説明

リニアモータ及び部品移載装置

【課題】薄型でありながらも十分な推進力を確保することができるリニアモータおよび該リニアモータを用いた部品移載装置を提供する。
【解決手段】可動ベース4への可動子の取付位置が幅方向Yの可動ベース4の(−Y)側端部側面となっており、同側面に取り付けられた可動子に対して電機子3が幅方向Yに対向して設けられている。したがって、可動ベース4の厚み分だけ可動子および固定子の薄型化が必要であるという従来技術における構成上の制約がなくなり、可動子(永久磁石6+ヨーク5)および電機子3を従来技術に比べて厚み方向Xに大きくすることができる。特に、電機子3の厚みについては、ベースプレート1のベース面1aから可動ベース4の上面までの距離と同じ値に設定することができ、コイル3cの巻き数を十分に確保することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ベースプレートに対して可動部を直線的に移動させるリニアモータおよび該リニアモータを用いた部品移載装置に関するものである。
【背景技術】
【0002】
電子部品などの部品をハンドリングする部品移載装置、半導体装置や液晶表示装置などを製造するための製造装置などを中心として、リニアモータの用途が年々拡大しており、特に近年薄型で高性能なリニアモータのニーズが高まっている。そして、このような要望に応えるべく、例えば図13に示す構成を有するリニアモータLMが提案されている(非特許文献1)。
【0003】
図13は従来のリニアモータの一例を示す図であり、同図(a)は同図(b)のA−A線矢視図である。同図に示すリニアモータLMでは、長方形状のベースプレート1上に、2本のリニアガイド2A、2Bが互いに平行に、しかも幅方向Yに離間して設けられている。各リニアガイド2A、2Bでは、ベースプレート1に対して直線状のレール2aが幅方向Yと直交し、しかもベースプレート1の表面と平行な関係にある移動方向Xに延設され、さらに該レール2aに沿ってスライダ2bが移動方向Zにスライド自在となっている。このように構成されたリニアガイド2A、2Bの間には、稠密構造に巻いたコイルがベースプレート1の表面に対して複数個枕木状態でZ方向に配列されて電機子3が形成され、リニアモータLMの固定子として機能する。なお、図13(a)では、電機子3を構成する複数のコイルのうち最も(−Z)方向側に設けられたコイルのみが図示されている。
【0004】
また、リニアガイド2A、2Bのスライダ2bの上面には、ベースプレート1と同一幅(幅方向Yの長さ)を有するテーブル状の可動ベース4が取り付けられ、ベースプレート1の上方位置でZ方向に移動自在となっている。このように可動ベース4と2つのスライダ2bが「可動部」として一体的にZ方向に移動自在となっている。
【0005】
この可動ベース4の裏面側には、電機子3を挟み込むように複数の永久磁石を取り付けたヨーク5A、5Bが可動子として取り付けられている。つまり、同図への図示は省略されているが、ヨーク5A、5Bはいずれも図13(a)の紙面に対して垂直方向、つまり移動方向Zに延設されるとともに、その延設方向Zに沿って永久磁石が複数個連設されている。なお、図13(a)では、それらの永久磁石のうち最も(−Z)方向側に設けられた永久磁石6A、6Bのみが図示されている。そして、電機子3の(+Y)方向側端部に対して複数の永久磁石6Aが対向するようにヨーク5Aの上端部が可動ベース4の裏面に取り付けられる一方、(−Y)方向側端部に複数の永久磁石6Bが対向するようにヨーク5Bが可動ベース4の裏面に取り付けられている。このため、電機子3のコイルに与える電流を制御することで、可動子の永久磁石6A、6Bと固定子(電機子3)で発生する磁束の相互作用により可動ベース4がZ方向に直線駆動される。
【0006】
さらに、リニアガイド2Aの反可動子側、つまり(+Y)側において、可動ベース4の位置を検出する検出ユニット7が設けられている。すなわち、ベースプレート1の上面にセンサ7aが固定配置される一方、このセンサ7aに対向するように可動ベース4の下面にリニアスケール7bが取り付けられている。このように、センサ7aとリニアスケール7bを上下方向Xに対向配置することで、上記リニアモータLMはZ方向における可動ベース4の位置を検出可能となっている。
【0007】
【非特許文献1】山本日登志、“素材/電子材料Topics 第32回世界最薄型7mm厚リニアモータの開発”、[online ]、2006年12月11日、社団法人 電子情報技術産業協会、[平成19年12月10日検索]、インターネット<http://home.jeita.or.jp/ecb/material/No032.html>
【発明の開示】
【発明が解決しようとする課題】
【0008】
上記従来のリニアモータLMでは、図13(a)に示すように、ベースプレート1と可動ベース4の間に、リニアガイド2A、ヨーク5A、永久磁石6A、電機子3、永久磁石6B、ヨーク5Bおよびリニアガイド2Bを幅方向Yに配置することで、ベースプレートからX方向に電機子、永久磁石、ヨーク、可動ベースを配置するものに比べて、リニアモータLMの厚み(X方向の装置サイズ)の低減を図っている。そして、リニアガイド2b、ヨーク5A,5B,永久磁石6A,6Bが可動ベース4に固定一体化されることで、ベースプレート1に固定されるリニアガイド2A,電機子3に対してZ方向に移動可能としている。リニアモータLMのさらなる薄型化を図るためには、このような配置構成を採用するが故に、可動ベース4の厚み(X方向のサイズ)を薄くし、ベースプレート1と可動ベースの間隔寸法Hを小さく(すなわち、永久磁石6A、6Bや電機子3の高さを小さく)する必要がある。しかしながら、可動ベース4の剛性を確保するためには、可動ベース4の厚み(X方向のサイズ)をある程度確保する必要があり、一方、永久磁石6A,6Bや電機子3を薄型化すると、その分推進力が小さくなるという問題が生じる。
【0009】
この発明は上記課題に鑑みなされたものであり、ベースプレートに設けられた固定子と、可動部に設けられた可動子を幅方向で対向させながら両者で発生する磁束の相互作用により可動部を移動方向に移動させるリニアモータにおいて、幅方向および移動方向の両方に直交する厚み方向への薄型化を図りながらも、十分な推進力で可動部を駆動することを第1の目的とする。
