説明

プラズマジェット生成用電極

【課題】大気圧近傍の圧力雰囲気において、低温のプラズマジェットを生成でき、被処理基材の熱的損傷を低減する長寿命なプラズマジェット生成用電極を提供する。
【解決手段】大気圧近傍圧力下において、同軸状に配置される一対の電極3,6間に放電ガス20を供給し交番電界を印加して生成させた放電プラズマをプラズマジェットとして噴出させるプラズマジェット生成用電極において、中心軸に沿って配置される金属電極3,6を、その内部に供給した放電ガス20をその内部の空孔内で壁面に沿って螺旋流をなして流動させることによって冷却して、低温のプラズマジェットを生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特にプラスチックなど有機物を主成分とした基材の表面改質や接着性改善、ガラスなど無機基材の表面有機汚染物の除去など、プラズマ処理の分野に応用されるプラズマジェット生成用電極に関する。
【背景技術】
【0002】
従来から、大気圧近傍の圧力雰囲気下において生成したプラズマによって、各種の表面処理を行う数多くの事例が存在する。
【0003】
このようなプラズマとしては、電極ノズル内部で放電を生成させ、ノズルの一部に設けられた噴出孔から、ガス流によってプラズマジェットとして噴出させ、被処理基材の特定部位のみをプラズマ処理、例えば有機、無機基材の洗浄、表面改質や接着性改善を行う手法が知られている。
【0004】
このようなプラズマジェットの生成用ノズルとしては、例えば、ノズル通路内中心軸上に配置される電極と軸心回りに回転自在である対向電極間とを有し、さらに作動ガスをノズル通路内で渦巻状に流すための渦巻きシステムを有するプラズマノズルが例示されている(特許文献1参照)。
【特許文献1】特開2001−68298号公報
【0005】
また、大気圧近傍の圧力雰囲気下において生成したプラズマとしては、古くからアーク放電によるプラズマトーチが知られており、金属の切断や溶接に用いられている。
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、公知のプラズマトーチは一般的にアーク放電の熱電離プラズマを利用しており、その温度が数万度にも達するため、有機、無機基材の表面改質用途には適さないばかりか、プラズマを生成する電極が常に高温に曝されるため、消耗が激しく、頻繁な電極部材の交換、もしくは電極の水冷を必要としていた。また、大気圧近傍圧力雰囲気下で生成したプラズマジェットは、プラズマトーチと比べて低温ではあるが、長時間被処理基材をプラズマジェットに曝すと、特に有機系基材の場合、熱によってその形状が変形してしまうという欠点があった。
【0007】
本発明は上記事情に鑑みてなされたものであり、低温のプラズマジェットを生成することが可能であり、かつ長寿命なプラズマジェット生成用電極の提供を目的とするものである。
【課題を解決するための手段】
【0008】
本発明の請求項1に係るプラズマジェット生成用電極は、概略形状がそれぞれ円筒状である一対の電極が絶縁体を介して同軸状に配置された構造を有し、その両電極間に放電ガスを流通させ交番電界を印加して発生させた放電プラズマを先端開口部よりプラズマジェットとして噴出させるプラズマジェット生成用電極において、前記一対の電極のうち内側電極は、その先端部が閉塞構造をなし、中心軸に沿って配置されたガス導入管と、その根元部の外側面に内側電極と外側電極とで挟まれた放電空間へ向かって開口したガス吹出孔と、を有し、またその内側電極の内部に、根元部から前記ガス導入管内に導入された放電ガスの流れが先端部で反転して根元部の方向に流動しさらに根元部で堰き止められて前記ガス吹出孔から内側電極の外部に噴出することが可能な構造を有することを特徴とするものである。
【0009】
