説明

シリコン製造装置

【課題】反応器壁面等へのシリコン析出を回避し、反応器から排出するガスとともに排出されて回収されないシリコンの量及び未反応の原料ガス損失量を最小化して、一定品質、一定形状の固体シリコンを連続的に量産できるシリコン製造装置を提供する。
【解決手段】第1反応器1と、第1反応器の下流において連絡した第2反応器2と、を備え、第1反応器は、珪素化合物を亜鉛で還元して固体シリコンを生成し、第2反応器は、前記第1反応器で生成された固体シリコンのうち、相対的に小さな結晶サイズの固体シリコンを種結晶としながら、珪素化合物を亜鉛で還元して固体シリコンを生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコン製造装置に関し、特に、第1反応器の下流に第2反応器を設けたシリコン製造装置に関するものである。
【背景技術】
【0002】
近年、いわゆる亜鉛還元法により四塩化珪素を亜鉛で還元して高純度のシリコンを得る製法は、その設備がコンパクトで消費エネルギーが小さく、かつ6−ナイン以上の高純度のシリコンが得られるものであるため、今後急速に需要が拡大するとされる太陽電池用シリコン等の製法として注目されてきている。亜鉛還元法の反応式は、SiCl+2Zn→Si+2ZnClで示される。
【0003】
半導体の原材料として要求されるシリコンの純度は、集積回路用途で8−ナイン以上のより高純度のものが必要とされ、三塩化珪素ガスを水素ガスで還元するシーメンス法と呼ばれる方法で精製されて製造され、このときの端材やオフスペック品が太陽電池用途に流用することも可能であるが、シリコンの製造量の確保やコスト削減には、一定の限界があり、低コストで製造量の確保ができる亜鉛還元法の開発が急務となっている。
【0004】
かかる状況下で、亜鉛還元法として、950℃以上1200℃以下に加温された四塩化珪素ガスと亜鉛ガスとを接触させ、固体シリコンを四塩化珪素ガス供給配管の噴出口に析出させる構成が開示されている(特許文献1及び2参照)。
【0005】
また、亜鉛還元法として、反応器内にシリコンの種結晶を入れて、投入する原料ガス及び副生する塩化亜鉛ガスにより流動化させ、この流動床を構成する種結晶の表面にシリコンを析出させる構成が開示されている(特許文献3から5及び非特許文献1参照)。
【特許文献1】特開2007−145663号公報
【特許文献2】特開2007−223822号公報
【特許文献3】特開2003−342016号公報
【特許文献4】特開2004−10472号公報
【特許文献5】特開平11−92130号公報
【非特許文献1】No.216,Vol.78 PROCESSING OF ENERGY AND METALLIC MINERALS AIChE SYMPOSIUM SERIES
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、本発明者の検討によれば、特許文献1及び2に開示される構成では、四塩化珪素噴出口における圧力損失が変動してシリコン析出の反応を定常状態に保つことが困難であり、かつシリコン回収時の装置停止が必須となるため、一定品質のシリコンを量産する上では改善の余地がある。
【0007】
また、特許文献3から5及び非特許文献1に開示される構成では、シリコンの種結晶によるコストアップがある他、原料ガスと種結晶との接触を均一化して安定した流動床を形成し維持することは困難であり、複雑な装置を製作するための耐高温であって耐ガス腐食性の材料の選択も困難であることからも、実現性において改善の余地がある。
【0008】
更なる本発明者の検討によれば、特定の反応条件で反応器壁面等へのシリコン析出を回避して、非密着性の針状又は繊維状シリコンを回収できることが判明した。
【0009】
具体的には、管状の反応器内で、1100℃以上に加熱された四塩化珪素ガスと亜鉛ガスとを接触させて、固体シリコンと塩化亜鉛ガスとを得て、析出する固体シリコンを重力で落下させるとともに塩化亜鉛ガスを引抜いて、両者を分離回収する構成である。このとき、析出する固体シリコンのうち、反応器内において、塩化亜鉛を主成分とするガス流に同伴しない大きいサイズの結晶が落下して回収されるが、反応器内の原料ガス密度が大きいほうが、大きい結晶を得られることがわかっている。これは、微細な一次結晶が核となり、その近傍にある原料ガスから生成するシリコンがその表面に堆積し結晶成長すること、及び原料ガス密度が高ければその確率が増えるためと考えられる。なお、この際、反応器内の温度の検出は煩雑なので、反応器の外表面の温度を検出して、その検出温度を反応器内のガス温度として適用している。
【0010】
ここで、かかる構成においては、反応器に供給される原料ガス成分のモル比、反応器内を流れるガス流の流速、温度等の反応条件が適切に制御されないと、シリコン結晶体が種結晶上にうまく成長できず、SiClといった中間体が生成されたり、相当量の未反応ガスが生じてしまうため、このような反応条件を最適に制御することが、工業化する上では重要である。
【0011】
また、この場合の温度条件は1100℃以上と高温であり、これに耐え、かつ回収されるシリコンを汚染せず、反応器及びその周辺機器の用途として経済的に許容される材質は石英ガラスにほぼ限定され、その構造も単純なものしか製作できない現実もある。
【0012】
本発明は、かかる事情に鑑みてなされたもので、反応器壁面等へのシリコン析出を回避し、反応器から排出するガスとともに排出されて回収されないシリコンの量及び未反応の原料ガス損失量を最小化するために、反応器内の温度分布、原料ガス濃度分布、ガス流速分布を定常化して、一定品質、一定形状の固体シリコンを連続的に量産でき、かつ1100℃以上の高温で操業し得る亜鉛還元法によるシリコン製造装置を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明は、かかる事情に鑑み、反応器を複数直列に配置した多段反応装置を構成し、各反応器内で生成した固体シリコンのうち、落下して反応器底部から回収できるものと反応器内のガス流に同伴する微細なものとを分離して処理すれば、その歩留りを改善できることを見出して完成されたものである。すなわち、本発明においては、微細なシリコンを種結晶として、後続する反応器において、その表面に更にシリコンを析出させる構成を完成させたものである。
【0014】
このとき、回収されるシリコンの形状は、太陽電池の原料として後処理する都合上、直径1mm程度の針状が良いとされている。そして、このようなシリコン結晶を得るためには、核となる種結晶の近傍に原料ガスがで十分存在する条件で結晶成長させる必要があることが必要である。しかし、このような条件での操業は、反応器に供給された原料ガスを常に100%、過不足なく反応させるような制御が事実上困難なことから、未反応の原料ガス損失を発生させるが、このときに副生塩化亜鉛ガスとともに排出される原料ガスを、後続する反応器において、新たに供給される原料ガスとともに有効利用すれば、かかる事象も克服される。後続の反応器においては、核になる種微細シリコンの表面に更にシリコンが析出するから、原料ガス密度が希薄であっても、前段の反応器で得られるものと同様の針状シリコン結晶を得ることができる。また、SiClといった中間体が生成されている場合でも、後続の反応器において有効利用することができる。