【0010】
また、この発明は上記リニアモータを用いた部品移載装置を提供することを第2の目的とする。
【課題を解決するための手段】
【0011】
この発明にかかるリニアモータは、上記第1の目的を達成するため、ベースプレートと、ベースプレートのベース面に対して所定の移動方向に移動自在となっている可動部と、可動部に対して移動方向に延設された可動子と、移動方向と直交する幅方向に可動子から離間して対向するようにベースプレートのベース面に対して移動方向に延設された固定子とを備え、可動子は幅方向の可動部の一方端部側面に設けられ、可動子および固定子で発生する磁束の相互作用により可動部を移動方向に駆動することを特徴としている。
【0012】
このように構成されたリニアモータでは、可動部への可動子の取付位置が幅方向の可動部の一方端部側面となっており、同側面に取り付けられた可動子に対して固定子が幅方向に対向して設けられている。このため、従来のリニアモータLMに比べ可動部を薄型化することや、可動子および固定子を薄型化することなく、あるいは逆に可動部を厚くし、可動子および固定子を厚くしつつ、リニアモータの厚み(移動方向および幅方向の両方に対して直交する厚み)を薄型化可能である。その結果、リニアモータを厚み方向に薄型したとしても、十分な推進力で可動部を駆動することができる。
【0013】
また、可動部を駆動するための推進力をさらに高めるためには、可動部の他方端部側面に可動子を設けるとともに、同側面に取り付けられた可動子に対して固定子を幅方向に対向して設けてもよい。すなわち、可動部の一方端部側面に設けられた第1可動子と第1可動子に対向する第1固定子で発生する磁束の相互作用と、可動部の他方端部側面に設けられた第2可動子と第2可動子に対向する第2固定子で発生する磁束の相互作用により可動部を移動方向に駆動するように構成してもよい。
【0014】
また、この発明にかかる部品移載装置は、部品収容部から部品搭載領域に部品を移載するものであって、上記第2の目的を達成するため、ベース部材と、ベース部材に対して上下方向に移動自在に支持され、先端部に吸着ノズルが取り付けられるとともに、後端部に接続された負圧配管を介して供給される負圧を吸着ノズルに与えるノズルシャフトと、ノズルシャフトを上下方向に駆動する上下駆動機構とを有する、ヘッドユニットと、部品収容部の上方位置と部品搭載領域の上方位置との間でヘッドユニットを移動させるヘッド駆動手段とを備え、上下駆動機構が請求項1ないし11のいずれかに記載のリニアモータであり、リニアモータは移動方向が上下方向と平行となるようにベース部材に取り付けられ、リニアモータの可動部がノズルシャフトに連結されていることを特徴としている。
【0015】
このように構成された部品移載装置では、上記リニアモータの可動部がノズルシャフトに連結されて可動部を駆動することでノズルシャフトが上下方向に駆動される。このように大きな推進力を有するリニアモータを用いてノズルシャフトを駆動するように構成しているため、ノズルシャフトの先端部に取り付けられた吸着ノズルによって軽量部品はもちろんのこと比較的重い部品も移送することができる。また、リニアモータの薄型化によって部品移載装置の小型化を図ることができる。
【発明を実施するための最良の形態】
【0016】
本発明は、ベースプレートに対して可動部を直線的に移動させるリニアモータおよび該リニアモータを用いた部品移載装置に関するものであり、以下においては、本発明にかかるリニアモータと、同リニアモータを用いた部品移載装置の一実施形態である表面実装機に分けて詳述する。
【0017】
<リニアモータ>
図1は本発明にかかるリニアモータの第1実施形態を示す斜視図である。また、図2は図1のリニアモータのA−A線断面図である。さらに、図3は図1のリニアモータの分解組立斜視図である。なお、これらの図面及び後で説明する図面では、各図の方向関係を明確にするために、XYZ直角座標軸が示されている。これら3つの方向X、Y、ZのうちZ方向が本発明の「移動方向」に相当し、Y方向が本発明の「幅方向」に相当し、X方向が「移動方向」および「幅方向」の両方向に直交する「厚み方向」に相当している。
【0018】
このリニアモータLMは所定の移動方向Zに伸びる薄型トレイー状のベースプレート1を有している。このベースプレート1では、図3に示すように、その内底面がベース面1aとなっており、ベースプレート1の(+Y)方向側端部、(−Y)方向側端部および(+Z)方向側端部に立壁1b〜1dが厚み方向(+X)にそれぞれ立設され、これらの立壁1b〜1dとベース面1aにより上方向(+X)に開口する凹部1eが形成されている。そして、当該凹部1eにリニアモータLMの構成部品が後述するように収容される。なお、この実施形態では、アルミニウム合金等によりベース面1aと立壁1b〜1dを一体的に成形して非磁性のベースプレート1を構成しているが、ベース面1aと立壁1b〜1dを個別に形成した上、これらの構成要素を組み付けてベースプレート1を構成してもよい。このようにベースプレート1を非磁性体材料で構成しているが、ベースプレート1を樹脂材料で構成してもよいことは言うまでもない。なお、図1および図2中の符号1hはリターンスプリングを取り付けるためのスプリング係合部である。
【0019】
このベース面1a上には、1本のリニアガイド2がZ方向に延設されている。すなわち、ベースプレート1に対して移動方向Zに延びる直線状のレール2aが固定されるとともに該レール2aに沿って2つのスライダ2b1、2b2が移動方向Zにスライド自在に(Y方向及びX方向に規制されて)取り付けられている。また、レール2aからのスライダ2b1、2b2の抜け落ちを防止するために、2つのリニアガイドストッパ2c1、2c2がベースプレート1のベース面1aに取り付け可能となっている。
【0020】
