説明

Fターム[4G146NA24]の内容

炭素・炭素化合物 (72,636) | 原料、前駆体 (603) | 特定の形状、構造、性質のもの (105)

Fターム[4G146NA24]の下位に属するFターム

Fターム[4G146NA24]に分類される特許

1 - 19 / 19


【課題】常温下と高温下の双方の雰囲気下においても、高強度を有する炭化珪素焼結体を製造する方法を提供する。
【解決手段】アチソン炉を用いて、粒子内にシリカとカーボンの各々が全体的に分布しており、かつ、B及びPの各々の含有率が1ppm以下である、シリカとカーボンからなる粒子を加熱して、炭化珪素粉末を得る、炭化珪素粉末製造工程と、得られた炭化珪素粉末を焼結して、炭化珪素焼結体を得る、焼結工程を含む、炭化珪素焼結体の製造方法。 (もっと読む)


【課題】生体活性を有する炭化ケイ素(SiC)ナノチューブを提供すること、及びそのようなSiCナノチューブの簡潔な作製方法を提供すること。
【解決手段】生体活性炭化ケイ素ナノチューブは、カーボンナノチューブとSi粉末との真空熱処理により、多結晶SiCナノチューブを合成し、合成された前記多結晶SiCナノチューブをNaOH処理またはKOH処理し、NaOH処理またはKOH処理後、多結晶SiCナノチューブをHCl処理することよって作製される。合成された生体活性SiCナノチューブの外径は200nm以下であり、且つその内径は150nm以下である。 (もっと読む)


【課題】純度の向上と、収率の低下とのトレードオフ関係を改善した炭化珪素単結晶育成用原料の製造方法を提供する。
【解決手段】炭素坩堝を用いた昇華再結晶法による結晶成長に際して形成され、炭素坩堝1に結合した再結晶析出物を、炭素坩堝1ごと粉砕し、再結晶析出物が結合した状態で破片となった炭素坩堝材に水を浸透させる、水が浸透した破片状の炭素坩堝材に対して、水が凍結、融解する温度での温度サイクルを複数回繰り返した後、温度サイクルをかけられた炭素坩堝材を粉砕して炭化珪素単結晶育成用原料とする。 (もっと読む)


【課題】簡易な方法で、所定の形状のタンタルと炭素との固相拡散接合を可能とし更に、タンタルと炭素の固相拡散接合を行う場所以外のタンタル表面に炭化物を形成する方法を提供する。
【解決手段】タンタル若しくはタンタル合金をチューブ状の形状に加工し、チューブの中に炭素粉末を圧入し、その後、チューブをコイル形状に加工した後に真空熱処理炉内に設置し、タンタル若しくはタンタル合金表面に形成されている自然酸化膜であるTa25を除去した後、タンタル若しくはタンタル合金チューブ内面と前記炭素粉末PITを固相拡散結合で分子接合させるとともに、前記真空熱処理炉内に炭素源を導入してタンタル若しくはタンタル合金チューブの外表面に炭素を侵入させてTaCを形成する。 (もっと読む)


【課題】電気特性や機械特性に優れ、かつ電子線照射によってチューブ構造が崩壊することがない、単結晶炭化ケイ素ナノチューブの製造方法を提供すること。
【解決手段】多結晶炭化ケイ素ナノチューブを作製し、その多結晶炭化ケイ素ナノチューブに対して、それを貫通するのに必要なエネルギー以上で加速されたイオンを照射することにより、単結晶炭化ケイ素ナノチューブを製造する。このとき、例えば、イオンは、照射温度900℃以上で照射され、その照射量がはじき出し量として5dpa以上である。 (もっと読む)


【課題】電気特性や機械特性に優れ、かつ電子線照射によってチューブ構造が崩壊することがない、アモルファス炭化ケイ素ナノチューブの製造方法を提供すること。
【解決手段】多結晶炭化ケイ素ナノチューブを作製し、その多結晶炭化ケイ素ナノチューブに対して、それを貫通するのに必要なエネルギー以上で加速されたイオンを照射することにより、アモルファス炭化ケイ素ナノチューブを製造する。このとき、例えば、イオンは、照射温度200℃以下で照射され、その照射量がはじき出し量として1dpa以上である。 (もっと読む)


