体的に円形断面とする。引き抜き成型は、基体を鋼製のダイから引き抜くことで断面が閉曲面状の筒を得る成型法である。筒状管の管軸と垂直な方向の断面に対して、ほぼ鉛直な方向に必要なだけ延出することができるので、同一の断面形状を維持したまま、一方向に強度を大きくした成型品(筒状管1)を量産することができる。
【0031】
外被シースは、曲げに対する座屈強度を向上するためのガラス繊維やその他の補強部材を含む。曲げをより容易にするために、適度なエラストマー性を有していても良い。抜き型で引き抜き成型した後、必要に応じて、伝送空間30に剥離強度を増すための下地鍍金、表皮抵抗を低減するための表層鍍金を施す。下地鍍金と表層鍍金の間には、必要に応じて拡散防止層を挟んでも良い。表層鍍金は導電層を形成する。
【0032】
伝送空間30は自由空間なので、伝送損失の向上に資することができるが、この伝送空間30に誘電体を充填しても良い。この場合は、自由空間のときより損失は増加するものの、伝送路の曲げに対する座屈強度の向上と伝送路径の電気的短縮が実現できる。
【0033】
このようにして製造される筒状管1において、伝送空間30に導入される電磁波の伝送モードは、断面内に一対の電界の極を有する点で、矩形導波管、円形導波管とほぼ同じとなる。すなわち、この筒状管1は、図2の電界分布図に示されるように、円形導波管、矩形導波管の応用であるダブルリッジ導波管の電界分布特性をほぼ受け継いでいる。
特に、本実施形態の例では、第2〜第5の円1b〜1eの円弧をそれぞれリッジ部として作用させることにより、インピーダンスが整合する範囲が拡大するばかりでなく、また、電界極の位置を固定することができるので、曲げが生じた場合であっても、伝送空間30における伝送モードを安定にすることができる。この点が、曲げによって電界分布が変化する円形導波管や同軸線路と大きく異なる。
【0034】
[第2実施形態]
本発明の電磁波伝送媒体は、第1実施形態以外の形態で実施することもできる。
例えば、図11に例示した筒状管は、管軸と直交する方向の断面形状が、第1の円1aの内壁に、1対のリッジ部、すなわち第2の円1b及び第3の円1cの対を接続した閉曲面をなす。この断面形状は、筒状管の管軸方向で同一となるように成型される。
図12は、D=1.8mm,d=0.9mm,(d/D=0.5),オフセット0.25mm/0.45mm=0.5の場合の通過特性図である。また、図13は、図12と同じ条件での反射電力の特性である。
【0035】
[第3実施形態]
第1実施形態及び第2実施形態では、リッジ部がすべて同じ形状及びサイズである場合の例を示したが、対となるリッジ部が同じ形状及びサイズで、且つ、管軸に対して対称になれば良いので、例えば図14に示すように、これまで説明した第2の円1b及び第3の円1cの部位に、これらよりも径の異なる円1b’,1c’を設けるようにしても良い。
【0036】
[第4実施形態]
本発明の電磁波伝送媒体では、4対のリッジ部を設けることもできる。
例えば、図15は、第1実施形態において説明した第2の円1bと第4の円1dの間に第6の円1f、第4の円1dと第3の円1cの間に第8の円1h、第3の円1cと第5の円1eの間に第7の円1g、第5の円1eと第2の円1bの間に第9の円1iを設け、管軸に対して対称となる第6の円1fと第7の円1gとで第3のダブルブリッジを形成し、同じく管軸に対して対称となる第8の円1hと第9の円1iとで第4のダブルブリッジを形成している。第2〜第5の円1b〜1eの外径はd1、第6〜第9の円1f〜1iの外径はd2(<d1)である。
【0037】
図16は、第4実施形態における筒状管の通過特性図であり、D=2mm,d1=0.6mm(d1/D=0.3),オフセット0.03/0.3mm=0.1、d2=0.4mm(d2/D=0.2) ,オフセット0.04/0.2mm=0.2の場合の例を示している。また、図17は第4実施形態における筒状管の反射電力、図18は、4つの信号の信号分離度を表している。
いずれも実用的な結果が得られていることがわかる。
【0038】
以上説明したように、本発明の電磁波伝送媒体の一例となる筒状管は、管軸と直交する方向の断面が管軸方向で同一となる形状に成型され、伝送空間30と接触する内壁部分が表皮深さ以上の厚みを有する導電体で形成されており、断面の形状は筒軸を指向するn対(nは1以上の自然数)のリッジ部を有し且つ各対のリッジ部が線対称をなす閉曲面形状なので、リッジ部が補強材として作用し、屈曲による変形耐性を既存のものよりも高まるとともに、伝送姿態を安定にすることができるので、特性の劣化を抑制することができる。また、リッジ部の存在によりマッチングするインピーダンス範囲を広くすることができるので、100GHz以上のミリ波帯であってもサイズを小さくする必要がなくなる分、加工が容易となる。
さらに、各対のリッジ部に、それぞれ他の対のリッジ部と異なる部位から、独立に高周波電力が給電されるので、1本の筒状管で複数の信号を同時に伝送することができる。
【符号の説明】
【0039】
1 筒状管
1a 外部導体となる第1の円
1b〜1i,1b’,1c’ 内部導体となる第2〜第9の円
2 接続媒体
2a,2b 同軸線路の中央導体
3 高周波測定器
4 同軸線路
5 試験探針
6 2端子対高周波デバイス
20 外被シース
30 伝送空間
40 陥没空間

【特許請求の範囲】
【請求項1】
管軸と直交する方向の断面が管軸方向で同一形状となるように成型された筒状管を有し、
前記筒状管は、その内壁が表皮深さ以上の厚みを有する導電体で形成されており、
前記断面の形状が、前記筒軸を指向するn対(nは1以上の自然数)のリッジ部を有し且つ各対のリッジ部が線対称をなす閉曲面形状であり、
各対のリッジ部には、それぞれ他の対のリッジ部と異なる部位から、独立に高周波電力が給電される、
電磁波伝送媒体。
【請求項2】
前記断面は、当該筒状管の内径に相当する第1の円と、この第1の円の内壁にそれぞれ当該第1の円よりも内径が小さいn対の小円の外壁とを一体に接続した閉曲面形状であり、各小円がそれぞれ前記リッジ部をなす、請求項1記載の電磁波伝送媒体。
【請求項3】
対向するリッジ部同士を結ぶ線が前記断面上で直交する2対のリッジ部を含み、
一方の対のリッジ部の所定部位には第1周波数の高周波電力を給電するための第1給電点が存在しており、
他方の対のリッジ部の一つであって前記第1給電点から1/2λ(λは伝送波長)だけ離れた部位には、前記第1周波数と異なる第2周波数の高周波電力を給電するための第2給電点が存在する、請求項2記載の電磁波伝送媒体。
【請求項4】
前記断面のサイズは、電磁波の自由空間速度がC、前記第1の円の断面内周を辿った円弧の長さの総計がL、前記筒状管の内部空間の誘電率がεである場合、前記内部空間に導入される電磁波を、遮断周波数fc(=1.84C/(√εL)で遮断するサイズである、請求項3記載の電磁波伝送媒体。
【請求項5】
前記内部空間が自由空間である、請求項4記載の電磁波伝送媒体。
【請求項6】
前記内部空間に誘電体が充填されている、請求項4記載の電磁波伝送媒体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2012−80178(P2012−80178A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【出願番号】特願2010−220897(P2010−220897)
【出願日】平成22年9月30日(2010.9.30)
【出願人】(000006758)株式会社ヨコオ (158)
【Fターム(参考)】