また、これらのスライダ2b1、2b2に対して逆凹状またはH字状の断面を有する可動ベース4が取り付けられ、Z方向に移動自在となっている。より詳しくは、可動ベース4はXY断面にて逆凹形状を有する内部空間を有しており、この内部空間の天井面がスライダ2b1、2b2の上面上に位置した状態で、可動ベース4がスライダ2b1、2b2に固定されている。また、可動ベース4の軽量化を図るために、本実施形態では、複数個の貫通孔4aが可動ベース4の天井面に形成されている。このように本実施形態では、可動ベース4およびスライダ2b1、2b2が一体的に移動方向Zに移動自在となっており、本発明の「可動部」に相当している。そして、次に説明するように可動ベース4の(−Y)側端部側面に可動子が取り付けられる一方、(+Y)側端部側面にリニアスケール7bが取り付けられている。
【0021】
図4は可動部材と可動子の取付構造を示す斜視図であり、また図5は可動部材と可動子の取付構造を示す図である。これらの図に示すように、可動ベース4の(−Y)側端部側面に強磁性材料より形成されたヨーク5が取り付けられ、さらに当該ヨーク5の表面には、N極側が該表面に対向する永久磁石6と、S極側が該表面に対向する永久磁石とが、交互にZ方向に沿って複数(この実施形態では14個)配列されて取り付けられており、これら永久磁石6とヨーク5によりリニアモータLMの可動子が構成されている。また、この実施形態では、永久磁石6は樹脂層10によりモールドされて表面保護されており、永久磁石6の破損などを効果的に防止することができる。さらに、可動ベース4の(−Y)側端部側面では、可動子(ヨーク5+永久磁石6)の(−Z)側に雌ネジ部4bが2箇所形成されている。これらの雌ネジ部4bは可動ベース4の(−Y)側端部に被駆動物を直接または連結部を介して取り付けるためのものである。例えば後で説明する表面実装機では、雌ネジ部4bを用いて可動ベース4に連結部を連結し、さらに当該連結部にノズルシャフトを被駆動物として接続している。つまり、雌ネジ部4bを用いて可動ベース4の端部に連結される、連結部を介して被駆動物を可動ベース4に取付可能となっている。なお、それについては後の「表面実装機」の項で詳述する。
【0022】
このように構成された可動子(永久磁石6+ヨーク5)の幅方向(−Y)側に本発明の「固定子」に相当する電機子3が配置され、ベースプレート1のベース面1aに固定されている。この電機子3は、コア3aと、複数の中空形状のボビン3bと、各ボビン3bの外周部に電線を巻きつけてなるコイル3cとで構成されている。このコア3aはZ方向に延びる矩形プレート部から一定間隔で(+Y)方向に設けられた歯部を有する櫛型形状の珪素鋼板を複数枚X方向に積層したものである。このように構成されたコア3aでは、複数の歯部がZ方向に一定間隔で並設されて歯部列を形成している。そして、各歯部に対し、予めコイル3cが巻き付けられたボビン3bが装着されている。こうして、複数(この実施形態では9個)のコア3aの歯部とこの歯部の周りに巻かれたコイル3cがZ方向に同一間隔で設けられて電機子3を構成しており、可動子(永久磁石6+ヨーク5)に対向配置されている。なお、本実施形態では、図2(b)に示すようにコイル3cが巻かれたコア3aの歯部の先端面8と、その先端面8の対向面となる可動子の永久磁石6の対向面8’との共通の法線8aが移動方向Zおよび幅方向Yを含むYZ平面に対して平行となるように、電機子3は構成されている。そして、図示を省略するモータコントローラから各コイル3cに所定の順番で通電が行われると、上記のように先端面8の磁極と対向面8′の磁極の相互作用により可動子(永久磁石6+ヨーク5)にZ方向の推力が生じて可動ベース4をZ方向に駆動する。
【0023】
また、本実施形態では、可動子に永久磁石を用い、固定子に磁性体で構成されるコア3aを用いているため、コア3aの歯部と可動子の永久磁石との間にコギング力が発生する。「コギング力の発生」とは、従来周知のようにコア3aの歯部位置により永久磁石6の磁束密度が変化し、これによって磁気エネルギーが変化するため、電機子3に作用する電磁気力の脈動が生じる現象である。そこで、コギング力を低減するために、電機子3の歯部列の両端に磁性体からなるサブティース9a、9bが設けられている。すなわち、歯部列の(+Z)側において歯列ピッチと一致あるいは異なる所望の位置にサブティース9aが、また(−Z)側において同歯列ピッチと一致あるいは異なる所望の位置にサブティース9bが、永久磁石6からの離間距離がそれぞれ所望の距離となるように、それぞれベースプレート1のベース面1aに対して着脱自在に設けられている。
【0024】
また、上記のように構成したリニアモータLMでは、コア3aに繋がるプレート部位がサブティース9a、9bの近傍まで延ており、電機子のコアとサブティースとが磁気的結合を生じ、磁束密度分布の偏在を生じてしまう。このため、サブティース9a、9bを所定の位置に配置しただけでは、安定したコギング力低減機能を発揮できない場合がある。特に、加速・減速時等において、あるいは作動条件(加速後の一定移動速度)そのものが変化する場合においては、コイル3cに流れる電流量が想定値より変化し、サブティース9a、9bにおける永久磁石との対向面の磁極あるいはその強さが所望のものとはならず、サブティース9a、9bによるコギング力低減の効果が必ずしも得られない場合がある。そこで、本実施形態では、サブティース9a、9bによるコギング力の低減効果を補うために、サブティース9a、9bとベースプレート1の間に磁性体プレート11が設けられている。より詳しくは、次のように構成されている。
【0025】
図6はサブティースと磁性体プレートの配置関係を示す平面図である。同図においては、サブティース9a、9bに対する磁性体プレート11の相対位置と、磁性体プレート11の平面形状を明確にするため、磁性体プレート11にハッチングを付している。ベースプレート1のベース面1aには、磁性体プレート11の平面形状とほぼ同一形状のプレート嵌合部1gが(−X)方向に形成されている(図2(a)参照)。そして、当該プレート嵌合部1gに磁性体プレート11が嵌合されて磁性体プレート11の表面がベース面1aと面一状態となっている。この磁性体プレート11の配設によって、Y−Z面上においてコア3a,サブティース9a、永久磁石6、ヨーク5、隣の永久磁石6、そして隣の歯部を通ってコア3aに到る磁束だけでなく、サブティース9a、永久磁石6、ヨーク5、磁性体プレート11を通じてサブティース9aに到るX−Y面上の磁束が発生し、コギング力の効果的な低減を図っている。