【課題】有機−無機変換ルートにより作製される炭化ケイ素の高性能化ならびに高度利用をはかるために、新しい前駆体有機ポリマーとして、ポリ[(シリリン)エチニレン]ならびにポリ[(シリレン)エチニレン]を合成した。
【解決手段】
ポリ[(シリリン)エチニレン]あるいは/ならびにポリ[(シリレン)エチニレン]を焼成する過程において、ヒドロシリル化反応により高度なクロス・リンク型ネットワーク構造が生起するために、熱分解による物質損失が大幅に抑止され、欠陥の少ない高品質の炭化ケイ素の粉末、成形品、繊維、薄膜、複合材料マトリックスが作製できる。 (もっと読む)


【課題】本発明は、カーボンナノチューブ複合材料体及びその製造方法に関する。
【解決手段】本発明のカーボンナノチューブ複合材料体の製造方法は、少なくとも一本のカーボンナノチューブからなるカーボンナノチューブ構造体を提供する第一ステップと、前記カーボンナノチューブ構造体における少なくとも一本のカーボンナノチューブの表面に金属被覆層を形成させる第二ステップと、真空条件でカーボンナノチューブ構造体に電流を通して、前記少なくとも一本のカーボンナノチューブの外表面に形成された金属被覆層を溶融させると同時に、金属被覆層における金属をカーボンナノチューブの炭素と反応させて、前記カーボンナノチューブの外表面に複数の金属炭化物粒子を形成させる第三ステップと、を含む。 (もっと読む)


【課題】飛散等が無い安全なナノファイバー及びその製造方法を提供する。
【解決手段】基板上に高分子薄膜を形成し、高分子薄膜に対して、飛跡が基板に到達可能なイオンビームを複数の方向から照射し、高分子薄膜内に、3次元的に相互接続され、かつ一端が基板表面に固定されている複数個の円筒架橋部を形成した後、これを溶媒で洗浄する工程を経てナノファイバーを製造する。 (もっと読む)


任意にpまたはn型ドープした連続セラミック(例えば炭化ケイ素)ナノファイバ(502,602,604,606,608,702,704,1102,1104)は、ポリマセラミック前駆体をエレクトロスピニングすることによって製造され、ポリマセラミック前駆体の細い繊維を生成し、これは次いで熱分解される。セラミックナノファイバは、強化された複合材料(400)、熱電発電機(600,700)、および高温粒子フィルタ(1200)に限定されない様々なアプリケーションに用いられる。 (もっと読む)


【課題】二次加工することなく、低温でカーボンナノチューブ集合体を製造するためのカーボンナノチューブ集合体の製造方法を提供することを目的とする。
【解決手段】有機ケイ素ポリマーを、空気、オゾン、酸素、塩素ガス、臭素ガス、及びアンモニアガスのうちいずれか1以上の酸化性ガス雰囲気中、50〜400℃の温度で焼成し有機ケイ素ポリマーの不融化物を得る第1工程と、前記有機ケイ素ポリマーの不融化物を焼成し炭化ケイ素を得る第2工程と、前記炭化ケイ素に、1100nm以下の波長のレーザー光を照射しながら、真空度1.01×10〜1.33×10−8Pa中、500〜1700℃の温度で焼成しカーボンナノチューブの集合体を得る第3工程とを備えたことを特徴とするカーボンナノチューブ集合体の製造方法である。 (もっと読む)


【課題】高強度SiCマイクロチューブを提供する。
【解決手段】ケイ素系高分子繊維を電離放射線の照射により表面部のみ酸化し、酸化部分を熱処理により架橋した後、ケイ素系高分子材料が可溶な溶媒とケイ素高分子と反応してアルコキシドを生成する溶媒とを混合した混合溶媒により、繊維中心部の未架橋部分を抽出して中空繊維とし、更に、中空繊維を不活性ガス中で焼成して直径20〜100μmの高強度炭化ケイ素(SiC)マイクロチューブとする。 (もっと読む)


【課題】複雑な処理を必要とせずに高濃度のGeを含有するSiCGe結晶を成長する方法を提供する。
【解決手段】基板上のSiGe結晶薄膜を炭化することによりSiCGe結晶薄膜を製造する。 (もっと読む)


【課題】大きな比表面積を有するばかりでなく、前駆体ポリマーの熱分解中に起こるガス発生と体積収縮に起因して形成される欠陥を大幅に低減して、構造材としても利用することのできる多孔質体を提供する。
【解決手段】流動性のある前駆体ポリマーから得られる多孔質成形体であって、前駆体ポリマー成形体から互いに連通する気孔を有する前駆体硬化成形体を形成し、この前駆体硬化成形体を焼成して多孔質成形体を得る。 (もっと読む)