本発明の請求項2に係るプラズマジェット生成用電極は、請求項1に記載のプラズマジェット生成用電極において、前記一対の電極は内側電極と外側電極から構成され、その内側電極は、同軸二重管構造をなす中心管と外周管とから構成され、その先端部にその両者が融合してなる閉塞構造を有しその根元部にガス流を堰き止める構造を有し、またその先端部は肉厚に構成されその内奥に前記中心管と前記外周管とで挟まれた空間と前記中心管とを連絡する穴孔を有し、前記絶縁体は概略形状が円筒状で前記内側電極と一体の間隔を隔てて同軸状に配置され、ガス導入管として機能する前記中心管に導入された放電ガスの流れが、前記内側電極の先端部の前記穴孔内で反転して前記中心管と前記外周管とで挟まれた空間に噴出しその空間内を前記内側電極の根元部へ向かって流動する際に、前記中心管の外壁面と前記外周管の内壁面とに沿って流動することを特徴とするものである。
【0010】
本発明の請求項3に係るプラズマジェット生成用電極は、請求項2に記載のプラズマジェット生成用電極において、前記中心管と前記外周管とで挟まれた空間に噴出する前記放電ガスは、その空間内を前記内側電極の根元部へ向けて流動する際に、電極中心軸回りに旋回し前記中心管の外壁面または前記外周管の内壁面に沿って流動する螺旋流を形成していることを特徴とするものである。
【0011】
本発明の請求項4に係るプラズマジェット生成用電極は、請求項3に記載のプラズマジェット生成用電極において、前記内側電極の外周管の根元部外側面に形成されたガス吹出孔から噴出する前記放電ガスは、前記外側電極に接触して配置された前記絶縁体と前記内側電極との間に形成されるプラズマ放電空間内を電極先端部へ向かって流動する際に、電極中心軸回りに旋回し前記内側電極の外周管の外壁面と前記絶縁体の内壁面とに沿って流動する螺旋流を形成していることを特徴とするものである。
【0012】
本発明の請求項5に係るプラズマジェット生成用電極は、請求項3または4に記載のプラズマジェット生成用電極において、前記螺旋流を形成する手段が前記内側電極に具備されていることを特徴とするものである。
【0013】
本発明の請求項6に係るプラズマジェット生成用電極は、請求項4に記載のプラズマジェット生成用電極において、前記螺旋流を形成する手段が前記内側電極と前記外側電極とに具備されていることを特徴とするものである。
【0014】
本発明の請求項7に係るプラズマジェット生成用電極は、請求項1ないし6に記載のプラズマジェット生成用電極において、前記放電プラズマは大気圧近傍圧力雰囲気において生成させることを特徴とするものである。
【0015】
本発明の請求項8に係るプラズマジェット生成用電極は、請求項1ないし7に記載のプラズマジェット生成用電極において、前記内側電極および前記外側電極は金属から構成され、前記絶縁体は固体誘電体から構成されることを特徴とする。
【0016】
本発明の請求項9に係るプラズマジェット生成用電極は、請求項1ないし8に記載のプラズマジェット生成用電極において、前記内側電極の先端部がタングステン、モリブテン、タンタル、銅、真鍮、ステンレスの何れか一つから選ばれた金属、もしくはこれらの合金から構成され、凸面形状を有していることを特徴とする。
【0017】
本発明の請求項10に係るプラズマジェット生成用電極は、請求項1ないし9に記載のプラズマジェット生成用電極において、前記放電ガスが空気、窒素、酸素、アルゴンの何れか単体、もしくは、これらを主成分とする混合ガスであることを特徴とする。
【発明の効果】
【0018】
本発明によれば、プラズマジェット生成用電極自体が内部を流動する放電ガスによって冷却されるため温度上昇が抑制され、放電時に受ける損傷が少なく、長期間交換不要となり経済的に有利である。また、電極内部を流動する放電ガスは電極を構成する筒状体の壁面に沿って螺旋流をなして流動するので、効率的に電極壁面を冷却することができ、前記発明の効果が増長される。
【0019】
また、本発明によれば、放電ガス自身が電極の冷却媒体を兼ねているので、別途電極冷却機構を設ける必要がなく、本発明の電極を利用する装置等の構成が簡素化され、その意味でも経済的に有利である。
【0020】