【0026】
上記のように可動子(永久磁石6+ヨーク5)と電機子3で発生する磁束の相互作用により可動ベース4が移動方向Zに駆動されるが、可動ベース4が所定の移動範囲を超えてしまうのを防止するために、ベースプレート1のベース面1aに2つの移動規制ストッパ12a、12bが取付可能となっている。
【0027】
また、可動ベース4の位置を正確に検出するため、可動ベース4の反電機子側、つまり(+Y)側にセンサ7aとリニアスケール7bを有する検出ユニット7が設けられている。このリニアスケール7bは可動ベース4の(+Y)側端部側面に対してZ方向に延設されている。また、リニアスケール7bの(−Y)側でセンサ7aがベースプレート1に固定配置されている。このため、可動ベース4のZ方向移動に応じてリニアスケール7bのうちセンサ7aと対向する領域が変位し、その変位に基づき移動方向Zにおける可動ベース4の位置を正確に検出することが可能となっている。
【0028】
このセンサ7aはセンサ制御ユニット7cと一体的に構成されており、この構造体(センサ7a+センサ制御ユニット7c)は図3に示すように立壁1bに形成された切欠部1fを介して凹部1eに対して挿脱自在となっている。すなわち、構造体は切欠部1fを介してベースプレート1内に挿入され、図2に示すように幅方向Yにおいてセンサ7aがリニアスケール7bに対向して配置されるとともにセンサ制御ユニット7cがセンサ7aの反リニアスケール側、つまり(+Y)側に配置された状態で、ベースプレート1に固定される。特に、この実施形態では、図2(c)に示すように、リニアスケール7bの表面7eと、当該表面7eと対向するセンサ7aのセンシング面7e′との共通の法線7fが移動方向Zおよび幅方向Yを含むYZ平面に対して平行となるように、センサ7aおよびリニアスケール7bの取付位置が設定されている。なお、センサ制御ユニット7cに埃やゴミなどの異物が進入を防止するため、上記構造体を取り付けた後にセンサカバー7dがセンサ制御ユニット7cを覆うようにベースプレート1の立壁1bに取り付けられている。
【0029】
なお、この実施形態では、可動ベース4にリニアスケール7bを取り付ける一方、ベースプレート1にセンサ7aを配置しているが、センサ7aとリニアスケール7bを逆転配置してもよい。また、検出ユニット7の構成要素(センサ7a、リニアスケール7b)の一方を可動ベース4に取り付ける代わりに、スライダ2b1、2b2に取り付けるように構成してもよい。また、検出ユニット7の検出方式としては、磁気を用いた磁気方式であっても、光学方式であってもよい。
【0030】
以上のように、この実施形態にかかるリニアモータLMでは、可動ベース4への可動子の取付位置が幅方向Yの可動ベース4の(−Y)側端部側面となっており、同側面に取り付けられた可動子に対して電機子3が幅方向Yに対向して設けられている。したがって、可動ベース4の厚み分だけ可動子および固定子の薄型化が必要であるという従来技術における構成上の制約がなくなり、可動子(永久磁石6+ヨーク5)および電機子3を従来技術に比べて厚み方向Xに大きくすることができる。特に、電機子3の厚みについては、ベースプレート1のベース面1aから可動ベース4の上面までの距離と同じ値に設定することができ、コイル3cの巻き数を十分に確保することができる。その結果、本実施形態によれば、薄型でありながらも十分な推進力を備えたリニアモータLMが得られる。
【0031】
また、上記実施形態では、1本のリニアガイド2により可動ベース4を移動方向Zに移動可能に構成しているため、図13に示すリニアモータLMに比べて構成が簡素で、しかも幅方向Yに小型化することができる。
【0032】
また、上記実施形態では、可動ベース4の(−Y)側に可動子および電機子(固定子)3を配置して可動ベース4を駆動する一方、(+Y)側に検出ユニット7を配置して可動ベース4の位置を検出しているため、リニアモータLMを幅方向Yにダウンサイズすることができ、リニアモータLMをコンパクト化することができる。
【0033】
なお、本発明にかかるリニアモータは上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば第1実施形態では、図2(c)に示すように、センサ7aおよびリニアスケール7bの対向面7eの法線7fが移動方向Zおよび幅方向Yを含む平面に対して平行となるように、検出ユニット7が設けられているが、検出ユニット7の構成はこれに限定されるものではなく、例えば従来のリニアモータLM(図13)と同様の取付態様で検出ユニット7を設けてもよい。
【0034】
また、上記実施形態では、可動ベース4の(−Z)側端部の側面に雌ネジ部4bを設けて被駆動物を連結可能に構成しているが、可動ベース4の上面にネジ部を設け、ネジ部を用いて直接被駆動物を可動ベース4に取付可能に構成してもよい。また、ネジ部を用いて可動ベース4にテーブルを固定し、当該テーブルを介して被駆動物を可動ベース4に取付可能に構成してもよい。このように、本発明の「ベース面の法線方向」は本実施形態の(+X)方向に相当し、「ベース面の法線方向における前記可動部の反ベース面側表面」は可動ベース4の上面に相当している。
【0035】
また、上記実施形態では、可動ベース4の(−Y)側にのみ可動子および電機子(固定子)3を配置して可動ベース4を駆動しているが、例えば図7に示すように可動ベース4の(+Y)側にも可動子および電機子(固定子)3を配置してもよい。
【0036】
