説明

Fターム[4K029BB01]の内容

物理蒸着 (93,067) | 被膜構造 (4,668) | 被膜形態 (3,472)

Fターム[4K029BB01]の下位に属するFターム

Fターム[4K029BB01]に分類される特許

1 - 20 / 33


【課題】フィルム状ガラスの両面上に膜が形成されており、反りが抑制された膜付フィルム状ガラスの製造方法を提供する。
【解決手段】フィルム状ガラス1をターゲット2の表面2aに対して垂直に保持した状態でターゲット2の上を通過させながらフィルム状ガラス1の両面1a、1bの上に成膜する。とくに、フィルム状ガラスを、スパッタリング法、CVD法または真空蒸着法により成膜を行うことが好ましく、さらにターゲット上を通過する軌道に沿って旋回させながらフィルム状ガラスの両面の上に成膜することが好ましい。 (もっと読む)


【課題】筒状体の内周面への成膜に適したものであって、かつγ電子によるダメージを抑制することができる成膜装置および成膜方法を提供する。
【解決手段】ターゲットホルダ9は、スパッタ膜の材料としてのターゲット8を保持するためのものであって、相対的に負電位が印加されるように構成されている。筒状体ホルダ2は、筒状体1を保持するためのものであって、相対的に正電位が印加されるように構成された導電部2bを有する。導電部2bは、筒状体1が筒状体ホルダ2に保持された状態において筒状体1の内部空間へ露出するように構成されている。 (もっと読む)


【課題】高い生産性で多段蒸着フィルムを製造する方法を提供する。さらに、多段蒸着フィルムの厚みの増加を小さい範囲に抑えつつ、水蒸気バリア性を大幅に高める技術を提供する。
【解決手段】アノード電極を有するプラズマガンを備えた真空成膜装置を用いて、該真空成膜装置内の蒸着材料収納容器に保持された蒸着材料を蒸発させ、基材の被成膜面に薄膜を形成する第一薄膜形成工程と、第一薄膜形成工程と同様にして、上記薄膜上にさらに薄膜を形成する第二薄膜形成工程と、を備える多段蒸着フィルムの製造方法を採用し、薄膜の形成を、蒸着材料収納容器を上記蒸着材料が蒸発する温度以上に加熱するとともに、蒸着材料収納容器に正電位を印加してプラズマガンから放出される電子を蒸着材料に照射しながら行なう。 (もっと読む)


【課題】 基板上に、高い精度で、形成不良なく電極を形成し得る電子部品の製造方法を提供する。
【解決手段】 本発明の電子部品の製造方法は、平板状の基板1を準備する基板準備工程と、基板1の主面上にレジストパターン2aを形成するレジストパターン形成工程と、基板1の主面上のレジストパターン2aが形成されていない部分にIDT電極4を薄膜技術により形成する電極形成工程と、レジストパターン2aを除去するレジストパターン除去工程とを含み、電極形成工程は、基板1を、電極が形成される側の主面が凹むように反らせておこなうようにした。 (もっと読む)



本発明は、低圧プラズマ工程によって被覆された適応性ナノコーティングに関する。本発明はまた、そのような適応性ナノコーティングを、三次元ナノ構造体、特に導電性および非導電性要素を含む三次元構造体の上に形成する方法に関する。 (もっと読む)


【課題】基材の温度制御を高精度に行い、蒸着する微粒子の粒径を所望の大きさにコントロールできる蒸着装置を提供する。
【解決手段】温度制御ユニット32は、温度制御された液体または固体の熱媒体が供給される伝熱ブロック34と、この伝熱ブロックの基材との対向面側に保持された伝熱ローラー36とを備える。この伝熱ローラーは、降下移動して基材の裏面に当接し、基材の移送に連動してこの移送方向と交差する軸を中心に回転するとともに、基材からの力で上昇移動が可能である。伝熱ローラーおよび伝熱ブロックは、基材と熱媒体との間で熱を伝播し、基材の温度を高精度に制御する。 (もっと読む)


ナノクラスタ源であって、冷却凝集チャンバと、ターゲットをスパッタすべく構成されたマグネトロンであって、前記ターゲットのスパッタされた原子が前記冷却凝集チャンバ内に受けられるように、前記冷却凝集チャンバに接続されたマグネトロンと、前記冷却凝集チャンバに接続された真空源と、前記冷却凝集チャンバに接続された少なくとも1の凝集希ガス源と、前記冷却凝集チャンバに接続された水素ガス源とを具える。有利なことに、前記水素ガスがターゲットと、凝集チャンバの冷却された内面を覆うシリコンフィルムの酸化を防止し、形成されたナノクラスタの表面張力が低減される。 (もっと読む)


【課題】ダイヤモンドライクカーボン膜で被覆保護された導電性基板を提供する。
【解決手段】保護基板は、導電性の基板15と、該基板15の表面を被覆するダイヤモンドライクカーボン層からなる保護膜50と、保護膜50中に分散される導電性の炭素粒子15であって、15基板に接触する接触部と、保護膜から表出する表出部とを有する炭素粒子Cと、を備える。かかる保護基板は、基板洗浄工程、炭素粒子スパッタ工程、ダイヤモンドライクカーボン層形成工程及び表面層除去工程を経て形成される。基板洗浄工程、炭素粒子スパッタ工程及びダイヤモンドライクカーボン層形成工程は、同一のマグネトロンスパッタ装置において連続して実行できる。 (もっと読む)


【課題】勾配型屈折率を備えた多孔質を含む単層構造をした透明導電性のナノ構造薄膜とその製造方法を提供する。
【解決手段】電子ビームシステム100を用いて、ターゲットソースが斜め堆積法により蒸着される。複数の調整可能な試料ステージ104上に蒸着基板114が配置される。プロセスチャンバー101内でガスの流量および温度を制御するため、熱源と複数のガス制御弁107および108が備えられる。蒸着後、薄膜構造と光電子特性を向上させるため、アニール工程が行われる。 (もっと読む)


【課題】耐摩耗性に優れた耐摩耗金属体の製造方法を提供する。
【解決手段】炭化タングステン粒子21を結合相22によって結合してなる超硬合金2の表面を酸によってエッチングして結合相22の一部を除去したエッチング表面を形成するエッチング工程と、その後、チャンバー内に超硬合金2と共に配置した銅ターゲットに電子ビームを照射することによって銅をガス化し、ガス化した銅をエッチング表面において液化させて炭化タングステン粒子21の粒界に含浸させる銅含浸工程とを行う。これにより、超硬合金2の表面に、炭化タングステン粒子21が銅23によって結合された改質表層113を形成する。 (もっと読む)


【課題】成膜室2内における成膜面W1上の熱対流を抑制することにより、成膜面W1への自己組織化単分子の吸着ムラを無くし、緻密な自己組織化単分子膜を形成する。
【解決手段】自己組織化単分子を含有する成膜原料を気化し、基板Wの成膜面W1上に自己組織化単分子膜を形成する単分子膜形成装置1であって、内部に基板Wが設けられる成膜室2と、前記成膜室2内に自己組織化単分子を含有する成膜原料を気化して供給する原料供給機構3と、前記成膜室2内に保持された基板Wの成膜面W1上の対流を制限する対流制限構造8と、を具備する (もっと読む)


【課題】所望の領域に寸法精度良く薄膜を形成することが可能な薄膜形成方法を得る。
【解決手段】基板上に半導体粒子または導電性粒子からなる薄膜を形成する薄膜形成方法であって、粒子径が100nm以下の前記半導体粒子または導電性粒子が分散された分散液を、前記基板の所定の領域に配置する配置工程と、前記分散液を配置した基板を20KHz以上、50MHz以下の周波数で振動させて前記所定の領域以外の領域に存在する前記分散液を除去する振動工程と、前記基板上の分散液の溶媒を除去して前記基板上に前記半導体粒子または導電性粒子からなる薄膜を形成する溶媒除去工程と、を含む。 (もっと読む)


【課題】 高容量電極活物質であるケイ素またはその化合物を、生産性の高い薄膜形成法で形成し、充放電特性劣化を起こさない電極とし、かつ蒸発原料の蒸気領域で、高角度入射近傍領域の成膜を行うこと。
【解決手段】 円柱状に形成した冷却キャン(16)の周面に基板(22)を螺旋状に複数回巻付けて走行させつつ、薄膜形成部(23a)及び薄膜形成部(23b)を通過する際の基板(22)に対して、薄膜形成源(19)から原料粒子が、入射角45°〜75°の範囲で飛来するように、遮蔽板(20)を配置する。 (もっと読む)


(a)ナノ粒子状チタニアを含む担体媒質上に微細ナノスケール金を含む抗菌剤を提供することであって、微細ナノスケール金が物理的気相堆積法により担体媒質上に堆積させてある、抗菌剤を提供すること、及び(b)少なくとも1つの微生物を抗菌剤に接触させること、を含む、微生物の増殖を制限するための方法。 (もっと読む)


【課題】基材内部の細孔の直径を維持したまま細孔の入口の直径を容易に狭小化することができ、ガス分離性能が十分に高い狭小化多孔質アルミナ基材を製造することが可能な狭小化多孔質アルミナ基材の製造方法を提供すること。
【解決手段】多孔質アルミナ基材1にアルミナを物理蒸着させて、該多孔質アルミナ基材の細孔の入口を0.2〜1.5nmと狭小化し、狭小化多孔質アルミナ基材を得ることを特徴とする狭小化多孔質アルミナ基材の製造方法。 (もっと読む)


【課題】 固体ポリマー電解質またはその他のイオン導電性ポリマー表面上に金属、金属酸化物または金属合金を被覆するための新規方法を提供することである。
【解決手段】 薄い金属または金属酸化物のフィルムを備えたイオン導電性の膜を製造するための方法であって、減圧下、イオン導電性膜を低エネルギーの電子ビームに賦して、その膜表面を清浄とし、この清浄とした膜を、減圧下、析出されるその金属のイオンを含有する高エネルギービームに賦して、金属フィルムを形成することを含む方法。この方法によって得られる金属化された膜構造物およびそれを内蔵する燃料電池も、また、本発明の範囲に含まれる。 (もっと読む)


【課題】耐酸性に優れ、かつ接触抵抗が低い燃料電池用金属セパレータおよびその製造方法を提供する。
【解決手段】本発明に係る燃料電池用金属セパレータ1は、表面が平面の、または、表面の少なくとも一部に凹形状のガス流路が形成される金属基材2を用いて製造された燃料電池用金属セパレータであって、金属基材2の表面に、Zr、Nb、Taから選択される1種以上の非貴金属を含んでなる耐酸性金属皮膜3と、この耐酸性金属皮膜3の上にAu、Ptから選択される1種以上の貴金属、および、Zr、Nb、Taから選択される1種以上の非貴金属を含んでなる導電性合金皮膜4と、を有する構成とした。また、本発明に係る燃料電池用金属セパレータの製造方法は、耐酸性金属皮膜を成膜する工程S1と、導電性合金皮膜を成膜する工程S2と、を含んでなる。 (もっと読む)


ナノ構造は、1つの縁が基板上に配置された複数の金属ナノブレードを含む。複数の金属ナノブレードの各々は、大きい表面積対質量比および長さより小さい幅を有する。水素を貯蔵する方法は、複数のマグネシウムナノブレードを水素貯蔵触媒でコーティングする工程、および複数のマグネシウムナノブレードを用いて水素化マグネシウムを化学的に生成することにより水素を貯蔵する工程を含む。

(もっと読む)


【課題】従来のスパッタ法では困難であった数十〜数百Åの極薄で磁気ヘッドのギャップ層やトンネル接合型GMRに好都合な化合物絶縁膜を形成する方法を提案する
【解決手段】基板に数十Å程度のメタル膜を堆積させる工程と、該メタル膜内部まで化合物絶縁膜とする化合物工程とを交互に繰り返し、前記基板に100Å程度の化合物絶縁膜を形成する。 (もっと読む)


1 - 20 / 33