さらに、本発明によれば、低温なプラズマジェットを生成できるため、特に熱変形し易いプラスチック基材を低温で処理する用途に関して、工業的に大きな優位性がある。
【発明を実施するための最良の形態】
【0021】
以下、図面を参照して、本発明を実施するための最良の形態について説明する。図1に本発明のプラズマジェット生成用電極の外観の一例を、図2にその内部構造の一例をそれぞれ示す。プラズマジェット生成用電極1は全体としてノズルの形状を有してなり、電極端部の任意の箇所で開口してなるプラズマジェット噴出孔12からプラズマジェット30を噴出する。また、この電極は、その中心軸上に配置された筒状内側電極2と、それと同軸状に配置される筒状外側電極3と、外側電極3の一部に密着させて配置される筒状固体誘電体4と、これら電極2、3に接続される電源部15とから構成される。
【0022】
電極2、3は銅、アルミニウム、真鍮、ステンレスなど加工性、耐食性、導電性のよい金属材料で構成される。また、筒状内側電極2は中心管5と外周管6とからなる同軸二重管構造を有してなり、その先端には、中心管5および外周管6と分離可能な凸曲面形状を有する金属製の先端部7が具備されている。この先端部7の凸面頂部はプラズマジェット噴出孔12に対向するように配置される。また、先端部7の内部には放電ガスを流通させる穴孔9が設けられ、穴孔9はその両端が、平板部7Aを穿孔して形成されたガス吹出孔10と連続し、ガス吹出孔10を介して内側電極2の中心管5と外周管6とに挟まれた内部空間に連絡している。さらに、外周管6の上部側面には、内側電極2の外周管6と筒状固体誘電体4とに挟まれた空間に放電ガスを内側電極2の内部から吹き出すガス吹出孔11が設けられている。
【0023】
ここで、筒状固体誘電体4の材質は特に限定されないが、石英、アルミナ、ポリテトラフルオロエチレンなどの絶縁体を選択可能である。筒状固体誘電体4の厚さは電極ノズルの寸法等によって適宜決定されるため、特に指定はないが、0.5〜3mmの範囲であることが好ましい。筒状固体誘電体4の厚さが、0.5mm未満であると誘電体が絶縁破壊を起こし易くなり、3mmを超えると放電プラズマの生成に高電圧を要し、電源の価格が高価になってしまう。
【0024】
上記のように構成される電極を用いてプラズマジェットを生成する方法を以下に説明する。本発明のプラズマジェット生成用電極は、大気圧近傍の圧力雰囲気下(88.0〜117.3kPa(660〜880torr))の範囲で作動させることができる。その場合、筒状内側電極2と筒状外側電極3の間には、電源部15によって発生される例えば周波数1〜100kHz、電圧波高値5〜30kVpの範囲の交番電界が印加される。交番電界の周波数が、1kHz未満であると放電プラズマの密度が減少するため表面処理の速度が遅くなる恐れがあり、100kHzよりも高いと配線に存在する浮遊容量などの影響を受け、所望の電力をプラズマへ投入するためにインピーダンスマッチングが必要となり、装置が複雑化する。電圧波高値が5kVp未満の場合、放電プラズマを生成しにくい傾向に有り、また、30kVpを超えるような高電圧で、高ワットを発生させるトランスの作成は難しく、高価でありかつ大型化してしまう。
【0025】
本発明のプラズマジェット生成用電極は、まず、図2および3に示されるように、筒状内側電極2の上部の放電ガス導入孔8から放電ガスが導入される。20は放電ガス流を示す。放電ガスは、筒状内側電極2の中心管5を通過させた後、先端部7の穴孔9の内部を流通させ、先端部7の平板部7Aにおいて電極中心軸方向に対して所定の角度をなして斜めに穿孔してなるガス吹出孔10から噴出させることによって、内側電極2の中心管5と外郭管6とで挟まれた空間で螺旋流を形成して流動する。
【0026】
螺旋流となった放電ガスは、中心管5の外表面と外周管6の内表面とに沿って上方に向かって流動した後、内側電極2の外周管6の上部側面に設けられたガス吹出孔11から筒状内側電極2と筒状固体誘電体4とで挟まれた円環状の放電空間に噴出するが、ガス吹出孔11は内側電極2の円周に対して接線方向に穿孔されているため、その放電空間においても再度、螺旋流を形成し、筒状内側電極2の外表面と筒状固体誘電体4の内表面に沿って下方の電極先端の方向に向かって流動していく。(図2参照)