図7は本発明にかかるリニアモータの第2実施形態を示す斜視図である。この実施形態では、ベースプレート1のベース面1a上に、2本のレール2a1、2a2が互いに平行に、しかも幅方向Yに離間して設けられている。そして、各レール2a1、2a2に沿って図示を省略するスライダが移動方向Zにスライド自在と(Y方向及びX方向に規制されて)設けられ、さらに当該スライダに対して可動ベース4が取り付けられて可動ベース4がZ方向に移動自在となっている。そして、この可動ベース4の(+Y)側端部側面にヨーク5Aが取り付けられ、さらに当該ヨーク5Aの表面には、N極側が該表面に対向する永久磁石6と、S極側が該表面に対向する永久磁石とが、交互にZ方向に沿って複数(この実施形態では14個)配列されて取り付けられており、これら永久磁石6Aとヨーク5AによりリニアモータLMの第1可動子が構成されている。また、第1可動子(永久磁石6A+ヨーク5A)の幅方向(+Y)側に本発明の「第1固定子」に相当する電機子3Aが配置され、ベースプレート1のベース面1aに固定されている。一方、可動ベース4の(−Y)側についても(+Y)側と同様に構成されている。すなわち、可動ベース4の(−Y)側端部側面にヨーク5Bが取り付けられ、さらに当該ヨーク5Bの表面に永久磁石6BがZ方向に沿って配列されて取り付けられており、これら永久磁石6Bとヨーク5BによりリニアモータLMの第2可動子が構成されている。また、第2可動子(永久磁石6B+ヨーク5B)の幅方向(−Y)側に本発明の「第2固定子」に相当する電機子3Bが配置され、ベースプレート1のベース面1aに固定されている。このように構成することで可動ベース4を駆動するための推進力をさらに高めることができる。
【0037】
このような構成を採用した場合には、従来のリニアモータLM(図13)と類似した取付態様で検出ユニット7を設けることができる。例えば可動ベース4には、上記したように逆凹形状の内部空間が形成されているが、その内部空間の天井面中央にZ方向にリニアスケールを貼り付ける一方、2本のレール2a1、2a2の間でリニアスケールに対向するようにセンサをベースプレート1の表面に固定配置することができる。
【0038】
また、上記第1実施形態ではスライダ2b1,2b2、上記第2実施形態では不図示のスライダに、それぞれ固定された可動ベース4の幅方向Yの端部側面にヨーク5を取り付け、さらに当該ヨーク5に永久磁石6を取り付けているが、可動ベース4を強磁性材料で形成し、当該可動ベース4の幅方向Yの端部側面に直接永久磁石6をZ方向に延設し、磁気回路を形成してもよい。また、上記第1実施形態ではスライダ2b1,2b2、上記第2実施形態では不図示のスライダの幅方向Yの端部側面にヨーク5を取り付け、さらに当該ヨーク5に永久磁石6を取り付けてもよい。この場合、スライダ2b、2b1、2b2は本発明の「可動部」に相当する。さらに、スライダを強磁性材料で構成するとともに、スライダの幅方向Yの端部側面に直接永久磁石6をZ方向に延設して磁気回路を形成してもよい。
【0039】
また、上記第1実施形態及び第2実施形態では、可動子を永久磁石6で構成する一方、固定子を電機子3で構成しているが、可動子を電磁子で構成する一方、固定子を永久磁石で構成したリニアモータに対して本発明を適用してもよい。
【0040】
また、上記実施形態のいずれも、いわゆる単軸リニアモータであるが、図8に示すように2つの単軸リニアモータLM1、LM2を組み合わせて多軸リニアモータMLMを構成してもよい。
【0041】
図8は本発明にかかるリニアモータの第3実施形態を示す斜視図である。この実施形態では、同一構成の単軸リニアモータを2個準備し、その一方のリニアモータLM1の立壁1b〜1dの(+X)側端面がもう一方のリニアモータLM2のベースプレート1の裏面に当接してリニアモータLM1、LM2がX方向に積層配置されて多軸リニアモータMLMが形成されている。また、各リニアモータLM1、LM2のベースプレート1には、3個の貫通孔1p〜1rが形成されている。そして、リニアモータLM1、LM2の貫通孔1pを貫くようにボルト13pが挿通されるとともに、ボルト13pの先端部に対してナット14pが螺合される。また、他の貫通孔1q、1rについても、貫通孔1pと同様に、ボルト13q、13rが挿通されるとともにナットが螺合される。また、各単軸リニアモーターLM1、LM2に各々2個づつ取り付けられる位置決めピン20が貫通穴21(図3参照)の(−X)側端部に勘合して位置決めを果たす。このように3箇所でリニアモータLM1、LM2が相互に締結固定されて一体化されて2軸のリニアモータMLMが形成される。
【0042】
このように構成された2軸のリニアモータMLMでは、第1実施形態にかかる薄型のリニアモータLM1、LM2をX方向に積層配置したものであるため、2軸のX方向ピッチを狭く設定することができる。また、各リニアモータLM1、LM2では、可動子や電機子(固定子)などの全構成部品の厚み(X方向の長さ)はベースプレート1の立壁1b〜1dのそれ以下となっており、しかもリニアモータの主要構成(可動部、電機子3および可動子)はベース面1aと立壁1b〜1dで囲まれた凹部1eに収容されている。このため、2軸の相対位置を高精度に保ちながらモータ組立を容易に行うことができる。
【0043】
なお、組み合わせる単軸リニアモータの数は「2」に限定されるものではなく、3以上の単軸リニアモータを組み合わせて多軸リニアモータMLMを構成することができる。例えば、次に説明する表面実装機では、10本の吸着ノズルを用いて部品を移載するために各吸着ノズルを上下方向に駆動する上下駆動機構を装備するが、10個の単軸リニアモータLM1〜LM10を組み合わせた多軸リニアモータMLMを当該上下駆動機構として用いることができる。
【0044】
<表面実装機>
図9は本発明にかかる部品移載装置の一実施形態である表面実装機の概略構成を示す平面図である。また、図10はヘッドユニットの正面図および側面図である。さらに、図11は図9に示す表面実装機の電気的構成を示すブロック図である。なお、これらの図面及び後で説明する図面では、上記したリニアモータの移動方向Z、幅方向Yおよび厚み方向Xに対応した三次元の座標系を採用している。
【0045】