【課題】ナノメータ単位の粒子径を有するW、Ta、Nb、Cr、Siの炭化物粉末の合成手段を提供する。
【解決手段】金属アルコキシドと、C、H、N、O以外の元素を実質的に含まない有機物の炭素源とを溶媒に溶解した後に、乾燥し得られた組成物を、非酸化雰囲気中、1000〜1900℃にて炭化処理する。アルコキシドに存在する配位子と、炭素源の官能基を液相中で置換し、安定に存在させることにより、金属の酸化物生成を抑制できる。得られた金属炭化物は最大粒子径が150nm以下で遊離炭素含有量が0.5重量%以下である。この焼結体は強度や破壊靭性(耐クラック発生・伝播性)にも優れており、加工時のクラック発生や粒子脱落(プルアウト)が無い材料である。また、炭化物が微細な為、2〜15重量%の炭化物含有量でも従来のセラミックス複合材料焼結体と同等以上の機械的特性や加工特性が得られる。 (もっと読む)


【課題】 可とう性のある基材上に形成したカーボンナノチューブの集合体およびその製造方法を提供する。
【解決手段】 炭化ケイ素で構成された、シート、繊維、あるいは該繊維を使った織物の表面にカーボンナノチューブが形成されているカーボンナノチューブ集合体であり、前記シート、繊維、あるいは該繊維を使った織物は有機ケイ素ポリマーを原料として製造された炭化ケイ素で構成されていることが好ましい。前記有機ケイ素ポリマー中には、−M−C−(ここでMは金属)または−M−O−の構造単位を有する金属元素を有し、ポリマー中のSiと該金属元素との比(Si:M)が2:1〜200:1の範囲内であることが好ましい。 (もっと読む)


【課題】簡易な方法で、所定の形状のタンタルと炭素を固相拡散接合を可能とし更に、タンタルと炭素を固相拡散接合を行う場所以外のタンタ表面に炭化物を形成することを可能とする。
【解決手段】タンタル若しくはタンタル合金と炭素基板とを真空熱処理炉内に設置し、前記タンタル若しくはタンタル合金表面に形成されている自然酸化膜であるTa25が昇華する条件下で熱処理を行い、前記Ta25を除去した後、前記真空熱処理炉内に炭素源を導入して熱処理を行い、前記タンタル若しくはタンタル合金表面と炭素基板表面を固相拡散接合させると同時に、タンタルと炭素を固相拡散接合を行う場所以外のタンタル表面に炭化物を形成する。 (もっと読む)


【課題】カーボンナノチューブの高強度、高ヤング率の特性を活かし、耐摩耗性と耐酸化性能を向上させた炭化ケイ素結合カーボンナノチューブ固化体とその製造方法を提供する。
【解決手段】ポリカルボシラン8重量%乃至80重量%とカーボンナノチューブ92重量%乃至20重量%とを混合して被覆カーボンナノチューブを作る被覆工程と、ポリカルボシラン被膜の表面を架橋反応する架橋反応工程と、架橋された被覆カーボンナノチューブを800℃乃至1600℃の温度範囲で、非酸化性雰囲気中で熱処理する焼成工程とを有する。これにより、カーボンナノチューブC1乃至CNが96重量%乃至30重量%と炭化ケイ素S1乃至S(N-1)が4重量%乃至70重量%からなる固化体であって、かさ密度1.3g/cm3以上である炭化ケイ素結合カーボンナノチューブ固化体が得られる。 (もっと読む)


【課題】
現状では、壁厚が10μm以下の任意の壁厚に制御してSiCマイクロチューブを製造することが困難であり、工業的に量産されている直径15μmのSiC繊維を、用途に適した任意の壁厚に制御して中空化することは不可能である。
【解決手段】
ケイ素系高分子繊維を冷却しながら電離放射線を照射することにより表面のみ酸化し、酸化部分を熱処理により架橋した後、有機溶媒により繊維中心部の未架橋部分を抽出して中空繊維とし、これを不活性ガス中で焼成して、壁厚(チューブの肉厚)SiCが2〜10μmの炭化ケイ素(SiC)マイクロチューブを製造する。 (もっと読む)


1 - 19 / 19