【0027】
内側電極2と外側電極3の間に印加される交番電界と固体誘電体4の作用により、内側電極2と固体誘電体4とで挟まれた円環状の空間に放電が生成される。それを予備電離として、内側電極2の先端に具備される先端部7と外側電極3の間には新たに放電プラズマが生成する。
【0028】
放電ガスの前記螺旋流は、筒状内側電極2の内外表面、外側電極3および筒状固体誘電体4の内表面にそれぞれ接触しながら流動するため、各々を効率的に冷却するとともに、電極先端部に到達してプラズマジェット噴出孔12で収束されることによりその流速を増す作用がある。その結果、前記螺旋流は、電極内部で生成した放電プラズマをそのガスの流れに乗せてプラズマジェット噴出孔12からプラズマジェットとして噴出させる際に、安定化させるばかりでなく、ジェットの吹出し長を伸長する作用がある。
【0029】
ここで、筒状内側電極2と筒状固体誘電体4の間隙の距離は任意に決定することができるが、好ましくは0.5〜3mmの範囲、より好ましくは1〜2mmの範囲である。0.5mm未満であるとガス流通の妨げになり、3mmを超えると予備電離を生成しづらくなる。
【0030】
また、本発明で用いられる放電ガスは空気、窒素、酸素、アルゴンの何れか単体、もしくは、これら主成分を主成分とする混合ガスを用いることができる。これらに混合させるガスとしては、例えば、四弗化炭素、テトラエトキシシラン等が挙げられ、有機薄膜の成膜処理へ応用させることが可能であるが、用途に関してはこれに限ったものではない。
【0031】
本発明の実施形態によれば、プラズマジェット生成用電極1は、内側電極2を放電ガスにより効率的に空冷するために、内側電極2は図2、3および4に示す構造を用いることができる。筒状内側電極2は、中心管5へ供給した放電ガスを先端部7に導き、先端部7の内部の穴孔9を流通させる過程でガス流の方向を反転させ、先端部7に設けられたガス吹出孔10から噴出させて電極の根元部の方向に向かわせる構造を有する。また、筒状内側電極2は、その根元部にガス流を堰き止める蓋体6Aを有しその根元部の外側面に内側電極2と外側電極3とで挟まれた空間に向かって開口したガス吹出孔11とを有する。このため、電極1の内部を流動する放電ガスの流路は上下方向で2回反転することになり、一方通行の場合に比べてガス流が壁面に接触する確率が高まり、電極の冷却を効率的に行うことができる。こうして電極内部で冷却が行われるため、長時間放電プラズマの生成を行ってもその温度上昇が抑制される。一般的に放電電極の温度が上昇するとプラズマが加熱されてアーク放電へ移行し易くなり、さらに温度上昇したプラズマ中の主にイオン衝撃によって電極が加熱する悪循環を引き起こすことが知られているが、放電ガスによる冷却で温度が上昇することなく、生成するプラズマジェット自体も低温に維持される。その結果、被処理基材、特にプラスチック等低融点基材を表面処理する際の熱的損傷が大幅に低減できる。
【0032】
また本発明の実施形態によれば、図2では詳しく図示されていないが、内側電極2の先端部7のガス吹出孔10は先端部7の平板部7Aにおいて電極中心軸方向に対して所定の角度をなして斜めに穿孔されているため、ガス吹出孔10から噴出した放電ガスの流線は、内側電極2の中心管5と外周管6とで挟まれた空間内を螺旋を描きながら電極根元部の方向に流動していく。そこで、放電ガスが螺旋流を形成している場合は、直線流など、螺旋流を形成していない場合と比べ、長い時間電極壁面に沿って流動するため、ガス流が壁面に接触する確率が高まり、電極の冷却をより一層効率的に行うことができる。
【0033】