この表面実装機MTでは、基台111上に基板搬送機構102が配置されており、基板103を所定の搬送方向Xに搬送可能となっている。より詳しくは、基板搬送機構102は、基台111上において基板103を図9の右側から左側へ搬送する一対のコンベア121、121を有している。これらのコンベア121、121は表面実装機MT全体を制御する制御ユニット104の駆動制御部141により制御される。すなわち、コンベア121,121は駆動制御部141からの駆動指令に応じて作動し、搬入されてきた基板103を所定の実装作業位置(同図に示す基板103の位置)で停止させる。そして、このように搬送されてきた基板103は図略の保持装置により固定保持される。この基板103に対して部品収容部105から供給される電子部品(図示省略)がヘッドユニット106に搭載された吸着ノズル161により移載される。また、基板103に実装すべき部品の全部について実装処理が完了すると、基板搬送機構102は駆動制御部141からの駆動指令に応じて基板103を搬出する。
【0046】
基板搬送機構102の両側には、上記した部品収容部105が配置されている。これらの部品収容部105は多数のテープフィーダ151を備えている。また、各テープフィーダ151には、電子部品を収納・保持したテープを巻回したリール(図示省略)が配置されており、電子部品を供給可能となっている。すなわち、各テープには、集積回路(IC)、トランジスタ、抵抗、コンデンサ等の小片状のチップ電子部品が所定間隔おきに収納、保持されている。そして、テープフィーダ151がリールからテープをヘッドユニット106側に送り出すことによって該テープ内の電子部品が間欠的に繰り出され、その結果、ヘッドユニット106の吸着ノズル161による電子部品のピックアップが可能となる。
【0047】
また、この実施形態では、基板搬送機構102の他に、ヘッド駆動機構107が設けられている。このヘッド駆動機構107はヘッドユニット106を基台111の所定範囲にわたりX方向及びY軸方向(X軸及びZ方向と直交する方向)に移動するための機構である。そして、ヘッドユニット106の移動により吸着ノズル161で吸着された電子部品が部品収容部105の上方位置から基板103の上方位置に搬送される。すなわち、ヘッド駆動機構107は、X方向に延びる実装用ヘッド支持部材171を有しており、この実装用ヘッド支持部材171はヘッドユニット106をX軸に沿って移動可能に支持している。また、実装用ヘッド支持部材171は、両端部がY軸方向の固定レール172に支持され、この固定レール172に沿ってY軸方向に移動可能になっている。さらに、ヘッド駆動機構107は、ヘッドユニット106をX方向に駆動する駆動源たるX軸サーボモータ173と、ヘッドユニット106をY軸方向に駆動する駆動源たるY軸サーボモータ174とを有している。モータ173はボールねじ175に連結されており、駆動制御部141からの動作指令に応じてモータ173が作動することでヘッドユニット106がボールねじ175を介してX方向に駆動される。一方、モータ174はボールねじ176に連結されており、駆動制御部141からの動作指令に応じてモータ174が作動することで実装用ヘッド支持部材171がボールねじ176を介してY軸方向へ駆動される。
【0048】
ヘッド駆動機構107によりヘッドユニット106は電子部品を吸着ノズル161により吸着保持したまま基板103に搬送するとともに、所定位置に移載する(部品移載動作)。より詳しく説明すると、ヘッドユニット106は次のように構成されている。このヘッドユニット106では、鉛直方向Zに延設された実装用ヘッドが10本、X方向(基板搬送機構102による基板103の搬送方向)に等間隔で列状配置されている。実装用ヘッドのそれぞれの先端部には、吸着ノズル161が装着されている。すなわち、図10に示すように、各実装用ヘッドはZ方向に伸びるノズルシャフト163を備えている。ノズルシャフト163の軸心部には、上方(Z方向)に延びる空気通路が形成されている。そして、ノズルシャフト163の下方端部には、吸着ノズル161が接続されて空気通路と連通している。一方、上方端部は開口しており、連結部164、接続部材165、空気パイプ166および真空切替バルブ機構167を介して真空吸引源および正圧源に接続される。
【0049】
また、ヘッドユニット106では、ノズルシャフト163を上下方向Zに昇降させる上下駆動機構168が設けられており、駆動制御部141のモータコントローラ142により上下駆動機構168を駆動制御してノズルシャフト163を上下方向Zに昇降させ、これによって吸着ノズル161を上下方向Zに移動し、位置決めする。この実施形態では、10個の単軸リニアモータLM1〜LM10を組み合わせた多軸リニアモータMLMを上下駆動機構168として用いている。なお、この構成の詳細については、後で詳述する。
【0050】
また、吸着ノズル161をR方向に回転させるR軸サーボモータ169が設けられており、制御ユニット104の駆動制御部141からの動作指令に基づきR軸サーボモータ169が作動して吸着ノズル161をR方向に回転させる。したがって、上記のようにヘッド駆動機構107によってヘッドユニット106が部品収容部105に移動されるとともに、上下駆動機構168およびR軸サーボモータ169を駆動することによって、部品収容部105から供給される電子部品に対して吸着ノズル161の先端部が適正な姿勢で当接する。
【0051】
図12は上下駆動機構の構成を示す図である。この実施形態において上下駆動機構168として用いられている多軸リニアモータMLMは図12に示すように10個の単軸リニアモータLM1〜LM10と2枚のサイドプレートSPa、SPbとで構成されている。これらの単軸リニアモータLM1〜LM10はX方向に積層配置されている。また、リニアモータLM1の(−X)側にサイドプレートSPaが配置される一方、リニアモータLM10の(+X)側にサイドプレートSPbが配置されており、これら2枚のサイドプレートSPa、SPbにより単軸リニアモータLM1〜LM10を挟み込んでいる。これらサイドプレートSPa、SPbおよび単軸リニアモータLM1〜LM10のいずれにも予め設定された位置に3つの締結用の貫通孔が形成されており、これらの締結用貫通孔に貫くようにボルト13p〜13qが挿通されるとともに、ナットによって締結されてサイドプレートSPa、単軸リニアモータLM1〜LM10およびサイドプレートSPbが一体化されて多軸リニアモータMLMが形成されている。この多軸リニアモータMLMは図10に示すようにヘッドユニット106のベースプレート160に取り付けられる。なお、サイドプレートSPbは、端部のリニアモータLM10の凹部1e(図3参照)を覆うカバーとしても機能する。