【0015】
一方、反応器内の温度が不均一であれば当然、反応器内ガスの濃淡が発生して析出するシリコンの形状も変化する。しかし、このような温度分布、ガス密度分布も制御目標値を決めて管理できれば好都合に利用できる。つまり、鉛直方向に配置した反応器の内容物を、高さ方向の特定部分を通過するときだけ特定の温度まで冷却して原料ガス密度を上げ、その後また元の温度近辺まで加熱するような構成により、製品回収に都合の良い部分において選択的にシリコン析出反応を促すような制御ができるとともに、原料ガス供給配管や排気配管への閉塞を防ぐことができる。
【0016】
つまり、以上の知見に基づき、本発明者は、反応器から排出するガスの処理工程において、含有する塩化亜鉛成分を液化又は固化するときの冷却熱量を制御して、各反応器を通過するガス流速を制御するとともに、各反応器内の温度を定常状態とした上で、その圧力が所定の範囲内になるように各反応器への原料ガス供給量を制御して、各反応器におけるシリコン析出を定常化し、一定品質、一定形状の固体シリコンを連続的に量産できる構成を実現したものである。
【0017】
更に、電磁誘導による導体内部の渦電流損を利用し、反応器自体をその使用限界温度まで加熱せずシリコンのみを、反応器内の特定部分を通過するとき一時的に半溶融状態まで選択加熱し、その表面へのシリコン析出を促すとともに微細な結晶同士を融合させる構成も実現したものである。
【0018】
つまり、本発明は、第1の局面において、第1反応器と、前記第1反応器に連絡し、珪素化合物ガスを、前記第1反応器内に供給する第1珪素化合物ガス供給系と、前記第1反応器に連絡し、亜鉛ガスを、前記第1反応器内に供給する第1亜鉛ガス供給系と、前記第1反応器の下流において第1連絡部で連絡した第2反応器と、前記第2反応器に連絡し、珪素化合物ガスを、前記第2反応器内に供給する第2珪素化合物ガス供給系と、前記第2反応器に連絡し、亜鉛ガスを、前記第2反応器内に供給する第2亜鉛ガス供給系と、を備え、前記第1反応器は、前記第1珪素化合物ガス供給系が供給する前記珪素化合物ガスに含まれる珪素化合物を、前記第1亜鉛ガス供給系が供給する前記亜鉛ガスに含まれる亜鉛で還元して固体シリコンを生成する反応器であり、前記第2反応器は、前記第1反応器で生成された前記固体シリコンのうち、前記第1連絡部を通過して前記第2反応器内に流入した相対的に小さな結晶サイズの固体シリコンを種結晶としながら、前記第2珪素化合物ガス供給系が供給する前記珪素化合物ガスに含まれる珪素化合物を、前記第2亜鉛ガス供給系が供給する前記亜鉛ガスに含まれる亜鉛で還元して固体シリコンを生成する反応器であるシリコン製造装置である。
である。
【0019】
また本発明は、かかる第1の局面に加えて、前記第1反応器及び前記第2反応器の各々は、前記第1反応器及び前記第2反応器の各々の内部の前記固体シリコンを融点付近まで加熱する誘導加熱装器を備えることを第2の局面とする。
【0020】
また本発明は、かかる第1又は2の局面に加えて、前記第1珪素化合物ガス供給系及び前記第1亜鉛ガス供給系は、第1反応器に対して、前記珪素化合物ガス及び前記亜鉛ガスを所定モル比の関係に維持して所定流量で供給する制御系であり、前記第2珪素化合物ガス供給系及び前記第2亜鉛ガス供給系は、第2反応器に対して、前記珪素化合物ガス及び前記亜鉛ガスを所定モル比の関係に維持して所定流量で供給する制御系であることを第3の局面とする。
【0021】
また本発明は、かかる第3の局面に加えて、前記第1珪素化合物ガス供給系及び前記第2珪素化合物ガス供給系は、珪素化合物ガスを供給ラインに供給するガス供給源と、前記供給ラインを開閉自在なバルブと、前記供給ラインを流れる前記珪素化合物ガスの流量を検出する流量検出器と、前記流量検出器の検出結果に基づいて、前記供給ラインを流れる前記珪素化合物ガスの流量を、前記バルブを介して制御する流量コントローラと、を備えることを第4の局面とする。
【0022】
また本発明は、かかる第3又は4の局面に加えて、前記第1亜鉛ガス供給系及び前記第2亜鉛ガス供給系は、液体亜鉛を液体亜鉛だめに供給する液体亜鉛供給源と、非貫通穴が形成されて回転自在に保持された回転部材を有して、フィーダコントローラの制御により、前記回転部材が回転することにより、前記液体亜鉛だめから送液される前記液体亜鉛の流量を制御しながら送液する定量フィーダと、を備え、前記定量フィーダから送液される前記液体亜鉛から亜鉛ガスを生成することを第5の局面とする。
【0023】
また本発明は、かかる第1から5のいずれかの局面に加えて、更に、前記第2反応器の下流において第2連絡部で連絡したガス処理装置を備え、前記ガス処理装置は、前記第2連絡部を介して流入する、前記第1反応器で副生成された亜鉛化合物ガス及び前記第2反応器で副生成された亜鉛化合物ガスを液化又は固化して受け入れる処理装置であり、前記亜鉛化合物ガスの受入ガス体積の減少量を制御しながら前記第1反応器及び前記第2反応器を通過するガスの流速を制御自在な制御系を備えることを第6の局面とする。
【0024】
また本発明は、かかる第6の局面に加えて、前記ガス処理装置は、その内部を冷却する空冷コンデンサ及び前記空冷コンデンサに冷却媒体を供給する冷却媒体供給系を備え、前記冷却媒体供給系は、前記空冷コンデンサの冷却能力を制御する制御系であることを第7の局面とする。
【0025】
また本発明は、かかる第7の局面に加えて、前記冷却媒体供給系は、前記空冷コンデンサに連絡する空気ラインと、前記空気ラインを流れる空気を一定温度に保持するクーラと、前記空気ラインを流れる前記一定温度に保持された前記空気を前記空気ラインを介して前記空冷コンデンサに送風する送風ファンと、前記送風ファンの回転動作を制御する変速装置と、を備えることを第8の局面とする。かかる変速装置としては、インバータ装置が例示できる。
【0026】
また本発明は、かかる第8の局面に加えて、前記ガス処理装置は、更に、前記空冷コンデンサにより液化された溶融亜鉛化合物を受け入れる亜鉛化合物タンクと、前記亜鉛化合物タンクにためられる前記溶融亜鉛化合物の重量を測定するロードセルと、を有し、前記変速装置は、前記ロードセルが測定した前記溶融亜鉛化合物の前記重量の変化量が一定になるように、前記送風ファンの回転動作を制御することを第9の局面とする。
【0027】
また本発明は、かかる第6の局面に加えて、前記ガス処理装置は、その内部に負圧を発生させるエゼクタ及び前記エゼクタに噴出媒体を供給する噴出媒体供給系を備え、前記噴出媒体供給系は、前記エゼクタの冷却能力を制御する制御系であることを第10の局面とする。
【0028】
また本発明は、かかる第10の局面に加えて、前記噴出媒体供給系は、噴出媒体を供給ラインに供給する噴出媒体供給源と、前記供給ラインを開閉自在なバルブと、前記供給ラインを流れる前記噴出媒体の流量を検出する流量検出器と、前記流量検出器の検出結果に基づいて、前記供給ラインを流れる前記噴出媒体の流量を、前記バルブを介して制御する流量コントローラと、を備えることを第11の局面とする。
【0029】
また本発明は、かかる第11の局面に加えて、前記ガス処理装置は、更に、前記エゼクタにより固化された固体亜鉛化合物を受け入れる亜鉛化合物ホッパと、前記亜鉛化合物ホッパにためられる前記固体亜鉛化合物の重量を測定するロードセルと、を有し、前記流量コントローラは、前記ロードセルが測定した前記固体亜鉛化合物の前記重量の変化量が一定になるように、前記バルブの開度を制御することを第12の局面とする。
【0030】
また本発明は、かかる第4から12のいずれかの局面に加えて、前記ガス処理装置は、補助反応器を備え、前記補助反応器は、前記第2連絡部を通過して前記補助反応器に流入した相対的に小さな結晶サイズの固体シリコンを種結晶としながら、前記第2連絡部を通過して前記補助反応器に流入した未反応のガスを用いて固体シリコンを生成可能な反応器である
ことを第13の局面とする。
【0031】
また本発明は、かかる第3から13のいずれかの局面に加えて、更に、前記第1反応器及び前記第2反応器の内部の温度を一定に維持するヒータと、前記第1反応器及び前記第2反応器の内部の圧力を一定圧力に制御するコントローラと、を備え、前記コントローラは、前記第1反応器及び前記第2反応器の内部を前記一定圧力に制御するように、前記第1珪素化合物ガス供給系及び前記第1亜鉛ガス供給系の前記制御系、前記第2珪素化合物ガス供給系及び前記第2亜鉛ガス供給系の前記制御系、又は前記ガス処理装置の前記制御系を制御することを第14の局面とする。
【0032】
また本発明は、かかる第1から14のいずれかの局面に加えて、前記第1反応器に対して、前記第1珪素化合物ガス供給系から供給される前記珪素化合物ガスは、前記第1亜鉛ガス供給系から供給される前記亜鉛ガスよりも上流に供給され、前記第2反応器に対しては、前記第2珪素化合物ガス供給系から供給される前記珪素化合物ガスは、前記第2亜鉛ガス供給系から供給される前記亜鉛ガスよりも上流に供給されることを第15の局面とする。
【発明の効果】
【0033】
本発明によれば、1100℃以上の高温の腐食性ガスプロセスに対する極めて限定された装置設計条件の下で、亜鉛による四塩化珪素の還元反応を定量的に実施するための諸条件を制御できる。よって、反応器壁面等へのシリコン析出を回避し、反応器から排出するガスとともに排出し回収されないシリコンの量と未反応の原料ガス損失量を最小化するために反応器内の温度分布、原料ガス濃度分布、ガス流速分布を定常化して、一定品質、一定形状の固体シリコンを連続的に量産する、亜鉛還元法によるシリコン製造方法を提供できる。
【発明を実施するための最良の形態】
【0034】
以下、図面を適宜参照して、本発明の実施形態におけるシリコン製造装置につき詳細に説明する。なお、図中、z軸は、鉛直方向を示す。
【0035】
(第1の実施形態)
まず、本発明の第1の実施形態におけるシリコン製造装置につき、図1から4を参照して、詳細に説明する。
【0036】
図1は、本実施形態におけるシリコン製造装置の模式的構成図である。図2は、本実施形態における四塩化珪素ガス供給系の模式的構成図である。図3は、本実施形態における亜鉛ガス供給系の模式的構成図である。図4は、本実施形態における温風供給系の模式的構成図である。
【0037】
図1に示すように、シリコン製造装置S1は、第1反応器1と、第1反応器1の下流に連結された第2反応器2と、第2反応器2の下流に連結されたガス処理装置3と、を備える。ここに、第1反応器1、第2反応器2及びガス処理装置3(具体的には、詳細は後述する補助反応器60)の周囲は、図示しない温度検出器を有し制御機能を有する外部ヒータHで囲われ、これらの内部が900℃以上1300℃以下の一定温度、より好適には、1100℃以上1300℃以下の一定温度になるようにフィードバック制御されて加熱されている。なお、ヒータHとしては、限定的なものではないが抵抗加熱器等が使用でき、第1反応器1及び第2反応器2の温度としては、構成の便宜上、各反応器の外表面温度を検出してその検出温度が代表的に用いられる。また、第1反応器1、第2反応器2及びガス処理装置3は、いずれも石英ガラス製の管状容器であり、第1反応器1及び第2反応器2は、直管状でz軸に平行に立設され、z軸の負方向が、重力の方向である。また、下流とは、シリコン製造装置S内で流れるガス流についての下流を意味する。
【0038】
かかる第1反応器1の供給口部4aには、第1反応器1に対して珪素化合物ガスである四塩化珪素ガスを供給する四塩化珪素ガス供給系4が連絡される。更に、第1反応器1の供給口部5aには、第1反応器1に対して亜鉛ガスを供給する亜鉛ガス供給系5が連絡される。ここに、四塩化珪素ガスが供給される供給口部4aの第1反応容器1側の端部にシリコンが析出することを防ぐため、亜鉛ガスが供給される供給口部5aが、四塩化珪素ガスが供給される供給口部4aよりも下流側(z軸の正方向側)に設けられる。
【0039】
四塩化珪素ガス供給系4は、より具体的には図2に示すように、四塩化珪素ガス供給源10と第1反応器1の供給口部4aとの間を連通する供給ライン11及び供給ラインに11に設けられたバルブ12を有し、更に、供給ライン11には、バルブ12の下流(図2中では右方向)に流量検出器13が設けられ、流量検出器13は、供給ライン11を流れる四塩化珪素ガスの流量を検出する。
【0040】
かかる流量検出器13の流量検出信号は、流量コントローラ14に送出され、流量コントローラ14は、入力された流量検出信号に基づいて、バルブ12の開度を調節して、供給ライン11を流れる四塩化珪素ガスの流量を設定された流量に制御する。つまり、流量コントローラ14は、供給ライン11を流れる四塩化珪素ガスの流量をモニタしながら、その流量を所定流量に制御するものであり、このように所定流量に制御された四塩化珪素ガスが、第1反応器1の供給口部4aに供給されることになる。また、かかる制御は、フィードバック制御である。
【0041】
また、図3に示すように、亜鉛ガス供給系5は、液体亜鉛供給源20と第1反応器1の供給口部5aとの間を液体亜鉛をガス化して連絡するものであり、液体亜鉛供給源20には、液体亜鉛だめ21が連絡され、液体亜鉛だめ21には、定量フィーダ22が連絡される。かかる定量フィーダ22は、閉じた穴(非貫通穴)が形成されて所定の回転軸Rの周りに回転自在に保持された回転球22aを有し、フィーダコントローラ22bの制御により、回転球22aが回転して、その閉じた穴(非貫通穴)にたまった液体亜鉛を送液することにより、液体亜鉛だめ14から送液される液体亜鉛を設定された所定流量に計量しながら更に送液するものである。また、かかる制御は、フィードバック制御である。なお、定量フィーダ22の回転球22aは、形状的には球状に限定されるものではなく、回転軸Rの周りに回転自在のものであれば、円柱状部材等であってもよい。
【0042】
更に、定量フィーダ22の下方(z軸の負方向)には、定量フィーダ22から所定流量に制御されて送液されてきた液体亜鉛が供給される亜鉛加熱器23が連絡される。かかる亜鉛加熱器23は、ヒータ23aを有し、ヒータ23aは、このように供給される液体亜鉛を、その沸点以上まで加熱してガス化させるものである。更に、亜鉛加熱器23には、ベーパセパレータ24及びミストセパレータ25が連絡され、亜鉛加熱器23で生成された亜鉛ガスは、ベーパセパレータ24及びミストセパレータ25において、その液滴成分が除去され、不要な液滴の同伴なしに第1反応器1の供給口部5aに供給されることになる。
【0043】
ここにおいて、第1反応器1の供給口部4aに供給される四塩化珪素ガスと、第1反応器1の供給口部5aに供給される亜鉛ガスとの間には、亜鉛の四塩化珪素に対するモル比が2となるような量的関係に維持されている。
【0044】
このように第1反応器1に供給された四塩化珪素ガスと亜鉛ガスとは、混合されて接触し、亜鉛ガスと接触した四塩化珪素ガスは還元されて、固体シリコンと副成的な亜鉛化合物ガスである塩化亜鉛ガスとを生成する。ここに、第1反応器1内のガスは、かかる副生的な塩化亜鉛に加えて、未反応のままの四塩化珪素や亜鉛、中間体等を含み、上方(z軸の正方向)に向かう流れとなる。また、生成された固体シリコンは、かかるガスの流れに抗して重力でz軸の負方向に落下する結晶体と、かかるガスの流れと同伴して上昇して落下しない相対的に大きさが小さい微細結晶体と、を含む。また、第1反応器1における亜鉛ガスの供給口部5aの上方(z軸の正方向)の一部に、ヒータHに加えて、誘導加熱器Haを局所的に設けて、第1反応器1に誘導加熱ゾーン1aを画成することにより、ここを通過する固体シリコンを選択的に融点付近まで誘導加熱して、その周囲に更に固体シリコンを析出しやすくし、生成されるシリコン結晶体のサイズの大型化を促進している。なお、かかる局所的な加熱をするヒータは、誘導加熱器Haに限定されるものではなく、ヒータHによる加熱温度よりも50℃程度高く加熱できるものならば、局所的に設けられた抵抗加熱器等であってもよい。
【0045】
ここで、第1反応器1においては、四塩化珪素ガスが供給される供給口部4aよりも下方(z軸の負方向)の端部には、筐体30aで覆われた結晶排出装置30が設けられている。結晶排出装置30は、筐体30a内において、定量フィーダ22と同様に、閉じた穴(非貫通穴)が形成されて回転自在に保持された回転球30bを備え、筐体30aの上部にはアルゴンガス供給系31に連絡する供給口部31aを有し、かつ、その下部にもアルゴンガス供給系32に連絡する供給口部32aを有する。アルゴンガス供給系31、32から供給されるアルゴンガスにより、結晶排出装置30の箱体の上部空間及び下部空間は、アルゴンガス雰囲気となる。更に、結晶排出装置30には、固体シリコン排出系33が連絡され、それを介して生成された固体シリコンが排出されて回収される。なお、アルゴンガス供給系31、32は、共通のアルゴンガス源を有していてもよい。また、結晶排出装置30の回転球30bは、定量フィーダ22の回転球22aと同様に、形状的には球状に限定されるものではなく、円柱状部材等であってもよい。
【0046】
また、四塩化珪素ガスが供給される供給口部4aと結晶排出装置30との間には、結晶排出装置30の、特に、回転球30b及びその関連部材を冷却する冷却装置Cが設けられている。かかる冷却装置Cは、水冷式、空冷式のいずれでもよい。
【0047】
更に、四塩化珪素ガスが供給される供給口部4aと冷却装置Cとの間には、第1反応器1内の圧力を検出して第1反応器1内の圧力を制御する圧力コントローラ35が連絡する。圧力コントローラ35は、第1反応器1内の圧力を検出する圧力検出器を有する。
【0048】
かかる構成において、生成された固体シリコンのうち重力でz軸の負方向に落下するシリコン結晶体は、第1反応器1の下方端部から結晶排出装置30に至り、アルゴンガス雰囲気内において、回転球30aの回転を介して、設定された一定量のシリコン結晶体が定期的に固体シリコン排出系33から排出されて回収される。ここにおいて、結晶排出装置30の箱体の上部空間及び下部空間は、アルゴンガス雰囲気であるので、不要な反応ガスや大気が混入されることが防止される。
【0049】
一方で、z軸の負方向に落下しない微細なシリコン結晶体は、第1反応器1内において、未反応であった四塩化珪素や亜鉛、中間体等及び副生的な塩化亜鉛を含むガスの流れと同伴して上昇する。ここにおいて、第1反応器1における上方(z軸の正方向)の端部は、連絡部40を介して、下流側の第2反応器2に連通しているから、かかる微細なシリコン結晶体は、塩化亜鉛を含むガスの流れと同伴して第2反応器2内に流入する。ここで、第2反応器2の基本構成は、第1反応器1のものと同様であり、第1反応器1の構成要素と同一なものには同じ符号を付して、その説明は適宜簡略化又は省略する。なお、第2反応器2に供給される四塩化珪素ガス及び亜鉛ガスは、第1反応器1のものよりも希薄化してもよい。また、第1反応器1に連絡する圧力コントローラ35は、第2反応器2に対しても同様に連絡しており、第2反応器2内の圧力を検出する。また、第1反応器1及び第2反応器2に各々連絡する四塩化珪素ガス供給系4及び亜鉛ガス供給系5は、共通化してもよい。また、第2反応器2にも誘導加熱ゾーン2aを同様に画成する。
【0050】
このように第2反応器2に流入した微細なシリコン結晶体は、第1反応器1内において未反応であった四塩化珪素や亜鉛、中間体等及び副生的な塩化亜鉛を含むガスに加え、第1反応器1と同様に第2反応器2に供給される四塩化珪素ガス及び亜鉛ガスとも混合されて、これらにおける四塩化珪素ガス及び亜鉛ガスと接触し、かかる微細なシリコン結晶体の表面には新たにシリコンが析出していくことになる。つまり、このように、第2反応器2内において、第1反応器1から供給される微細なシリコン結晶体を種結晶として用いて、その周囲に新たにシリコンを析出させていくことができ、結果的により大きなサイズのシリコン結晶体を生成することができることになる。
【0051】
かかる構成の第2反応器2においても、生成された固体シリコンのうち重力でz軸の負方向に落下するシリコン結晶体は、第1反応器におけるものよりも大きなサイズのシリコン結晶体として、第2反応器2の下方端部から結晶排出装置30に至り、固体シリコン排出系33から排出されて収量よく回収される。
【0052】
一方で、z軸の負方向に落下しない微細なシリコン結晶体は、第2反応器2内において、未反応であった四塩化珪素や亜鉛、中間体等及び副生的な塩化亜鉛を含むガスの流れと同伴して上昇する。ここにおいて、第2反応器2における上方(z軸の正方向)の端部は、連絡部50を介して、下流側のガス処理装置3に連絡しているから、かかる微細なシリコン結晶体は、塩化亜鉛を含むガスの流れと同伴してガス処理装置3内に流入する。ここで、第2反応器2においては、第1反応器1から供給される微細なシリコン結晶体を種結晶として用いて大きなサイズのシリコン結晶体を生成するものであるため、四塩化珪素の還元反応はより効率的になされており、未反応であった四塩化珪素や亜鉛、中間体、更には微細なシリコン結晶体の割合は、副生的な塩化亜鉛を含むガスに対して減少しているものと評価できる。
【0053】
かかるガス処理装置3は、連絡部50を介して第2反応器2に連絡する補助反応器60と、補助反応器60の下流に設けられたガス処理部70と、を備える。かかるガス処理装置3の補助反応器60は、流入する微細なシリコン結晶体や未反応のガス等が存在する可能性を考慮して、直管状でz軸に平行に立設されているもので、その構成は、四塩化珪素ガス供給系4及び亜鉛ガス供給系5が連絡されていない点を除き、第1反応器1及び第2反応器2のものと同様であり、それらの構成要素と同一なものには同じ符号を付して、その説明は省略する。また、補助反応器60において上方に向けて流れるガスは、補助反応器60で四塩化珪素ガスを還元する残余的な反応は実質的に終了していると評価できるので、実質的に、副生的な塩化亜鉛を含むガスのみとなっていると考えてよい。なお、第1反応器1及び第2反応器2に連絡する圧力コントローラ35は、補助反応器60に対しても同様に連絡してもよく、かかる場合、補助反応器60内の圧力を検出する。
【0054】
ここにおいて、ガス処理装置3の補助反応器60における上方(z軸の正方向)の端部に連絡するガス処理部70は、補助反応器60から送出される塩化亜鉛ガスを液化する処理を行う。かかるガス処理部70は、補助反応器60の上方の端部に連通し、下流に向かって下方(z軸の負方向)に斜行する直管状部71aと、その周囲を囲う箱状部71bと、を備えた空冷コンデンサ71を備え、空冷コンデンサ71は、温風供給系80から供給される温風により間接冷却されて、その内部で流入した塩化亜鉛ガスを液化する。空冷コンデンサ71に供給される温風は、温風供給系80から空冷コンデンサ71の箱状部71bに設けられた供給口部71cに供給され、空冷コンデンサ71の直管状部71aの周囲を通過した後、空冷コンデンサ71の箱状部71bに設けられた排出口部71dから排出されるもので、その温度は、塩化亜鉛ガスを冷却すべく塩化亜鉛の沸点よりも充分に低く設定される。
【0055】
更に、ガス処理装置3においては、ガス処理部70の下流であって下方(z軸の負方向)に、ガス処理部70で液化された溶融塩化亜鉛をためる塩化亜鉛タンク90が連絡する。塩化亜鉛タンク90は、そこにためられる溶融塩化亜鉛の重量を測定するロードセル91を有する。また、塩化亜鉛タンク90は、窒素ガス供給系95に連絡する供給口部90aを有し、ガス処理部70の下流部分を液封して外気とを遮断し、さらにその内部空間は窒素ガスで置換される。塩化亜鉛タンク90内の溶融塩化亜鉛は、塩化亜鉛排出系96から排出されて回収され、塩化亜鉛タンク90内の不凝縮ガスは、排出口部90bから排出される。
【0056】
温風供給系80は、具体的には図4に示すように、空冷コンデンサ71の箱状部71bにおける供給口部71cと排出口部71dとを連絡し、空気が流れる空気ライン81を有し、空気ライン81には、供給口部71c側に送風ファン82が設けられ、排出口部71d側にはクーラ83が設けられる。かかる送風ファン82は、インバータ装置84で回転動作が制御され、クーラ83は、温度コントローラ85により、空気ライン81における温風の温度が検出されつつその検出された温風の温度が設定された一定温度になるように、その冷却量がフィードバック制御される。空冷コンデンサ70へ供給される冷却用の温風は、空気ライン81を流れつつ、温度コントローラ85で制御されたクーラ83により一定温度に制御された後、インバータ装置84で回転動作が所定状態に制御された送風ファン82で設定された流量でもって送風されることにより、空冷コンデンサ71の供給口部71cへ供給され、空冷コンデンサ71の直管状部71aを冷却したあと、空冷コンデンサ71の排出口部71dから排出され、空気ライン81に戻る。
【0057】
具体的には、ガス処理装置3においては、ガス処理部70における空冷コンデンサ71へ冷却用の温風を送風する送風ファン82用のインバータ装置84は、塩化亜鉛タンク90にためられる熔融塩化亜鉛の重量における単位時間当たりの変化が一定になるように、ロードセル91からの信号に基づいて送風ファン82の回転動作を制御している。これにより空冷コンデンサ71の塩化亜鉛ガスに対する冷却能力(負荷)が制御されて、空冷コンデンサ71における塩化亜鉛凝縮量が制御され、対応してガス処理装置3への塩化亜鉛ガスの受入ガス体積の減少量が制御されることとなって、結果として、ガス処理装置3を流れるガスの流速のみならず、第1反応器1及び第2反応器2を通過するガスの流速が制御されることとなる。なお、かかる制御は、塩化亜鉛タンク90にためられる熔融塩化亜鉛の重量の変化が一定になるように、送風ファン82の回転動作を制御することに起因した制御であるので、フィードバック制御である。
【0058】
さて、安定した品質で一定形状の固体シリコンを連続的に量産するには、各反応器内の温度外乱を排するように各反応器内の温度を定常状態とした上で、各反応器を通過するガス流速が定常状態となるように制御するとともに、各反応器内の圧力が定常状態になるように各反応器への原料ガスの供給量を制御して、各反応器において固体シリコンの析出状態を定常化する必要がある。
【0059】
ここにおいて、第1反応器1、第2反応器2及びガス処理装置3の補助反応器60の周囲は、ヒータHで囲われ、これらの内部が1100℃以上の一定温度になるように外部から加熱され、ヒータHが有するコントローラによりその温度が維持されるように制御している。
【0060】
かかる条件下で、まず、第1反応器1及び第2反応器2への原料ガス(四塩化珪素ガス及び亜鉛ガス)供給量の制御設定値は一定にしておき、塩化亜鉛タンク90にためられる熔融塩化亜鉛の重量の変化、つまり塩化亜鉛タンク90に受け入れる単位時間あたり塩化亜鉛重量の制御設定値が、第1反応器1内及び第2反応器2内の圧力が一定になるように制御されるように構成してもよい。
【0061】
具体的には、第1反応器1内及び第2反応器2内の圧力が、各反応器1、2に連絡した圧力コントローラ35により検出されて、その圧力検出信号に対応したインバータ装置84用の制御設定値を示す信号がインバータ装置84に送られ、インバータ装置84は、圧力コントローラ35の下で、第1反応器1内及び第2反応器2内の圧力が一定になるように、送風ファン82の回転動作をカスケード制御して、ガス処理装置3への塩化亜鉛ガスの受入ガス体積の減少量や第1反応器1及び第2反応器2を通過するガスの流速を制御する。なお、圧力コントローラ35は、検出した反応器1、2の各圧力を所定の演算式に従って演算して、各反応器1、2全体の圧力値を求め、その演算値に対応した制御設定値を求めている。また、圧力コントローラ35が、補助反応器60の圧力も検出している場合には、補助反応器60の圧力をも考慮して各反応器1、2、60全体の圧力値を求めてもよい。
【0062】
一方で、塩化亜鉛タンク90に受け入れる単位時間あたり塩化亜鉛重量の制御設定値は一定にしておき、第1反応器1及び第2反応器2への原料ガス(四塩化珪素ガス及び亜鉛ガス)供給量の制御設定値が、第1反応器1内及び第2反応器2内の圧力が一定になるように制御されるように構成してもよい。
【0063】
具体的には、四塩化珪素ガス導入系4においては、流量コントローラ14が、流量検出器13の流量検出信号に基づいて、バルブ12の開度を調節して、供給ライン11を流れる四塩化珪素ガスの流量を設定された所定流量に制御しながら、第1反応器1内及び第2反応器2内の圧力が、各反応器1、2に連絡する圧力コントローラ35により検出されて、その圧力検出信号に対応した流量コントローラ14用の制御設定値を示す信号が流量コントローラ14に送られ、流量コントローラ14は、圧力コントローラ35下で、第1反応器1内及び第2反応器2内の圧力が一定になるようにバルブ12の開度を調節するカスケード制御をする。ここでも、圧力コントローラ35は、検出した反応器1、2の各圧力を所定の演算式に従って演算して、各反応器1、2全体の圧力値を求め、その演算値に対応した制御設定値を求めている。また、補助反応器60の圧力をも考慮して各反応器1、2、60全体の圧力値を求めてもよい。なお、かかる制御は、第2反応器2においても、同様である。
【0064】
また、かかる四塩化珪素ガス導入系4の制御に併せ、亜鉛ガス供給系5においては、フィーダコントローラ22bが、第1反応器1に供給される四塩化珪素ガスと、第1反応器1に供給される亜鉛ガスとの間には、亜鉛の四塩化珪素に対するモル比が2となるような量的関係に維持するように、フィーダコントローラ22bが、回転球22aの回転動作を制御して、液体亜鉛だめ14から送液される液体亜鉛を所定流量で供給する制御をしながら、フィーダコントローラ22bは、圧力コントローラ35下で、第1反応器1内及び第2反応器2内の圧力が一定になるように、四塩化珪素ガス導入系4の流量コントローラ14に与えられた制御設定値に連動した比例制御で、回転球22aの回転動作をカスケード制御する。なお、かかる制御は、第2反応器2においても、同様である。
【0065】
このように、通常のフィードバック制御に加え、このフィードバック制御に制御設定値を与えるカスケード制御を行うことにより、第1反応器1内及び第2反応器2内、ひいてはガス処理装置3の補助反応器60内の温度を一定に維持した上で、第1反応器1及び第2反応器2を通過してガス処理装置3に至るガスの流速を制御しながら、第1反応器1内及び第2反応器2内、ひいてはガス処理装置3の補助反応器60内の圧力を一定に制御して、第1反応器1において、固体シリコンを安定した品質で一定形状の連続的に製造するのみならず、第2反応器2において、第1反応器1から供給される微細なシリコン結晶体を種結晶として用いて大きなサイズのシリコン結晶体を生成することを可能とし、安定した品質で一定形状の固体シリコンを収量よく連続的に量産する。また、補助反応器60からも、補助的に、安定した品質で一定形状の固体シリコンを得ることができる。
【0066】
(第2の実施形態)
次に、本発明の第2の実施形態におけるシリコン製造装置につき、図5をも参照して、詳細に説明する。
【0067】
図5は、本実施形態における窒素ガス供給系の模式的構成図である。
【0068】
本実施形態のシリコン製造装置S2は、第1の実施形態のシリコン製造装置1に対して、ガス処理装置3がガス処理装置100に変更されていることが主たる相違点であり、第1反応器及び第2反応器等の残余の構成は同一である。よって、本実施形態においては、かかる相違点に着目して説明することとし、同一な構成については同一の符号を付して適宜説明を簡略化又は省略する。
【0069】
図5に示すように、本実施形態のシリコン製造装置S2におけるガス処理装置100は、連絡部50を介して第2反応器2に連絡する補助反応器60と、補助反応器60の下流に設けられたガス処理部110と、を備える。かかるガス処理装置100の補助反応器60の構成は、第1の実施形態のものと同一である。
【0070】
ここにおいて、ガス処理装置100の補助反応器60における上方(z軸の正方向)の端部に連絡するガス処理部110は、補助反応器60から送出される塩化亜鉛ガスを固化する処理を行う。かかるガス処理部110は、補助反応器60の上方の端部に連通し、下流に向かって下方(z軸の負方向)に斜行する直管状部111の下流部における減径部111aに対して設けられたエゼクタ112を備える。かかるエゼクタ112は、ノズル部112aを有し、ノズル部112aに対して窒素ガス供給系120から供給される窒素ガスによって駆動され、ノズル部112aの端部112b近傍に発生する負圧により、直管状部111を流れてきた塩化亜鉛ガスを吸引して固化させる。ここに、直管状部111は、その下流部の減径部111aに向かって漸近的に減径し、その後拡開する。また、ノズル部112aの端部112bは、直管状部111の減径部111aを臨むように上流側に位置される。なお、ヒータHは、エゼクタ112の上流に位置する直管状部111の周囲まで囲って設けられ、直管状部111まで加熱する。
【0071】
更に、ガス処理装置100においては、ガス処理部110の下流であって下方(z軸の負方向)に、ガス処理部110で固化された個体塩化亜鉛をためる塩化亜鉛ホッパ130が連絡する。塩化亜鉛ホッパ130は、そこにためられる個体塩化亜鉛の重量を測定するロードセル131を有する。また、塩化亜鉛ホッパ130は、窒素ガス供給系120からエゼクタ112を介して供給される窒素ガスにより、その内部空間が置換されて外気と遮断されている。塩化亜鉛ホッパ130内の個体塩化亜鉛は、塩化亜鉛ホッパ130に連絡する塩化亜鉛排出系135から排出されて回収され、塩化亜鉛ホッパ130内の不凝縮ガスは、塩化亜鉛ホッパ130に連絡するバグフィルタ137を介して、その排出口部137aから排出される。
【0072】
窒素ガス供給系120は、窒素ガス供給源140とガス処理部110におけるエゼクタ112のノズル部112aとを連絡する供給ライン121及び供給ラインに121に設けられたバルブ122を有し、更に、供給ライン121には、バルブ122の下流(窒素ガス供給源140からノズル部112aを向く方向)に流量検出器123が設けられ、流量検出器123は、供給ライン121を流れる四塩化珪素ガスの流量を検出する。
【0073】
かかる流量検出器123の流量検出信号は、流量コントローラ124に送出され、流量コントローラ124は、入力された流量検出信号に基づいて、バルブ122の開度を調節して、供給ライン121を流れる四塩化珪素ガスの流量を設定された流量に制御する。つまり、流量コントローラ124は、供給ライン11を流れる四塩化珪素ガスの流量をモニタしながら、その流量を所定流量に制御するものであり、このように所定流量に制御された高圧の窒素ガスが、エゼクタ112のノズル部112aに供給され、ノズル部112aから噴出することになる。
【0074】
具体的には、ガス処理装置100においては、ガス処理部110におけるエゼクタ112のノズル部112aへ供給される窒素ガスの流量を制御する流量コントローラ124は、塩化亜鉛ホッパ130にためられる個体塩化亜鉛の重量における単位時間当たりの変化が一定になるように、ロードセル131からの信号に基づいてバルブ122の開度を制御している。これによりエゼクタ112の吸引能力(負荷)が制御されて、エゼクタ112における塩化亜鉛固化量が制御され、対応してガス処理装置100への塩化亜鉛ガスの受入ガス体積の減少量が制御されることとなって、結果として、ガス処理装置100を流れるガスの流速のみならず、第1反応器1及び第2反応器2を通過するガスの流速が制御されることとなる。なお、かかる制御は、塩化亜鉛ホッパ130にためられる固体塩化亜鉛の重量の変化が一定になるように、バルブ122の開度を制御することに起因した制御であるので、フィードバック制御である。
【0075】
さて、本実施形態においても、安定した品質で一定形状の固体シリコンを連続的に量産するには、各反応器内の温度外乱を排するように各反応器内の温度を定常状態とした上で、各反応器を通過するガス流速が定常状態となるように制御するとともに、各反応器内の圧力が定常状態になるように各反応器への原料ガスの供給量を制御して、各反応器において固体シリコンの析出状態を定常化する必要があることは、第1の実施形態と同様である。
【0076】
つまり、本実施形態においても、第1反応器1及び第2反応器2、並びにガス処理装置3の補助反応器60及び直管状部111の周囲は、ヒータHで囲われ、これらの内部が1100℃以上の一定温度になるように外部から加熱され、ヒータHが有するコントローラによりその温度が維持されるように制御している。
【0077】
かかる条件下で、まず、第1反応器1及び第2反応器2への原料ガス(四塩化珪素ガス及び亜鉛ガス)供給量の制御設定値は一定にしておき、塩化亜鉛ホッパ130にためられる固体塩化亜鉛の重量の変化、つまり塩化亜鉛ホッパ130に受け入れる単位時間あたりの固体塩化亜鉛重量の制御設定値が、第1反応器1内及び第2反応器2内の圧力が一定になるように制御されるように構成してもよい。
【0078】
具体的には、ガス処理装置110においては、塩化亜鉛ホッパ130にためられる個体塩化亜鉛の重量の変化が一定になるように、流量コントローラ124により、バルブ122の開度をフィードバック制御して、ガス処理装置100への塩化亜鉛ガスの受入ガス体積の減少量や第1反応器1及び第2反応器2を通過するガスの流速を制御しながら、第1反応器1内及び第2反応器2内の圧力が、各反応器1、2に設けられた圧力コントローラ35により検出されて、その圧力検出信号に対応した流量コントローラ124用の制御設定値を示す信号が流量コントローラ124に送られ、流量コントローラ124は、圧力コントローラ35の下で、第1反応器1内及び第2反応器2内の圧力が一定になるように、バルブ122の開度をカスケード制御して、ガス処理装置110への塩化亜鉛ガスの受入ガス体積の減少量や第1反応器1及び第2反応器2を通過するガスの流速を制御する。なお、圧力コントローラ35は、検出した反応器1、2の各圧力を所定の演算式に従って演算して、各反応器1、2全体の圧力値を求め、その演算値に対応した制御設定値を求めている。また、補助反応器60の圧力をも考慮して各反応器1、2、60全体の圧力値を求めてもよい。
【0079】
一方で、本実施の形態においても、第1の実施形態と同様、塩化亜鉛タンク90に受け入れる単位時間あたり塩化亜鉛重量の制御設定値は一定にしておき、第1反応器1及び第2反応器2への原料ガス(四塩化珪素ガス及び亜鉛ガス)の供給量が、第1反応器1内及び第2反応器2内の圧力が一定になるように制御されるように構成してもよい。
【0080】
このように、本実施形態においても、通常のフィードバック制御に加え、このフィードバック制御に制御設定値を与えるカスケード制御を行うことにより、第1反応器1内及び第2反応器2内、ひいてはガス処理装置100の補助反応器60内の温度を一定に維持した上で、第1反応器1及び第2反応器2を通過してガス処理装置100に至るガスの流速を一定に制御しながら、第1反応器1内及び第2反応器2内、ひいてはガス処理装置100の補助反応器60内の圧力を一定に制御して、安定した品質で一定形状の固体シリコンを連続的に製造するのみならず、第2反応器2において、第1反応器1から供給される微細なシリコン結晶体を種結晶として用いて大きなサイズのシリコン結晶体を生成することを可能とし、安定した品質で一定形状の固体シリコンを収量よく連続的に量産する。また、補助反応器60からも、補助的に、安定した品質で一定形状の固体シリコンを得ることができる。
【0081】
なお、以上の各実施形態においては、ガス処理装置の上流に第1反応器及び第2反応器という2個の反応器を有する構成につき説明したが、もちろん反応器の数は2個に限定されるものではなく、製造すべき個体シリコンの収量等のかね合いで、3個以上の反応器を設けることも可能である。
【0082】
また、以上の各実施形態においては、流量コントローラ、フィーダコントローラ、インバータ装置、圧力コントローラ等の制御機能を有する機器を別体なものとして説明したが、もちろんこれらを統合化して一体化されたコントローラとして構成してもかまわない。
【0083】
なお、本発明においては、部材の種類、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。
【産業上の利用可能性】
【0084】
以上のように、本発明においては、反応器壁面等へのシリコン析出を回避し、反応器から排出するガスとともに排出されて回収されないシリコンの量及び未反応の原料ガス損失量を最小化するために、反応器内の温度分布、原料ガス濃度分布、ガス流速分布を定常化して、一定品質、一定形状の固体シリコンを連続的に量産でき、かつ1100℃以上の高温で操業し得る亜鉛還元法によるシリコン製造装置を提供することができるものであり、その汎用普遍的な性格から太陽電池用シリコン等の製造装置に広範に適用され得るものと期待される。
【図面の簡単な説明】
【0085】
【図1】本発明の第1の実施形態におけるシリコン製造装置の模式的構成図である。
【図2】本実施形態における四塩化珪素ガス供給系の模式的構成図である。
【図3】本実施形態における亜鉛ガス供給系の模式的構成図である。
【図4】本実施形態における温風供給系の模式的構成図である。
【図5】本発明の第2の実施形態におけるシリコン製造装置の窒素ガス供給系の模式的構成図である。
【符号の説明】
【0086】
S1……シリコン製造装置
1………第1反応器
1a……誘導加熱ゾーン
2………第2反応器
2a……誘導加熱ゾーン
3………ガス処理装置
H………外部ヒータ
4………四塩化珪素ガス供給系
4a……供給口部
5………亜鉛ガス供給系
5a……供給口部
C………冷却装置
10……四塩化珪素ガス供給源
11……供給ライン
12……バルブ
13……流量検出器
14……流量コントローラ
20……液体亜鉛供給源
21……液体亜鉛だめ
22……定量フィーダ
22a…回転球
22b…フィーダコントローラ
23……亜鉛加熱器
23a…ヒータ
24……ベーパセパレータ
25……ミストセパレータ
Ha……誘導加熱器
30……結晶排出装置
30a…筐体
30b…回転球
31……アルゴンガス供給系
31a…供給口部
32……アルゴンガス供給系
32a…供給口部
33……固体シリコン排出系
35……圧力コントローラ
40……連絡部
50……連絡部
60……補助反応器
70……ガス処理部
71……空冷コンデンサ
71a…直管状部
71b…箱状部
71c…供給口部
71d…排出口部
80……温風供給系
81……空気ライン
82……送風ファン
83……ヒータ
84……インバータ装置
85……温度コントローラ
90……塩化亜鉛タンク
90a…供給口部
90b…排出口部
91……ロードセル
95……窒素ガス供給系
96……塩化亜鉛排出系
S2……シリコン製造装置
100…ガス処理装置
110…ガス処理部
111…直管状部
111a…減径部
112…エゼクタ
112a…ノズル部
112b…端部
120…窒素ガス供給系
121…供給ライン
122…バルブ
123…流量検出器
124…流量コントローラ
130…塩化亜鉛ホッパ
131…ロードセル
135…塩化亜鉛排出系
137…バグフィルタ
137a…排出口部
140…窒素ガス供給源


【特許請求の範囲】
【請求項1】
第1反応器と、
前記第1反応器に連絡し、珪素化合物ガスを、前記第1反応器内に供給する第1珪素化合物ガス供給系と、
前記第1反応器に連絡し、亜鉛ガスを、前記第1反応器内に供給する第1亜鉛ガス供給系と、
前記第1反応器の下流において第1連絡部で連絡した第2反応器と、
前記第2反応器に連絡し、珪素化合物ガスを、前記第2反応器内に供給する第2珪素化合物ガス供給系と、
前記第2反応器に連絡し、亜鉛ガスを、前記第2反応器内に供給する第2亜鉛ガス供給系と、を備え、
前記第1反応器は、前記第1珪素化合物ガス供給系が供給する前記珪素化合物ガスに含まれる珪素化合物を、前記第1亜鉛ガス供給系が供給する前記亜鉛ガスに含まれる亜鉛で還元して固体シリコンを生成する反応器であり、前記第2反応器は、前記第1反応器で生成された前記固体シリコンのうち、前記第1連絡部を通過して前記第2反応器内に流入した相対的に小さな結晶サイズの固体シリコンを種結晶としながら、前記第2珪素化合物ガス供給系が供給する前記珪素化合物ガスに含まれる珪素化合物を、前記第2亜鉛ガス供給系が供給する前記亜鉛ガスに含まれる亜鉛で還元して固体シリコンを生成する反応器であるシリコン製造装置。
【請求項2】
前記第1反応器及び前記第2反応器の各々は、前記第1反応器及び前記第2反応器の各々の内部の前記固体シリコンを融点付近まで加熱する誘導加熱装器を備える請求項1に記載のシリコン製造装置。
【請求項3】
前記第1珪素化合物ガス供給系及び前記第1亜鉛ガス供給系は、第1反応器に対して、前記珪素化合物ガス及び前記亜鉛ガスを所定モル比の関係に維持して所定流量で供給する制御系であり、前記第2珪素化合物ガス供給系及び前記第2亜鉛ガス供給系は、第2反応器に対して、前記珪素化合物ガス及び前記亜鉛ガスを所定モル比の関係に維持して所定流量で供給する制御系である請求項1又は2に記載のシリコン製造装置。
【請求項4】
前記第1珪素化合物ガス供給系及び前記第2珪素化合物ガス供給系は、珪素化合物ガスを供給ラインに供給するガス供給源と、前記供給ラインを開閉自在なバルブと、前記供給ラインを流れる前記珪素化合物ガスの流量を検出する流量検出器と、前記流量検出器の検出結果に基づいて、前記供給ラインを流れる前記珪素化合物ガスの流量を、前記バルブを介して制御する流量コントローラと、を備える請求項3に記載のシリコン製造装置。
【請求項5】
前記第1亜鉛ガス供給系及び前記第2亜鉛ガス供給系は、液体亜鉛を液体亜鉛だめに供給する液体亜鉛供給源と、非貫通穴が形成されて回転自在に保持された回転部材を有して、フィーダコントローラの制御により、前記回転部材が回転することにより、前記液体亜鉛だめから送液される前記液体亜鉛の流量を制御しながら送液する定量フィーダと、を備え、前記定量フィーダから送液される前記液体亜鉛から亜鉛ガスを生成する請求項3又は4に記載のシリコン製造装置。
【請求項6】
更に、前記第2反応器の下流において第2連絡部で連絡したガス処理装置を備え、前記ガス処理装置は、前記第2連絡部を介して流入する、前記第1反応器で副生成された亜鉛化合物ガス及び前記第2反応器で副生成された亜鉛化合物ガスを液化又は固化して受け入れる処理装置であり、前記亜鉛化合物ガスの受入ガス体積の減少量を制御しながら前記第1反応器及び前記第2反応器を通過するガスの流速を制御自在な制御系を備える請求項1から5のいずれかに記載のシリコン製造装置。
【請求項7】
前記ガス処理装置は、その内部を冷却する空冷コンデンサ及び前記空冷コンデンサに冷却媒体を供給する冷却媒体供給系を備え、前記冷却媒体供給系は、前記空冷コンデンサの冷却能力を制御する制御系である請求項6に記載のシリコン製造装置。
【請求項8】
前記冷却媒体供給系は、前記空冷コンデンサに連絡する空気ラインと、前記空気ラインを流れる空気を一定温度に保持するクーラと、前記空気ラインを流れる前記一定温度に保持された前記空気を前記空気ラインを介して前記空冷コンデンサに送風する送風ファンと、前記送風ファンの回転動作を制御する変速装置と、を備える請求項7に記載のシリコン製造装置。
【請求項9】
前記ガス処理装置は、更に、前記空冷コンデンサにより液化された溶融亜鉛化合物を受け入れる亜鉛化合物タンクと、前記亜鉛化合物タンクにためられる前記溶融亜鉛化合物の重量を測定するロードセルと、を有し、前記変速装置は、前記ロードセルが測定した前記溶融亜鉛化合物の前記重量の変化量が一定になるように、前記送風ファンの回転動作を制御する請求項8に記載のシリコン製造装置。
【請求項10】
前記ガス処理装置は、その内部に負圧を発生させるエゼクタ及び前記エゼクタに噴出媒体を供給する噴出媒体供給系を備え、前記噴出媒体供給系は、前記エゼクタの冷却能力を制御する制御系である請求項6に記載のシリコン製造装置。
【請求項11】
前記噴出媒体供給系は、噴出媒体を供給ラインに供給する噴出媒体供給源と、前記供給ラインを開閉自在なバルブと、前記供給ラインを流れる前記噴出媒体の流量を検出する流量検出器と、前記流量検出器の検出結果に基づいて、前記供給ラインを流れる前記噴出媒体の流量を、前記バルブを介して制御する流量コントローラと、を備える請求項10に記載のシリコン製造装置。
【請求項12】
前記ガス処理装置は、更に、前記エゼクタにより固化された固体亜鉛化合物を受け入れる亜鉛化合物ホッパと、前記亜鉛化合物ホッパにためられる前記固体亜鉛化合物の重量を測定するロードセルと、を有し、前記流量コントローラは、前記ロードセルが測定した前記固体亜鉛化合物の前記重量の変化量が一定になるように、前記バルブの開度を制御する請求項11に記載のシリコン製造装置。
【請求項13】
前記ガス処理装置は、補助反応器を備え、前記補助反応器は、前記第2連絡部を通過して前記補助反応器に流入した相対的に小さな結晶サイズの固体シリコンを種結晶としながら、前記第2連絡部を通過して前記補助反応器に流入した未反応のガスを用いて固体シリコンを生成可能な反応器である請求項4から12のいずれかに記載のシリコン製造装置。
【請求項14】
更に、前記第1反応器及び前記第2反応器の内部の温度を一定に維持するヒータと、前記第1反応器及び前記第2反応器の内部の圧力を一定圧力に制御するコントローラと、を備え、前記コントローラは、前記第1反応器及び前記第2反応器の内部を前記一定圧力に制御するように、前記第1珪素化合物ガス供給系及び前記第1亜鉛ガス供給系の前記制御系、前記第2珪素化合物ガス供給系及び前記第2亜鉛ガス供給系の前記制御系、又は前記ガス処理装置の前記制御系を制御する請求項3から13のいずれかに記載のシリコン製造装置。
【請求項15】
前記第1反応器に対して、前記第1珪素化合物ガス供給系から供給される前記珪素化合物ガスは、前記第1亜鉛ガス供給系から供給される前記亜鉛ガスよりも上流に供給され、前記第2反応器に対しては、前記第2珪素化合物ガス供給系から供給される前記珪素化合物ガスは、前記第2亜鉛ガス供給系から供給される前記亜鉛ガスよりも上流に供給される請求項1から14のいずれかに記載のシリコン製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−234831(P2009−234831A)
【公開日】平成21年10月15日(2009.10.15)
【国際特許分類】
【出願番号】特願2008−81064(P2008−81064)
【出願日】平成20年3月26日(2008.3.26)
【出願人】(503107255)株式会社キノテック・ソーラーエナジー (18)
【Fターム(参考)】