さらに本発明の実施形態によれば、内側電極2の先端部7は、その材料にタングステン、モリブテン、タンタル、銅、真鍮、ステンレスの何れか一つから選ばれた金属、もしくはこれらの合金を選択し、形状を凸曲面にすると、本発明の効果をさらに向上させることができる。すなわち、高融点、かつ導電性の良い金属を選択することで電極の温度上昇による溶融や損耗を抑え、さらには凸曲面を有する形状とすることで、エッジ部を有する電極形状で頻繁に発生するような電荷集中による電極のスパッタリングを抑制することが可能となる。なお、この凸曲面は球面を含む種々の凸曲面を選択できる。
【0034】
図5には、内側電極2の別の実施形態の電極構造を示した。ガス導入孔8から導入した放電ガスは、中心管5に設けられたガス吹出孔10から中心管5と外周管6の間隙に噴出し、さらに中心管5と外周管6の間隙に両者の壁面に密着させて設けられた金属製の螺旋流路13を通って、ガス吹出孔11から外側電極3の内部空間へと噴出する。金属製の螺旋流路13は、放熱性、導電性が良い銅製の平角線などで構成されており、電極の空冷をより強化することに寄与する。さらに、放電ガスが螺旋流路13を通過するによって螺旋ガス流が形成され、放電ガスがガス吹出孔11からそのままの形態で噴出するため、外側電極3の内部の空冷も効率よく行うことができる。
【0035】
螺旋ガス流を形成する手段は上記以外に各種の方法あるが、例えば図6に示すように、プラズマジェット生成用電極1を上から見た断面図において、外側電極3を構成する円筒の内周の接線方向に設けたガス導入孔8からガス導入を行うことで、内側電極2と外側電極3の間隙に螺旋ガス流を形成することが可能である。また、図2および図3では明瞭に示されていないが、図2および図3に関わる発明の実施形態として前述したように、内側電極2の外周管6の上部において外周管6の円周接線方向に穿孔してガス吹出孔11を設けてあるので、ガス吹出孔11から放電ガスを噴出させることによって、内側電極2と筒状固体誘電体4の間、または内側電極2と外側電極3の間の空隙に螺旋ガス流を形成することができる。これに対して、図8に示すように、電極中心軸に直交させて外側電極3の壁面に設けたガス導入孔8からガスを導入し2方向に分散するように流動させると、内側電極2と外側電極3の間隙または外側電極3の内部空間で乱流となり易く、ガスの流れ、および、噴出するプラズマジェットの形状を制御し難くなる。
【0036】
電極内部における螺旋ガス流形成の確認方法としては各種方法があるが、例えば、所望の電極と同一寸法に加工した石英管、アクリルパイプなどの透明体を用い、供給ガスへ粉体などの比較的比重が軽く、着色している物質を混入させることで、ガスの流れを可視化することができる。
【0037】
以下に本発明の実施例を説明するが、本発明はこれらに限定されるわけではない。
【実施例1】
【0038】
実施例1では、図1ないし4にそれぞれ示す構造のプラズマジェット生成用電極を用いた。被処理基材として、ポリエチレンテレフタレート基板(50×50mm、厚さ1mm)を選択し、これをその電極で生成したプラズマジェットによって表面処理を行った。
【0039】
外径10mm、肉厚1mmおよび外径25mm、肉厚1mmのステンレス製パイプを同軸状に配置しそれぞれ中心管5、外周管6とし、これらと、概略形状が図4に示す形状の金属製先端部7、および金属製上蓋体6Aとを溶融加工して一体化し筒状内側電極2とし、筒状固体誘電体4には内径27mm、肉厚1.5mmの石英管を加工して得た瓶状体を用い、また、外側電極3には内径30mm、肉厚1.5mmのアルミニウム製パイプの一端を加工して得たものを用い、内側電極2、外側電極3および筒状固体誘電体4をいずれも同軸状に配置し、筒状固体誘電体4は外側電極3の内面に密着させ、筒状内側電極2と筒状固体誘電体4の間隙が1mmとなるように配置して、プラズマジェット生成用電極1を構成した。内側電極2の先端部7は半径10mmの半球状の形状を有してなり、銅−タングステン合金を用いて構成した。その内部の穴孔9は、この例では先端部7の内部を半球面に沿う形で穿孔してある。外側電極3には、軸中心下部に直径3mmのプラズマジェット噴出孔12を設けた。
【0040】
ここで、放電ガスとして大気圧の乾燥空気を流量20L/minで供給し、交番電界として20kHz、15kVpの正弦波電圧を電源出力300Wで印加し、空気のプラズマジェットを生成した。電極下部から被処理基材までの距離は5mmに設定し、電極側は静止させ、XYステージにて被処理基材を5m/minの速度でスキャンさせることで表面改質処理を行った。処理効果は、被処理基材へ純水を滴下しその接触角を測定することで行った。
【0041】
プラズマ処理後の接触角は、未処理の場合の89度から7度に変化し、被処理基材の表面エネルギー値が増大し、表面改質によって濡れ性が改善されることが判明し、本発明の電極が効果的に機能することを確認した。この際、処理した基材表面を目視にて観察したが、溶融や変形などは確認されなかった。
【実施例2】
【0042】
実施例2では、実施例1と同じ構成のプラズマジェット生成用電極を用い、大気圧の乾燥窒素を30L/minの流量で供給、交番電界として10kHz、15kVpの正弦波電圧を電源出力500Wで印加し、プラズマジェットを生成した状態で350時間の連続運転を行ったが、内側電極2の銅−タングステン合金製の先端部7に熱による損耗や変形は認められなかった。
【実施例3】
【0043】
実施例1および2と同様な構成のプラズマジェット生成用電極を用い、大気圧の乾燥窒素の流量25L/min、正弦波周波数25kHz、正弦波電圧20kVp、電源出力250Wの条件でプラズマジェットを生成させ、被処理基材に50×50mm、厚さ10μmのポリイミドフィルムを用いて、電極下部から被処理基材までの距離を3mmとして、被処理基材を静止させた状態で、10秒間プラズマ処理を行ったが、ポリイミドフィルム基材の熱変形は認められなかった。
【0044】
これに対して、プラズマジェット生成用電極において、図7、8に示すように、電極中心軸と直交する方向からガス導入が行われ、螺旋ガス流の形成がなく筒状内側電極内部の空冷が行なわれない構造を有し、それ以外は、前記実施例2と同様の構造を有するプラズマジェット生成用電極を用い、かつ前記実施例2と同様のガス導入およびプラズマ生成条件で350時間の運転を行ったが、銅−タングステン合金製の内側電極先端部の一部に0.5mm程度の損耗が認められた。(比較例1)
【0045】
前記比較例1のプラズマジェット生成用電極を用い、前記実施例3と同様の条件でポリイミドフィルムのプラズマ処理を行ったが、数秒間で基材の熱変形が起こり、10秒間でプラズマ照射を受けた部分が完全に溶融した。(比較例2)
【産業上の利用可能性】
【0046】
本発明のプラズマジェット生成用電極は、プラスチックなど有機物を主成分とする基材の表面改質や接着性改善、ガラスなど無機物基材の表面洗浄など、プラズマ処理の分野に利用できる。
【図面の簡単な説明】
【0047】
【図1】本発明の実施例のプラズマジェット生成用電極の構成を説明するための図である。
【図2】本発明の実施例のプラズマジェット生成用電極の内部構造を示す斜視断面図である。
【図3】図2に示す電極の内側電極の構造を示す斜視断面透視図である。
【図4】図3に示す内側電極の先端部の構造を示す斜視図である。
【図5】本発明の他の実施例のプラズマジェット生成用電極の内側電極の構造を示す斜視透視図である。
【図6】実施例に係る内側電極と外側電極の間隙へのガス導入方法の一例を示す断面図である。
【図7】比較例に係るプラズマジェット生成用電極の構成を説明するための斜視断面透視図である。
【図8】比較例に係る内側電極と外側電極の間隙へのガス導入方法を示す断面図である。
【符号の説明】
【0048】
1 プラズマジェット生成用電極
2 内側電極
3 外側電極筒状固体誘電体
4 固体誘電体
5 中心管
6 外周管
6A 上蓋体
7 先端部
7A 平板部
8 ガス導入孔
8A ガス導入孔
9 穴孔
10 ガス吹出孔
11 ガス吹出孔
12 プラズマジェット噴出孔
13 螺旋流路
15 電源部
20 放電ガス流
30 プラズマジェット

【特許請求の範囲】
【請求項1】
概略形状がそれぞれ円筒状である一対の電極が絶縁体を介して同軸状に配置された構造を有し、その両電極間に放電ガスを流通させ交番電界を印加して発生させた放電プラズマを先端開口部よりプラズマジェットとして噴出させるプラズマジェット生成用電極において、前記一対の電極のうち内側電極は、その先端部が閉塞構造をなし、中心軸に沿って配置されたガス導入管と、その根元部の外側面に内側電極と外側電極とで挟まれた放電空間へ向かって開口したガス吹出孔と、を有し、またその内側電極の内部に、根元部から前記ガス導入管内に導入された放電ガスの流れが先端部で反転して根元部の方向に流動しさらに根元部で堰き止められて前記ガス吹出孔から内側電極の外部に噴出することが可能な構造を有することを特徴とするプラズマジェット生成用電極。
【請求項2】
前記一対の電極は内側電極と外側電極から構成され、その内側電極は、同軸二重管構造をなす中心管と外周管とから構成され、その先端部にその両者が融合してなる閉塞構造を有しその根元部にガス流を堰き止める構造を有し、またその先端部は肉厚に構成されその内奥に前記中心管と前記外周管とで挟まれた空間と前記中心管とを連絡する穴孔を有し、前記絶縁体は概略形状が円筒状で前記内側電極と一体の間隔を隔てて同軸状に配置され、ガス導入管として機能する前記中心管に導入された放電ガスの流れが、前記内側電極の先端部の前記穴孔内で反転して前記中心管と前記外周管とで挟まれた空間に噴出しその空間内を前記内側電極の根元部へ向かって流動する際に、前記中心管の外壁面と前記外周管の内壁面とに沿って流動することを特徴とする請求項1に記載のプラズマジェット生成用電極。
【請求項3】
前記中心管と前記外周管とで挟まれた空間に噴出する前記放電ガスは、その空間内を前記内側電極の根元部へ向けて流動する際に、電極中心軸回りに旋回し前記中心管の外壁面または前記外周管の内壁面に沿って流動する螺旋流を形成していることを特徴とする請求項2に記載のプラズマジェット生成用電極。
【請求項4】
前記内側電極の外周管の根元部外側面に形成されたガス吹出孔から噴出する前記放電ガスは、前記外側電極に接触して配置された前記絶縁体と前記内側電極との間に形成されるプラズマ放電空間内を電極先端部へ向かって流動する際に、電極中心軸回りに旋回し前記内側電極の外周管の外壁面と前記絶縁体の内壁面とに沿って流動する螺旋流を形成していることを特徴とする請求項3に記載のプラズマジェット生成用電極。
【請求項5】
前記螺旋流を形成する手段が前記内側電極に具備されていることを特徴とする請求項3または4に記載のプラズマジェット生成用電極。
【請求項6】
前記螺旋流を形成する手段が前記内側電極と前記外側電極とに具備されていることを特徴とする請求項4に記載のプラズマジェット生成用電極。
【請求項7】
前記放電プラズマは大気圧近傍圧力雰囲気において生成させることを特徴とする請求項1ないし6に記載のプラズマジェット生成用電極。
【請求項8】
前記内側電極および前記外側電極は金属から構成され、前記絶縁体は固体誘電体から構成されることを特徴とする請求項1ないし7に記載のプラズマジェット生成用電極。
【請求項9】
前記内側電極の先端部がタングステン、モリブテン、タンタル、銅、真鍮、ステンレスの何れか一つから選ばれた金属、もしくはこれらの合金から構成され、凸曲面形状を有していることを特徴とする請求項1ないし8に記載のプラズマジェット生成用電極。
【請求項10】
前記放電ガスが空気、窒素、酸素、アルゴンの何れか単体、もしくは、これらを主成分とする混合ガスであることを特徴とする請求項1ないし9に記載のプラズマジェット生成用電極。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2006−278191(P2006−278191A)
【公開日】平成18年10月12日(2006.10.12)
【国際特許分類】
【出願番号】特願2005−97001(P2005−97001)
【出願日】平成17年3月30日(2005.3.30)
【出願人】(000000192)岩崎電気株式会社 (533)
【Fターム(参考)】