【0052】
また、各リニアモータLM1〜LM10の可動ベース4には、連結部164を介してノズルシャフト163が連結されている。各連結部164は図10に示すようにL字状のブロック部材164aとシャフトホルダ164bを備えている。各ブロック部材164aでは、(+Z)方向に延びる端部により、ネジで可動ベース4に螺合されている。これによって、各リニアモータLM1〜LM10でブロック部材164aが可動ベース4の下端部、つまり(−Z)側端部に連結される。また、各ブロック部材164aの(−Y)方向に延びる端部の下面にシャフトホルダ164bが取り付けられ、シャフトホルダ164bの下面側、つまり(−Z)方向側でノズルシャフト163を保持可能となっている。また、シャフトホルダ164bの(−Y)側端部側面には接続部材165が取り付けられている。この接続部材165には空気パイプ166の一方端が接続されており、当該空気パイプ166を介して真空切替バルブ機構167から送られてくる空気をシャフトホルダ164bに送り込んだり、逆にシャフトホルダ164bから空気を空気パイプ166を介して真空切替バルブ機構167に吸引可能としている。このように空気パイプ166−シャフトホルダ164b内の空気経路(図示省略)−ノズルシャフト163という経路で真空切替バルブ機構167と吸着ノズル161が接続されており、各吸着ノズル161に正圧を供給したり、逆に各吸着ノズル161に負圧を供給可能となっている。
【0053】
なお、この実施形態では、多軸リニアモータMLMは上下駆動機構168として用いられており、各可動ベース4の移動方向は上下方向Zと平行となっている。このため、各可動ベース4には垂直荷重が常時付与されている。そこで、各リニアモータLM1〜LM10では、リターンスプリング15の上端部をベースプレート1のスプリング係合部1hに係合させるとともに、その下端部をブロック部材164aの(−Y)側端部に設けられたスプリング係合部164cに係合させ、このリターンスプリング15により可動ベース4を上方側、つまり(+Z)方向側に付勢している。これによって、各リニアモータLM1〜LM10のコイル3cへの電流供給を停止している間に、可動ベース4はベースプレート1内に収納される。これにより各吸着ノズル161は上方に位置することになり、上下駆動機構168が電流停止により機能しない状態で、例えばX軸サーボモータ173やY軸サーボモータ174が作動したとしても、各吸着ノズル161、あるいは吸着されている電子部品が基板103やコンベア121等と干渉事故を起こすことがない。
【0054】
このように構成された表面実装機では、制御ユニット104のメモリ(図示省略)に予め記憶されたプログラムにしたがって制御ユニット104の主制御部143が装置各部を制御してヘッドユニット106を部品収容部105の上方位置と基板103の上方位置の間を往復移動させる。また、ヘッドユニット106は部品収容部105の上方位置に停止した状態で上下駆動機構168およびR軸サーボモータ169を駆動制御して部品収容部105から供給される電子部品に対して吸着ノズル161の先端部を適正な姿勢で当接させるとともに、負圧吸着力を吸着ノズル161に与えることで、該吸着ノズル161による部品保持を行う。そして、部品を吸着保持したままヘッドユニット106は基板103の上方位置に移動した後、所定位置に移載する。このように部品収容部105から基板103の部品搭載領域に部品を移載する、部品移載動作が繰り返して行われる。
【0055】
以上のように、この実施形態にかかる表面実装機では、図1に示すリニアモータLMと同一構成を有する10個のリニアモータLM1〜LM10をX方向に積層配置してなる多軸リニアモータMLMを用いてノズルシャフト163を上下方向Zに昇降駆動するように構成しているので、次のような作用効果が得られる。各リニアモータLM1〜LM10は上記したように薄型でありながらも十分な推進力を備えているため、ノズルシャフト163の先端部に取り付けられた吸着ノズル161によって軽量部品はもちろんのこと比較的重い部品も移送することが可能となっている。また、リニアモータLM1〜LM10の薄型化によってヘッドユニット106の小型化、軽量化を図ることができ、このことは表面実装機の小型化に寄与し、さらにXY両方向の移動速度の高速化により実装時間の短縮に大きく寄与する。なおさらに、X方向に薄い形状を有するリニアモータLM1〜LM10を積層配置しているため、X方向において可動ベース4を狭ピッチで配置することができ、その結果、これらの可動ベース4に連結されるノズルシャフト163および吸着ノズル161のX方向のピッチPTを狭くすることができる。
【0056】
<その他>
なお、上記実施形態では、部品移載装置として機能する表面実装機MTに対して本発明を適用しているが、本発明の適用対象はこれに限定されるものではなく、ICハンドラー等の部品移載装置に対しても本発明を適用することができる。
【図面の簡単な説明】
【0057】
【図1】本発明にかかるリニアモータの第1実施形態を示す斜視図である。
【図2】図1のリニアモータのA−A線断面図である。
【図3】図1のリニアモータの分解組立斜視図である。
【図4】可動部材と可動子の取付構造を示す斜視図である。
【図5】可動部材と可動子の取付構造を示す図である。
【図6】サブティースと磁性体プレートの配置関係を示す平面図である。
【図7】本発明にかかるリニアモータの第2実施形態を示す斜視図である。
【図8】本発明にかかるリニアモータの第3実施形態を示す斜視図である。
【図9】本発明にかかる部品移載装置の一実施形態である表面実装機の概略構成を示す平面図である。
【図10】ヘッドユニットの正面図および側面図である。
【図11】図9に示す表面実装機の電気的構成を示すブロック図である。
【図12】上下駆動機構の構成を示す図である。
【図13】従来のリニアモータを示す図である。
【符号の説明】
【0058】
1…ベースプレート
1a…ベース面
1b〜1d…立壁
1e…凹部
1f…切欠部
2a、2a1、2a2…レール
2b、2b1、2b2…スライダ
3、3A、3B…電機子(固定子)
4…可動ベース(可動部)
4b…雌ネジ部(ネジ部)
5、5A、5B…ヨーク
6、6A、6B…永久磁石
106…ヘッドユニット
107…ヘッド駆動機構
161…吸着ノズル
163…ノズルシャフト
168…上下駆動機構
LM、LM1〜LM10…リニアモータ
MLM…多軸リニアモータ
MT…表面実装機(部品移載装置)
X…厚み方向(ベース面の法線方向)
Y…幅方向
Z…移動方向

【特許請求の範囲】
【請求項1】
ベースプレートと、
前記ベースプレートのベース面に対して所定の移動方向に移動自在となっている可動部と、
前記可動部に対して前記移動方向に延設された可動子と、
前記移動方向と直交する幅方向に前記可動子から離間して対向するように前記ベースプレートの前記ベース面に対して前記移動方向に延設された固定子とを備え、
前記可動子は前記幅方向の前記可動部の一方端部側面に設けられ、
前記可動子および前記固定子で発生する磁束の相互作用により前記可動部を前記移動方向に駆動する
ことを特徴とするリニアモータ。
【請求項2】
前記ベースプレートの前記ベース面に対して前記移動方向に延設された直線状のレールをさらに備え、
前記可動部は、前記レールに沿って前記移動方向にスライド自在に設けられたスライダと、前記スライダに取り付けられた可動ベースとを有しており、
前記幅方向の前記可動ベースの端部側面に対して前記可動子が取り付けられている請求項1記載のリニアモータ。
【請求項3】
前記ベースプレートの前記ベース面に対して前記移動方向に延設された直線状のレールをさらに備え、
前記可動部は前記レールに沿って前記移動方向にスライド自在に設けられたスライダを有しており、
前記幅方向の前記スライダの端部側面に対して前記可動子が取り付けられている請求項1記載のリニアモータ。
【請求項4】
前記幅方向の前記ベースプレートの両端部の各々に対し、前記ベース面の法線方向に延びる立壁が前記ベースプレートと一体あるいは別体で前記移動方向に延設され、
各立壁の前記ベース面からの高さが前記固定子の前記ベース面からの高さよりも高い請求項1ないし3のいずれかに記載のリニアモータ。
【請求項5】
リニアスケールおよびセンサを互いに前記幅方向に対向させながら前記リニアスケールおよび前記センサのうちの一方を前記可動部に設け、他方を前記ベースプレートに固定して前記移動方向における前記可動部の位置を検出する検出手段をさらに備えている請求項1ないし3のいずれかに記載のリニアモータ。
【請求項6】
前記リニアスケールおよび前記センサのうちの前記一方は前記幅方向の前記可動部の他方端部側面に設けられ、
前記リニアスケールおよび前記センサの対向面の法線が前記移動方向および前記幅方向を含む平面に対して平行または傾斜するように、前記リニアスケールおよび前記センサが配置されている請求項5記載のリニアモータ。
【請求項7】
前記センサを制御するセンサ制御ユニットをさらに備え、
前記リニアスケールが前記可動部の前記他方端部側面に設けられる一方、前記幅方向において前記センサが前記リニアスケールに対向して配置されるとともに前記センサ制御ユニットが前記センサの反リニアスケール側に配置されている請求項6記載のリニアモータ。
【請求項8】
前記幅方向の前記ベースプレートの両端部の各々に対し、前記ベース面の法線方向に延びる立壁が前記ベースプレートと一体あるいは別体で前記移動方向に延設され、
各立壁の前記ベース面からの高さが前記固定子の前記ベース面からの高さよりも高く、 前記2つの立壁のうち前記可動部側に位置する前記可動部側立壁に、前記センサ制御ユニットを挿入する可能な切欠部または貫通孔が設けられている請求項7記載のリニアモータ。
【請求項9】
前記可動子を第1可動子とし、前記固定子を第1固定子としたとき、
前記第1可動子と異なる第2可動子と、前記第1固定子と異なる第2固定子をさらに備え、
前記第2可動子が前記幅方向の前記可動部の他方端部側面に設けられるとともに、前記第2固定子が前記幅方向に前記第2可動子から離間して対向するように前記ベースプレートの前記ベース面に対して前記移動方向に延設され、
前記第1可動子および前記第1固定子で発生する磁束の相互作用と、前記第2可動子および前記第2固定子で発生する磁束の相互作用により前記可動部を前記移動方向に駆動する請求項1ないし3のいずれかに記載のリニアモータ。
【請求項10】
被駆動物を前記移動方向に移動させる請求項1ないし9のいずれかに記載のリニアモータであって、
前記移動方向の前記可動部の端部にネジ部が設けられ、
前記ネジ部を用いて直接または前記ネジ部を用いて前記可動部の端部に連結される連結部を介して、前記被駆動物を前記可動部に取付可能となっているリニアモータ。
【請求項11】
被駆動物を前記移動方向に移動させる請求項1ないし9のいずれかに記載のリニアモータであって、
前記ベース面の法線方向における前記可動部の反ベース面側表面にネジ部が設けられ、
前記ネジ部を用いて直接または前記ネジ部を用いて前記可動部に固定されるテーブルを介して、前記被駆動物を前記可動部に取付可能となっているリニアモータ。
【請求項12】
部品収容部から部品搭載領域に部品を移載する部品移載装置において、
ベース部材と、前記ベース部材に対して上下方向に移動自在に支持され、先端部に吸着ノズルが取り付けられるとともに、後端部に接続された負圧配管を介して供給される負圧を前記吸着ノズルに与えるノズルシャフトと、前記ノズルシャフトを前記上下方向に駆動する上下駆動機構とを有する、ヘッドユニットと、
前記部品収容部の上方位置と前記部品搭載領域の上方位置との間で前記ヘッドユニットを移動させるヘッド駆動手段とを備え、
前記上下駆動機構が請求項1ないし11のいずれかに記載のリニアモータであり、
前記リニアモータは前記移動方向が前記上下方向と平行となるように前記ベース部材に取り付けられ、
前記リニアモータの前記可動部が前記ノズルシャフトに連結されている
ことを特徴とする部品移載装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate