説明

レーザ照射方法及びその装置

【課題】反射率の異なる被照射物に対し、レンズの温度ひいては焦点距離を維持するための同じ反射率のミラーを備えると、レンズの焦点距離が温度変化に起因して変動する。
【解決手段】第1のミラー5に反射位置Iを採らせることにより、集光レンズ2を透過するレーザaを、第1,第2のミラー5,6によつて次々に反射させると共に、第1のミラー5によつて再度反射されるレーザaの強度を、被照射物4から反射されるレーザaの強度に合致させて集光レンズ2を透過させ、レーザaを被照射物4に照射するときと同様に集光レンズ2を加熱すると共に、第1,第2のミラー5,6の少なくとも一方に温度制御手段26,27を付属させ、第1,第2のミラー5,6の温度を制御することにより、処理用のレーザ(a)による処理時に被照射物4から反射されるレーザaの強度に合致させて、レーザaを第2のミラー6から反射させることが可能である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ照射方法及びその装置に関するものであり、詳しくはレーザ発振器からのレーザをレンズを通して集光又は結像させてステージに載せた被照射物に照射し、被照射物を改質させるものにおいて、レンズの温度ひいては焦点距離を維持するためのミラーを備えるレーザ照射方法及びその装置に関するものである。
【背景技術】
【0002】
従来、薄膜トランジスタの結晶化シリコンの製造に際し、ガラス基板上に薄いa−Si(アモルファスシリコン)膜を形成した被照射物にレーザ光を照射して、a−Si膜を結晶化して薄いp−Si(ポリシリコン)膜としている。このa−Si膜にレーザを照射して改質する方法の一つとして、均一な強度のレーザをマスクにあてて、それを光学機器の集光レンズで被照射物のa−Si膜に投影し結像して、照射する方法がある(例えば特許文献1)。
【0003】
これは、エキシマレーザを発生させるレーザ発振器で生じさせたレーザを光学機器に導き、反射ミラーによつて適当に方向変換させると共に、強度の均一化を図つた後、マスク及び集光レンズを通すことにより方形のラインビーム(パルス・レーザ)に整形し、被照射物に集光して転写している。被照射物は、レーザアニール装置の真空室内に設置されている。
【0004】
このようなレーザ照射方法及びその装置では、次の技術的課題を有している。すなわち、レーザ発振器で生じさせたパルス・レーザを集光レンズに通し、被照射物に照射しているため、レーザが集光レンズを通過する際、レーザの一部がレンズに吸収され熱に変換され、レンズの温度が上昇する。このレンズの温度は、一般に所定に維持し、焦点距離の変化を防止しているが、一連のパルス・レーザの照射を停止した後に照射を再開するとき、一旦冷却されたレンズの温度が所定温度に回復するまでの待ち時間に長時間を要し、作業能率が低下する原因となつている。
【0005】
このような温度変化に起因する焦点距離の変化を防止するために、集光レンズを鏡筒に収容し、鏡筒に付属させた温度制御装置により集光レンズを間接的に保温し、レンズの温度を所定に維持することも行われている。この場合、レンズはレーザによつて主として直接加熱されて温度上昇し、一方、レンズの温度制御は側面から間接的に行われる。このため、レーザによるレンズの温度上昇の時定数は、温度制御装置による冷却の時定数よりも短くなる。従つて、一連のパルス・レーザの照射を停止した後に照射を再開するとき、レンズの温度は短時間に上昇し、やがて下降に転じ、その後、安定する。この温度が安定に至るまでの間、レンズの焦点距離が変化し続けるため、被照射物にレーザを照射するときはピントがぼけた状態で照射されることになる。
【0006】
また、集光レンズの温度変化に伴う焦点距離の変化を抑制するため、温度特性の異なる複数の材質を用いて作製したレンズを組み合わせることも試みられているが、その抑制効果は不十分である。
【0007】
そこで、レーザ照射方法及びその装置において、レンズの温度ひいては焦点距離を維持するためのミラーを備えるものを提案した(例えば、特許文献2)。
【0008】
これについて、図1の符号を付して説明する。レーザ発振器(1)からの処理用のレーザ(a)をレンズ(2)に通して集光又は結像させ、被照射物(4)に照射させるレーザ照射方法において、レンズ(2)と被照射物(4)との間に、レンズ(2)と被照射物(4)との間の光路を遮つて処理用のレーザ(a)を所定の反射率で反射する反射位置(I)と、レンズ(2)と被照射物(4)との間の光路を開放する開放位置(II)とを採ることができる第1のミラー(5)と、反射位置(I)を採る第1のミラー(5)によつて反射される処理用のレーザ(a)の光軸(L)に対して垂直に配置され、処理用のレーザ(a)を所定の反射率で反射する第2のミラー(6)とを配置し、第1のミラー(5)に反射位置(I)を採らせることにより、レンズ(2)を透過する処理用のレーザ(a)を、第1のミラー(5)及び第2のミラー(6)によつて次々に反射させると共に、第1のミラー(5)によつて再度反射される処理用のレーザ(a)の強度を、第1のミラー(5)が開放位置(II)を採る状態で被照射物(4)から反射される処理用のレーザ(a)の強度に合致させて、レンズ(2)を透過させ、処理用のレーザ(a)を被照射物(4)に照射して処理を与えるときと同様にレンズ(2)を加熱することを特徴とするレーザ照射方法である。
【0009】
第1のミラー(5)は全反射ミラーによつて構成させ、第2のミラー(6)は、被照射物(4)の反射率と等しい反射率を有するハーフミラーによつて構成させ、第2のミラー(6)は、第1のミラー(5)と被照射物(4)との間の距離(h2)と等しい距離(h1)だけ第1のミラー(5)から離隔させた位置に配置させることができる。また、レンズ(2)は、焦点距離を計測する計測手段(7)を備えることができ、レンズ(2)は、温度制御装置(3)を付属することができる。
【0010】
これによれば、第1のミラーによつて再度反射される処理用のレーザの強度を、第1のミラーが開放位置を採る状態で被照射物から反射される処理用のレーザの強度に合致させて、レンズを透過させ、処理用のレーザを被照射物に照射して処理を与えるときと同様にレンズを加熱することが簡単に実現できる。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特許第3204986号公報
【特許文献2】特許第3845650号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら、このような従来のレーザ照射方法・装置にあつては、反射率の異なる被照射物への適用に困難を伴うという技術的課題があつた。すなわち、被照射物は、その被覆処理膜(例えばa−Si膜)の種類又は膜厚によつて異なる反射率を有し得るため、反射率の異なる被照射物に適用するときは、レンズの焦点距離が温度変化に起因して変動することを免れ得ない。その結果、レーザ照射の開始初期においてレンズの温度が変化し、被照射物への照射結果に影響を生じることになる。
【0013】
加えて、第1,第2のミラーの反射率が経時変化するが、この経時変化の確認や対応ができないとう技術的課題もあつた。
【0014】
また、第1,第2のミラー等が熱影響を受け、処理用のレーザを被照射物に照射するときと同様にレンズを加熱することが困難になる。例えば、第1,第2のミラーでのレーザの反射又は透過により、第1,第2のミラーの温度が変化し、レンズ効果を生ずるなどして反射光又は透過光に影響を生じ、処理用のレーザを被照射物に照射するときと同様にレンズを加熱することが困難になるという技術的課題もある。
【0015】
加えて、焦点距離を計測する計測手段(7)を備える場合、第1のミラー(5)は焦点距離計測用のレーザを透過するように構成しているため、処理用のレーザを被照射物に照射するようにレンズ(2)を透過させながら第2のミラー(6)から処理用のレーザの反射光を得るときのみ、レンズ(2)の焦点距離を計測し、その適否を判断することができる。
【0016】
すなわち、従来の光シャッターでのレンズの焦点距離を計測する手段は、焦点距離計測用のレーザ(b)をレンズを通して集光させ、第1のミラー5を透過させて被照射物の表面に照射し、その反射光を第1のミラー5、レンズを順次に通過させ、測定器に受光させて測定している。このため、光シャッターが処理用レーザを遮断してレンズの温度を安定させている間でレンズの温度を観測するとき、焦点距離計測用のレーザ(b)がレンズを加熱することになり、レンズの温度を正確に観測することができないという技術的課題があつた。また、ステージ上に被照射物が載置されていない状態では、ステージ上面での反射光に基づいてレンズの焦点距離を測定することになり、同様にレンズの温度を正確に観測することができないという技術的課題があつた。なお、レンズの温度の制御を計算に基づく推定値で行うことは可能であるが、レンズの温度が安定している否かの確認を行うことはできなかつた。
【課題を解決するための手段】
【0017】
本発明は、このような従来の技術的課題に鑑みてなされたもので、その構成は、次の通りである。
請求項1記載の発明は、レーザ発振器1からの処理用のレーザaをレンズ2に通して集光又は結像させ、被照射物4に照射させるレーザ照射装置において、
レンズ2と被照射物4との間に、レンズ2と被照射物4との間の光路を遮つて処理用のレーザaを反射する反射位置Iと、レンズ2と被照射物4との間の光路を開放する開放位置IIとを採ることができる第1のミラー5を配置し、かつ、
反射位置Iを採る第1のミラー5によつて反射される処理用のレーザaの光軸Lに対して垂直に配置され、処理用のレーザaを所定の反射率で反射する第2のミラー6を配置し、
第1のミラー5に反射位置Iを採らせることにより、レンズ2を透過する処理用のレーザaを、第1のミラー5及び第2のミラー6によつて次々に反射させ、第1のミラー5によつて再度反射される処理用のレーザaの強度を、第1のミラー5が開放位置IIを採る状態で被照射物4から反射される処理用のレーザaの強度に合致させて、レンズ2を透過させ、処理用のレーザaを被照射物4に照射して処理を与えるときと同様にレンズ2を加熱すると共に、第2のミラー6又は第1のミラー5の少なくとも一方に温度制御手段26,27を付属させ、第2のミラー6又は第1のミラー5の温度を制御することにより、処理用のレーザaによる処理時に被照射物4から反射される処理用のレーザaの強度に合致させて、処理用のレーザaを第2のミラー6から反射させることが可能であることを特徴とするレーザ照射装置である。
請求項2記載の発明は、レーザ発振器1からの処理用のレーザaをレンズ2に通して集光又は結像させ、被照射物4に照射させるレーザ照射方法において、
レンズ2と被照射物4との間に配置され、レンズ2と被照射物4との間の光路を遮つて処理用のレーザaを反射する反射位置Iと、レンズ2と被照射物4との間の光路を開放する開放位置IIとを採ることができる第1のミラー5と、
反射位置Iを採る第1のミラー5によつて反射される処理用のレーザaの光軸Lに対して垂直に配置され、処理用のレーザaを所定の反射率で反射する第2のミラー6と、
焦点距離計測用のレーザbをレンズ2を通して集光させ、第1のミラー5及び第2のミラー6によつて次々に反射させ、第1のミラー5によつて再度反射される焦点距離計測用のレーザbをレンズ2を通して導き、レンズ2の焦点距離を計測する計測手段7とを設け、
第1のミラー5に反射位置Iを採らせることにより、レンズ2を透過する処理用のレーザa及び焦点距離計測用のレーザbを、第1のミラー5及び第2のミラー6によつて次々に反射させ、第1のミラー5によつて再度反射される処理用のレーザa及び焦点距離計測用のレーザbの強度を、第1のミラー5が開放位置IIを採る状態で被照射物4から反射される処理用のレーザaの処理時の強度に合致させて、レンズ2を透過させ、処理用のレーザaを被照射物4に照射して処理を与えるときと同様にレンズ2を加熱することを特徴とするレーザ照射方法である。
請求項3記載の発明は、第2のミラー6を凹面鏡で構成し、第1のミラー5から反射される処理用のレーザaの集光又は結像位置を変えることなく第2のミラー6で反射されるように、第1のミラー5から反射される処理用のレーザaの集光又は結像位置よりも遠い位置に第2のミラー6を配設することを特徴とする請求項2のレーザ照射方法である。
請求項4記載の発明は、第2のミラー6又は第1のミラー5の少なくとも一方に温度制御手段26,27を付属させ、第2のミラー6又は第1のミラー5の温度を制御することにより、処理用のレーザaによる処理時に被照射物4から反射される処理用のレーザaの強度に合致させて、第1のミラー5によつて再度反射される処理用のレーザa及び焦点距離計測用のレーザbの強度を与えることを特徴とする請求項2又は3のレーザ照射方法である。
請求項5記載の発明は、レーザ発振器1からの処理用のレーザaをレンズ2に通して集光又は結像させ、被照射物4に照射させるレーザ照射装置において、
レンズ2と被照射物4との間に配置され、レンズ2と被照射物4との間の光路を遮つて処理用のレーザaを反射する反射位置Iと、レンズ2と被照射物4との間の光路を開放する開放位置IIとを採ることができる第1のミラー5と、
反射位置Iを採る第1のミラー5によつて反射される処理用のレーザaの光軸Lに対して垂直に配置され、処理用のレーザaを所定の反射率で反射する第2のミラー6と、
焦点距離計測用のレーザbをレンズ2を通して集光させ、第1のミラー5及び第2のミラー6によつて次々に反射させ、第1のミラー5によつて再度反射される焦点距離計測用のレーザbをレンズ2を通して導き、レンズ2の焦点距離を計測する計測手段7とを設け、
第1のミラー5に反射位置Iを採らせることにより、レンズ2を透過する処理用のレーザa及び焦点距離計測用のレーザbを、第1のミラー5及び第2のミラー6によつて次々に反射させ、第1のミラー5によつて再度反射される処理用のレーザa及び焦点距離計測用のレーザbの強度を、第1のミラー5が開放位置IIを採る状態で被照射物4から反射される処理用のレーザaの処理時の強度に合致させて、レンズ2を透過させ、処理用のレーザaを被照射物4に照射して処理を与えるときと同様にレンズ2を加熱することを特徴とするレーザ照射装置である。
【発明の効果】
【0018】
独立請求項1,2,5に係る発明によれば、被照射物に処理用のレーザを照射することなくレンズの温度が安定するため、レンズの焦点距離が温度変化に起因して変化することを防止でき、被照射物に照射するレーザの品質を常時一定に保つことができる。その結果、被照射物への処理用のレーザの照射開始初期に、被照射物にピンボケのレーザを当てることが回避され、被照射物の無駄を無くして高品質の被照射物のみを製作することができる。
【0019】
独立請求項1に係る発明によれば、第2のミラー又は第1のミラーの少なくとも一方に温度制御手段を付属させ、第2のミラー又は第1のミラーの温度を制御することにより、熱影響を防止させ、処理用のレーザと相対移動する被照射物から反射される処理用のレーザの強度に合致させて、処理用のレーザを第2のミラーから反射させることが可能になる。これにより、温度制御手段を付属する第2のミラー又は第1のミラーの少なくとも一方が温度上昇するなどの熱影響を受けることが抑制され、処理用のレーザを被照射物に照射して処理を与えるときと同様にレンズを加熱することが可能になる。
【0020】
独立請求項2,5に係る発明によれば、第1のミラーが焦点距離計測用のレーザを反射するように構成したため、第1のミラーが処理用のレーザを遮断し、レンズの温度を安定させているときであつても、レンズの焦点距離を計測する計測手段により、レンズの焦点距離を計測し、ひいてはレンズの温度を確認し、処理用のレーザの出力を増減調節することにより、レンズの温度制御ひいてはレンズの焦点距離の調節を行い、レンズに正しい焦点距離を維持させることができる。従つて、被照射物が処理用のレーザの照射位置に存在しないときであつても、レンズの焦点距離の調節を行うことができる。
【0021】
このレンズに正しい焦点距離を維持する操作は、焦点距離計測用のレーザの強度を考慮し、第1のミラーによつて再度反射される処理用のレーザ及び焦点距離計測用のレーザの強度を、第1のミラーが開放位置を採る状態で被照射物から反射される処理用のレーザの処理時の強度に合致させて、レンズを透過させ、処理用のレーザを被照射物に照射して処理を与えるときと同様にレンズを加熱して行う。
【0022】
特に、温度を安定させているときのレンズの温度のコントロールを計算結果ではなく、レンズの焦点距離を計測する計測手段の計測値に基づいて直接行うため、処理用のレーザの出力を増減調節することにより、より正確に温度のコントロールができる。このため、第1のミラーに開放位置を採らせて処理用のレーザを被照射物に照射させて処理を開始させるに際し、レンズの温度を安定させるための時間を短縮させることができる。また、第1のミラー及び第2のミラー等の光学系に経時劣化などによる状態変化を生じ、レンズに正しい焦点距離が与えられなくなつたときであつても、状態変化に関係なく、処理用のレーザの出力を増減調節することにより、レンズに正確な温度コントロールを与えることが可能になつた。
【0023】
また、請求項3に係る発明によれば、第2のミラーを凹面鏡で構成し、第1のミラーから反射される処理用のレーザの集光又は結像位置を変えることなく第2のミラーで反射されるように、第1のミラーから反射される処理用のレーザの集光又は結像位置よりも遠い位置に第2のミラーを配設する。これにより、第2のミラーをレンズ、第1のミラー等の他の機器から熱的に離隔し、相互の熱影響を防止することができる。その結果、第2のミラーが温度上昇するなどの熱影響を受けることが抑制され、処理用のレーザを被照射物に照射して処理を与えるときと同様にレンズを加熱することが安定して可能になる。
【0024】
請求項4に係る発明によれば、第1のミラー及び第2のミラーの内の少なくとも一方に、温度を制御する温度制御手段を設け、発生した熱を効果的に除去して熱影響を抑制することができる。
なお、ミラーの母体として、熱伝導率が大きい材料を使用することにより、温度変化を抑制することができる。
【図面の簡単な説明】
【0025】
【図1】本発明の1実施の形態に係るレーザ照射装置を示す正面図。
【図2】同じくレーザ照射装置に装備する計測手段を具体的に示す背面図。
【図3】同じく測定器で受光した焦点距離計測用のレーザの形状を示す図。
【図4】同じく第2のミラーを凹面鏡で構成した構造例の要部を示す図。
【発明を実施するための形態】
【0026】
図1〜図4は、本発明に係る集光レンズ(レンズ)の焦点距離を維持するためのミラーを備えるレーザ照射装置の1実施の形態を示す。図1中において符号1はレーザ発振器を示し、レーザ発振器1からの処理用のパルス・レーザa(波長:例えば308nm)は、処理用のレーザaを全反射するミラー10によつて90度方向転換させて集光レンズ2に導き、集光レンズ2を透過したレーザaは、集光(又は結像)させて被照射物4に照射させ、被照射物4に結晶化などの処理を与える。レーザaは、実際にはマスク(図示せず)等に通され、整形すると共に強度が均一をなす矩形状レーザにされて被照射物4に結像させる。集光レンズ2は、鏡筒16に収容し、鏡筒16の外側に付属させたペルチェ素子からなる温度制御装置3により集光レンズ2を間接的に冷却又は加熱し、レンズの温度を所定に維持するようになつている。
【0027】
被照射物4は、ステージ11に交換可能に載置され、ステージ11には移動装置12が付属されている。移動装置12は、ステージ11をレーザ発振器1に対して所定方向Xに相対移動させる。これにより、ステージ11に載置された被照射物4は、所定間隔毎にレーザaが照射され、被照射物4が改質・処理される。
【0028】
そして、集光レンズ2と被照射物4との間に、処理用のレーザaを所定の反射率で反射する第1のミラー5(反射ミラー)を配置可能にする。このミラー5は、集光レンズ2と被照射物4との間の光路を遮ることが可能であり、駆動装置14によつて駆動することにより、集光レンズ2と被照射物4との間の光路を遮る反射位置I(実線で示す)と、集光レンズ2と被照射物4との間の光路を開放する開放位置II(仮想線で示す)とを採ることができる。ミラー5は、通常、全反射ミラーによつて構成され、その場合には反射位置Iを採らせることにより、ステージ11に向かう処理用のレーザaを遮断する光シャッタとして機能する。但し、この光シャッタによつて光路を閉じたときでも、処理用のレーザaは集光レンズ2を透過する。
【0029】
また、反射率の異なる被照射物4から反射されてレンズ2に入射する処理用のレーザaの強度に合致させて、第2のミラー6から反射する処理用のレーザaが集光レンズ2に入射するように、処理用のレーザaの強度を増減調整することが可能な処理用のレーザaの強度の調整機構9を設けると共に、処理用のレーザaを所定の反射率で反射する第2のミラー6を配置する。このミラー6は、反射位置Iを採る第1のミラー5によつて反射される処理用のレーザaの光軸Lに対し、垂直に配置されていると共に、第1のミラー5からの距離h1が、第1のミラー5と被照射物4との間の距離h2に等しくなるように設定してある。この第2のミラー6は、通常、ハーフミラーによつて構成され、ミラー5を全反射ミラーによつて構成したとき、反射率(約60%)が被照射物4の反射率と同じにしてある。第2のミラー6には、水冷のダンパー17を付属させ、透過する処理用のレーザaを吸収させる。調整機構9は、第1のミラー5と第2のミラー6との間に配置され、レーザ発振器1と被照射物4との間の処理用のレーザaの光路A1を外れた位置で第2のミラー6に入射・反射されて集光レンズ2に戻る処理用のレーザaの強度を増減調整する機能を有する。つまり、調整機構9は、被照射物4に処理を与えるための光路A1上の処理用のレーザaの強度に影響を与えることなく、第2のミラー6に入射・反射されて第1のミラー5ひいては集光レンズ2に向かう処理用のレーザaの強度を増減調整する。これにより、第2のミラー6の反射率を実質的に変更することができる。すなわち、第2のミラー6の反射率を変更したときと同じ強度の処理用のレーザaを、集光レンズ2に向かわせることができる。
【0030】
また、第1のミラー5に開放位置IIを採らせた状態で、被照射物4から反射されてレンズ2に達する処理用のレーザaの反射光cの強度を計測することができ、かつ、第1のミラー5に反射位置Iを採らせた状態で、第2のミラー6から反射されてレンズ2に達する処理用のレーザaの反射光cの強度を計測することができる光強度計測手段8を設ける。この光強度計測手段8は、レーザ発振器1から出て表面から入射する処理用のレーザaを透過し、裏面で反射する第3のミラー20の反射光cの強度を計測することができる。反射光cは、処理用のレーザaの反射光であり、被照射物4での反射光と、第2のミラー6での反射光とがある。すなわち、ミラー5が開放位置IIを採る状態で、レーザ発振器1から出る処理用のレーザaが第3のミラー20を透過し、ミラー10によつて方向転換されて集光レンズ2を透過し、被照射物4に照射・反射された後、集光レンズ2を透過し、ミラー10で反射され、更に第3のミラー20で反射する反射光cの強度を計測することができる。また、ミラー5が反射位置Iを採る状態で、レーザ発振器1から出力される処理用のレーザaが第3のミラー20を透過し、ミラー10によつて方向転換されて集光レンズ2を透過し、ミラー5及び第2のミラー6で反射された後、ミラー5で反射され、集光レンズ2を透過し、ミラー10で反射され、更に第3のミラー20で反射する反射光cの強度を計測することができる。
【0031】
なお、処理用のレーザaの強度の調整機構9は、反射率の異なる被照射物4と交換した際に、新たな被照射物4からの処理時の処理用のレーザaの反射光と同様の処理用のレーザaの第2のミラー6からの反射光が集光レンズ2に照射されるように集光レンズ2に入射する処理用のレーザaの強度を調整すればよく、集光レンズ2と第1のミラー5との間に設けることも可能である。但し、集光レンズ2と第1のミラー5との間に調整機構9を設ける場合には、調整機構9を光路A1から外れた位置と光路A1に位置して処理用のレーザaの強度を調整可能な位置とを取り得る構造つまり進退可能な構造にし、被照射物4に処理を与えるための光路A1上の処理用のレーザaの強度に影響を与えない構造にする。また、調整機構9には、往復する処理用のレーザaが通過することになるが、調整機構9に入る前の往きのレーザaのパワー(強度)に対して調整機構9から出た後の帰りのレーザaのパワーが適正に調整されていればよい。
【0032】
調整機構9は、レーザ発振器1と集光レンズ2との間の光路に対して進退可能として設置することも可能である。レーザ発振器1と集光レンズ2との間に調整機構9を移動させたとき、集光レンズ2には、レーザ発振器1から出力されて調整機構9を透過して所定の強度にされた処理用のレーザaと、第1のミラー5によつて再度反射される処理用のレーザaとが透過する。
【0033】
この第1のミラー5によつて再度反射されて集光レンズ2を透過する処理用のレーザaは、調整機構9を透過前であるので、調整機構9の存在が集光レンズ2の加熱には影響を与えない。従つて、調整機構9により、レーザ発振器1から出力されて集光レンズ2を透過する前の処理用のレーザaの強度を調整するようにする。
【0034】
この場合、集光レンズ2の加熱には、レーザ発振器1から出力されて調整機構9を透過して所定強度が与えられた処理用のレーザaの強度と、第1のミラー5によつて再度反射される処理用のレーザaの強度との和が関係するので、この強度の和が、レーザ発振器1から出力されて調整機構9を透過することなく集光レンズ2を透過し、その後、次に処理すべき被照射物4から反射されて集光レンズ2に入射する処理用のレーザaの強度の和に合致するように、調整機構9を操作する。このような調整機構9の操作は、次に処理すべき被照射物4の反射率を予め把握しておくことで可能である。勿論、次に処理すべき被照射物4への処理を開始する前に、調整機構9は、レーザ発振器1と集光レンズ2との間の光路から退避させると共に、レーザ発振器1からの出力を次に処理すべき被照射物4の処理に適するものに設定する。要するに、レーザ発振器1から出力されてレンズ2を透過する処理用のレーザaの強度と、反射率の異なる被照射物4から反射されてレンズ2に入射する処理用のレーザaの強度との和に合致させて、第1のミラー5によつて再度反射されることになる処理用のレーザaをレンズ2に往復で入射させれば、集光レンズ2を次に処理すべき反射率の異なる被照射物4の反射率に合わせて加熱することができる。
【0035】
更に、集光レンズ2の焦点距離を計測する計測手段7を設ける。この計測手段7は、具体的には図2に示すように焦点距離計測用のレーザb(波長:例えば635nm)をシリンドリカルレンズ21に通した後にハーフミラーからなる反射ミラー22で反射させて方向転換させると共にミラー10を透過させ、集光レンズ2を通して集光させ、第1のミラー5を透過させて被照射物4の表面に照射し、その反射光を第1のミラー5、集光レンズ2及びミラー10,22を順次に通過させ、測定器24に受光させている。従つて、ミラー10及び第1のミラー5は、処理用のレーザaを全反射できるが、焦点距離計測用のレーザbを透過する。処理用のレーザaの被照射物4上の集光位置は、焦点距離計測用のレーザbの集光位置に合致している。
【0036】
そして、測定器24で受光した光bの形状から、集光レンズ2と被照射物4との間の光軸上での距離ひいては集光レンズ2の焦点距離の適否を判定することができる。集光レンズ2の焦点距離は、集光レンズ2と被照射物4との間の光軸上での距離の差B−Aとして計測される。測定器24で受光した光の形状は、図3に示すようであり、図3(イ)は集光レンズ2の焦点距離が長すぎ、図3(ロ)は適正状態、図3(ハ)は集光レンズ2の焦点距離が短すぎを示す。
【0037】
次に、作用について説明する。
先ず、反射率の同じ被照射物4を交換しながら次々に処理を与える場合の作用について説明する。
レーザ発振器1からの処理用のパルス・レーザaは、第3のミラー20を透過し、全反射するミラー10によつて90度方向転換させて集光レンズ2に導き、集光レンズ2を透過したレーザaは、集光して被照射物4に照射され、被照射物4が改質される。被照射物4がガラス基板上に薄いa−Si膜を形成したものであれば、レーザaの照射により、a−Si膜が結晶化されて薄いp−Si膜に改質される。このとき、第1のミラー5は、集光レンズ2と被照射物4との間の光路を開放する開放位置IIを採つている。
【0038】
1枚の被照射物4に対するレーザaの照射処理が終了したなら、ステージ11上の被照射物4を新しい被照射物4と交換する。その際、第1のミラー5(反射ミラー)を駆動装置14によつて駆動し、集光レンズ2と被照射物4との間の光路を遮つて処理用のレーザaを所定の反射率で反射する反射位置Iを採らせる。
【0039】
これにより、集光レンズ2を透過する処理用のパルス・レーザaは、反射位置Iを採る第1のミラー5によつて反射され、第2のミラー6に垂直に入射及び一部反射され、再度、第1のミラー5によつて反射され、集光レンズ2を透過する。従つて、第1のミラー5によつて反射されて集光レンズ2に向かうレーザaの強度を被照射物4から反射されるレーザaの強度に合致させることにより、被照射物4にレーザaを照射するときと同様に集光レンズ2が加熱され、集光レンズ2の冷却に伴う焦点距離の変動が防止される。なお、第1のミラー5を透過する処理用のレーザaは、被照射物4の改質処理に影響を与えない程度が望ましい。
【0040】
特に、第1のミラー5を全反射ミラーによつて構成するときは、第2のミラー6を第1のミラー5と被照射物4との間の距離h2と等しい距離h1だけ離隔させた位置に置き、かつ、第2のミラー6の反射率を被照射物4の反射率と等しくすることにより、簡単に、第1のミラー5によつて反射されて集光レンズ2に向かうレーザaの強度を被照射物4から反射されるパルス・レーザaの強度に合致させることが可能である。
【0041】
なお、第1のミラー5に反射位置Iを採らせる場合としては、同一種類の被照射物4の交換時に限られず、ステージ11上から被照射物4を取り除いたときであつて、集光レンズ2の温度を維持する必要性がある場合を広く含むものである。
【0042】
また、集光レンズ2を鏡筒16に収容し、鏡筒16に付属させた温度制御装置3により鏡筒16を介して集光レンズ2を冷却し、レンズ2の温度を所定に維持するため、処理用のレーザaを被照射物4に導く場合と同様に、レンズ2はレーザaによつて直接加熱されて温度上昇し、一方、レンズaの温度制御は側面から間接的に行われる。但し、温度制御装置3は省略が可能であり、温度制御装置3を省略した場合には、集光レンズ2が処理用のレーザaによつて加熱されて温度上昇が収まつた状態で、被照射物4に対する処理用のレーザaの照射を開始すればよい。
【0043】
集光レンズ2の焦点距離を計測する計測手段7は、焦点距離計測用のレーザbを被照射物4の表面に照射し、その反射光bを集光レンズ2及びミラー5,10,22を通過させ、測定器24に受光させるので、測定器24で受光したレーザbの形状から、集光レンズ2の焦点距離が適正状態にあることを知ることができる。集光レンズ2の焦点距離が適正であることから、集光レンズ2の温度が適正であることを知ることができる。
【0044】
温度制御装置3を備える場合には、温度上昇を抑制させながら、集光レンズ2が処理用のレーザaによつて加熱されて平衡温度に達した状態で、集光レンズ2の焦点距離が適正状態にあるか否かを測定器24で測定する。温度制御装置3を省略した場合には、集光レンズ2が処理用のレーザaによつて加熱されて温度上昇が収まつた状態で、集光レンズ2の焦点距離が適正状態にあるか否かを測定器24で測定する。
【0045】
実際に、レーザ発振器1としてラムダフィジック社製のレーザ発振器LS2000を用いて処理用のレーザa(波長308nm、繰り返し発振数300Hz)を発振させ、そのレーザaを全反射する誘電体多層膜を石英に蒸着した第1のミラー5を集光レンズ2と被照射物4との間に光軸に対して45度傾けて設置した。第1のミラー5は、焦点距離計測用のレーザbである波長635nmのダイオードレーザを透過することができる。
【0046】
第1のミラー5で反射した処理用のレーザaの進行方向にミラー5から被照射物4までの距離h2と等しい距離h1だけ離れた位置としてハーフミラーからなる第2のミラー6を設置した。第2のミラー6は、第1のミラー5によつて90度曲げられた光軸Lに垂直に配置した。
【0047】
第2のミラー6は、波長308nmの光(処理用のレーザa)に対して60%の反射率を持つようにし、被照射物4である膜厚50nmのアモルファスシリコンを厚さ0.5mmのガラス板に蒸着した基板の波長308nmの光aに対する反射率と等しくした。
【0048】
また、波長635nmの光(焦点距離計測用のレーザb)をミラー5越しに被照射物4に照射し、その反射光bを利用して、集光レンズ2の焦点距離を計測する計測手段7を設けた。
【0049】
集光レンズ2の鏡筒16の外側には、ペルチェ素子(温度制御装置3)を設置し、レンズ2の温度を制御した。
【0050】
このようなレーザ照射装置により、第1,第2のミラー5,6によつて集光レンズ2の温度をほぼ一定に維持することができることを確認した。但し、同一種類の被照射物4の交換時には、集光レンズ2の焦点距離を変更する必要が通常はないため、第1のミラー5を焦点距離計測用のレーザbを反射可能なものとし、焦点距離計測用のレーザbをミラー5越しに被照射物4に照射し、計測手段7によつて集光レンズ2の焦点距離を直接計測することに代えて、計測手段7によつて第1,第2のミラー5,6からの焦点距離計測用のレーザbの反射光を計測し、集光レンズ2の焦点距離を間接的に計測することも可能である。
【0051】
次に、被照射物4を反射率の異なる異種類のものに交換して、同じ被照射物4を交換しながら次々に処理を与える場合の作用について説明する。先ず、交換して処理を行う予定のステージ11上の被照射物4の反射率を反射光cの強度として計測する。つまり、光強度計測手段8により、上述したように被照射物4での処理用のレーザaの反射光cの強度を計測する。次に、光強度計測手段8により、上述したように第2のミラー6で反射された処理用のレーザaの反射光cの強度を計測し、この反射光cの強度を被照射物4での処理用のレーザaの反射光cの強度に合致させるように処理用のレーザaの強度の調整機構9を操作する。この状態で反射率が同じ被照射物4を交換させて次々に処理を行うに際しては、被照射物4の交換のためにステージ11上から被照射物4を取り除いたときに、上述した反射率の同じ被照射物4を交換しながら次々に処理を与える場合の作用により、集光レンズ2の温度を維持することができる。
【0052】
反射率が既知の第2のミラー6の複数枚を準備しておけば、光強度計測手段8により、被照射物4からの処理用のレーザaの反射光cの強度を計測し、この強度から処理を行う予定の被照射物4の反射率を把握した後、同じ反射率を与える第2のミラー6と交換することにより、処理用のレーザaの強度の調整機構9を操作する場合と同様に第2のミラー6で反射された処理用のレーザaの反射光cの強度を、被照射物4での処理用のレーザaの反射光cの強度に合致させることができる。従つて、調整機構9は省略することが可能である。
【0053】
実際に、レーザ発振器1としてラムダフィジック社製のレーザ発振器LS2000を用いて処理用のレーザa(波長308nm、繰り返し発振数300Hz)を発振させ、そのレーザaを全反射する誘電体多層膜を石英に蒸着した第1のミラー5を集光レンズ2と被照射物4との間に光軸に対して45度傾けて設置した。第1のミラー5は、焦点距離計測用のレーザbである波長635nmのダイオードレーザを透過することができる。
【0054】
第1のミラー5で反射した処理用のレーザaの進行方向にミラー5から被照射物4までの距離h2と等しい距離h1だけ離れた位置としてハーフミラーからなる第2のミラー6を設置した。第2のミラー6は、第1のミラー5によつて90度曲げられた光軸Lに垂直に配置した。
【0055】
第2のミラー6は、波長308nmの光(処理用のレーザa)に対して60%の反射率を持つようにし、被照射物4である膜厚50nmのアモルファスシリコンを厚さ0.5mmのガラス板に蒸着した基板の波長308nmの光aに対する反射率と等しくした。
【0056】
また、波長635nmの光(焦点距離計測用のレーザb)をミラー5越しに被照射物4に照射し、その反射光bを利用して、集光レンズ2の焦点距離を計測する計測手段7を設けた。
【0057】
集光レンズ2の鏡筒16の外側には、ペルチェ素子(温度制御装置3)を設置し、レンズ2の温度を制御した。
【0058】
このようなレーザ照射装置を用い、光強度計測手段8によつて第2のミラー6で反射された処理用のレーザaの反射光cの強度を計測し、この反射光cの強度を被照射物4での処理用のレーザaの反射光cの強度に合致させるように処理用のレーザaの強度の調整機構9を操作することにより、第1,第2のミラー5,6によつて集光レンズ2の温度をほぼ一定に維持することができることを確認した。
【0059】
上述したように、処理用のレーザaの強度の調整機構9は、反射率の異なる被照射物4と交換した際に、新たな被照射物4と同様の処理用のレーザaの反射光が集光レンズ2に照射されるように集光レンズ2に入射する処理用のレーザaの強度を調整すればよく、集光レンズ2と第1のミラー5との間に設けることも可能である。そのとき、第1のミラー5及び調整機構9に光路から外れた位置を採らせて新たな処理を行う予定の反射率の異なる被照射物4の反射率を光強度計測手段8によつて把握した後、第1のミラー5及び調整機構9に光路に位置して処理用のレーザaの強度を調整可能な位置を採らせて、調整機構9の操作によつて集光レンズ2に入射する処理用のレーザaの強度を調整する。
【0060】
これにより、反射率の異なる被照射物4に変えた後、この被照射物4を次々に交換しながら処理を行うとき、上述した反射率の同じ被照射物4を交換しながら次々に処理を与える場合と同様に第1のミラー5によつて反射されて集光レンズ2に向かうレーザaの強度を被照射物4から反射されるパルス・レーザaの強度に合致させて集光レンズ2の温度を維持することが可能である。勿論、集光レンズ2の温度を維持するときには、第1のミラー5及び調整機構9に、光路A1に位置して処理用のレーザaの強度を調整可能な位置を採らせる。
【0061】
要するに、光強度計測手段8は、被照射物4で反射して集光レンズ2に入射する処理用のレーザaの強度と、第2のミラー6で反射して集光レンズ2に入射する処理用のレーザaの強度とを測定することができればよく、また、処理用のレーザaの強度の調整機構9は、被照射物4で反射して集光レンズ2に入射する処理用のレーザaの処理中の強度に影響を与えることなく、第2のミラー6で反射して集光レンズ2に入射する処理用のレーザaの強度を増減調整することができればよい。変更した反射率の異なる被照射物4の反射率が既知で、被照射物4から反射される処理用のレーザaの強度が既知の場合には、その強度に合致するように、第2のミラー6から反射されて集光レンズ2に入射する処理用のレーザaの強度を調整機構9の操作によつて調整すればよいから、光強度計測手段8についても省略が可能である。
【0062】
ところで、上記1実施の形態にあつては、焦点距離計測用のレーザbを、集光レンズ2を通して集光させ、被照射物4で反射させたが、第1のミラー5及び第2のミラー6を次々に反射させ、測定器24に受光させることも可能である。このとき、第2のミラー6は、第1のミラー5に対し、被照射物4と等価距離の位置に配置する。
【0063】
すなわち、焦点距離計測用のレーザbを集光レンズ2を通して集光させ、第1のミラー5及び第2のミラー6によつて次々に反射させ、第1のミラー5によつて再度反射される焦点距離計測用のレーザbを集光レンズ2に通して導き、集光レンズ2の焦点距離を計測する計測手段7の測定器24に受光させる。つまり、計測手段7は、焦点距離計測用のレーザb(波長:例えば635nm)をシリンドリカルレンズ21に通した後にハーフミラーからなる反射ミラー22で反射させて方向転換させると共にミラー10を透過させ、集光レンズ2を通して集光させ、第1のミラー5及び第2のミラー6によつて次々に反射させ、図2に破線で示すように第1のミラー5に入射して再度反射される焦点距離計測用のレーザbを集光レンズ2及びミラー10,22を順次に通過させ、測定器24に受光させる。従つて、ミラー10は、処理用のレーザaを全反射できるが、焦点距離計測用のレーザbを透過する。第1のミラー5は、焦点距離計測用のレーザbを全反射するもので構成することができるが、第2のミラー6から反射してくる焦点距離計測用のレーザbと第1のミラー5を透過して集光レンズ2に戻る焦点距離計測用のレーザbとを区別して測定可能な限りは、焦点距離計測用のレーザbの一部を反射するもので構成することができる。
【0064】
そして、処理用のレーザaの強度を増減変更しながら集光レンズ2の温度を調節し、集光レンズ2の焦点距離が温度変化に起因して変化することを防止し、被照射物4に照射するレーザの品質を常時一定に保つ。これにより、第1のミラー5に開放位置IIを採らせて、ステージ11上の被照射物4に処理用のレーザaの照射・処理を開始する初期に、被照射物4にピンボケのレーザを当てることが回避され、被照射物4の無駄を無くして高品質の被照射物4のみを製作することができる。
【0065】
すなわち、第1のミラー5に反射位置Iを採らせることにより、集光レンズ2を透過する処理用のレーザa及び焦点距離計測用のレーザbが、第1のミラー5及び第2のミラー6によつて次々に反射するので、第1のミラー5によつて再度反射される処理用のレーザa及び焦点距離計測用のレーザbの強度を、第1のミラー5が開放位置IIを採る状態で被照射物4から反射される処理用のレーザaの処理時の強度に合致させて、集光レンズ2を透過させ、処理用のレーザaを被照射物4に照射して処理を与えるときと同様に集光レンズ2を加熱することにより、集光レンズ2の焦点距離を所定に維持することができる。焦点距離計測用のレーザbの強度は既知かつ微小であるので、焦点距離計測用のレーザbの強度に応じて、レーザ発振器1を操作し、レーザ発振器1から出力される処理用のレーザaの強度を低下させる。処理用のレーザaの強度は、その反射光cの強度を計測することができる光強度計測手段8によつて把握することができる。上述したように、測定器24で受光したレーザbの形状から、集光レンズ2の焦点距離が適正状態にあることを知ることができる。集光レンズ2の焦点距離が適正であることから、集光レンズ2の温度が適正であることを知ることができる。
これによれば、被照射物4をステージ11に載置することなく、集光レンズ2の焦点距離の適否を判定することができる。
【0066】
また、第1のミラー5及び第2のミラー6で処理用のレーザaなどを長時間反射させると、第1のミラー5及び第2のミラー6の温度が局部的に上昇し、レンズ効果を生じるなどして、処理用のレーザaの反射光の形状に変動を生じたり、第1のミラー5及び第2のミラー6で反射させる焦点距離計測用のレーザbの形状に変動を生じたりする。この変動を防止するために、第1のミラー5及び第2のミラー6の内の少なくとも一方に、温度を制御する温度制御手段26,27を設けることができる。温度制御手段26,27は、例えば、温度を一定に維持する水冷却手段、ペルチェ素子等によつて構成され、処理用のレーザa及び焦点距離計測用のレーザbの進行を阻害しない位置に設ける。焦点距離計測用のレーザbについても温度変化による影響を防止することができる。
【0067】
これにより、第1のミラー5によつて再度反射される処理用のレーザa、及び焦点距離計測用のレーザbの強度を、処理用のレーザaと相対移動する一定温度の被照射物4から反射される処理時の処理用のレーザaの強度分布に可及的に合致させて、処理用のレーザa及び焦点距離計測用のレーザbをミラー5,6から反射させることが可能になる。ミラー5,6の母体として、熱伝導率が大きい材料を使用し、温度変化を抑制することも有効である。
【0068】
また、図4に示すように第2のミラー6を凹面鏡6’で構成し、第1のミラー5から反射される処理用のレーザa及び焦点距離計測用のレーザbの集光又は結像位置を変えることなく第2のミラー6で反射されるように、第2のミラー6(6’)を配設することができる。これによれば、第1のミラー5から反射される処理用のレーザa及び焦点距離計測用のレーザbの集光又は結像位置よりも遠い位置に凹面鏡6’を配置して第1のミラー5から反射される処理用のレーザa及び焦点距離計測用のレーザbを図1に示す平面鏡からなる第2のミラー6と同様の経路で戻すことができる。かくして、第2のミラー6(凹面鏡6’)及びダンパー17を第1のミラー5及び集光レンズ2から離して配置するようになり、第2のミラー6及びダンパー17が温度上昇して第1のミラー5及び集光レンズ2に熱影響を与えることが良好に抑制される。焦点距離計測用のレーザbを凹面鏡6’で反射させる場合、凹面鏡6’で反射する焦点距離計測用のレーザbについても、第2のミラー6を平面鏡で構成する場合とほぼ同様に反射される。
【符号の説明】
【0069】
1:レーザ発振器
2:集光レンズ(レンズ)
3:温度制御装置
4:被照射物
5:第1のミラー
6:第2のミラー
6’:凹面鏡(第2のミラー)
7:計測手段
8:光強度計測手段
9:調整機構
11:ステージ
12:移動装置
24:測定器
a:処理用のレーザ
b:焦点距離計測用のレーザ
c:反射光
h1,h2:距離
I:反射位置
II:開放位置
L:光軸
X:所定方向

【特許請求の範囲】
【請求項1】
レーザ発振器(1)からの処理用のレーザ(a)をレンズ(2)に通して集光又は結像させ、被照射物(4)に照射させるレーザ照射装置において、
レンズ(2)と被照射物(4)との間に、レンズ(2)と被照射物(4)との間の光路を遮つて処理用のレーザ(a)を反射する反射位置(I)と、レンズ(2)と被照射物(4)との間の光路を開放する開放位置(II)とを採ることができる第1のミラー(5)を配置し、かつ、
反射位置(I)を採る第1のミラー(5)によつて反射される処理用のレーザ(a)の光軸(L)に対して垂直に配置され、処理用のレーザ(a)を所定の反射率で反射する第2のミラー(6)を配置し、
第1のミラー(5)に反射位置(I)を採らせることにより、レンズ(2)を透過する処理用のレーザ(a)を、第1のミラー(5)及び第2のミラー(6)によつて次々に反射させ、第1のミラー(5)によつて再度反射される処理用のレーザ(a)の強度を、第1のミラー(5)が開放位置(II)を採る状態で被照射物(4)から反射される処理用のレーザ(a)の強度に合致させて、レンズ(2)を透過させ、処理用のレーザ(a)を被照射物(4)に照射して処理を与えるときと同様にレンズ(2)を加熱すると共に、
第2のミラー(6)又は第1のミラー(5)の少なくとも一方に温度制御手段(26,27)を付属させ、第2のミラー(6)又は第1のミラー(5)の温度を制御することにより、処理用のレーザ(a)による処理時に被照射物(4)から反射される処理用のレーザ(a)の強度に合致させて、処理用のレーザ(a)を第2のミラー(6)から反射させることが可能であることを特徴とするレーザ照射装置。
【請求項2】
レーザ発振器(1)からの処理用のレーザ(a)をレンズ(2)に通して集光又は結像させ、被照射物(4)に照射させるレーザ照射方法において、
レンズ(2)と被照射物(4)との間に配置され、レンズ(2)と被照射物(4)との間の光路を遮つて処理用のレーザ(a)を反射する反射位置(I)と、レンズ(2)と被照射物(4)との間の光路を開放する開放位置(II)とを採ることができる第1のミラー(5)と、
反射位置(I)を採る第1のミラー(5)によつて反射される処理用のレーザ(a)の光軸(L)に対して垂直に配置され、処理用のレーザ(a)を所定の反射率で反射する第2のミラー(6)と、
焦点距離計測用のレーザ(b)をレンズ(2)を通して集光させ、第1のミラー(5)及び第2のミラー(6)によつて次々に反射させ、第1のミラー(5)によつて再度反射される焦点距離計測用のレーザ(b)をレンズ(2)を通して導き、レンズ(2)の焦点距離を計測する計測手段(7)とを設け、
第1のミラー(5)に反射位置(I)を採らせることにより、レンズ(2)を透過する処理用のレーザ(a)及び焦点距離計測用のレーザ(b)を、第1のミラー(5)及び第2のミラー(6)によつて次々に反射させ、第1のミラー(5)によつて再度反射される処理用のレーザ(a)及び焦点距離計測用のレーザ(b)の強度を、第1のミラー(5)が開放位置(II)を採る状態で被照射物(4)から反射される処理用のレーザ(a)の処理時の強度に合致させて、レンズ(2)を透過させ、処理用のレーザ(a)を被照射物(4)に照射して処理を与えるときと同様にレンズ(2)を加熱することを特徴とするレーザ照射方法。
【請求項3】
第2のミラー(6)を凹面鏡で構成し、第1のミラー(5)から反射される処理用のレーザ(a)の集光又は結像位置を変えることなく第2のミラー(6)で反射されるように、第1のミラー(5)から反射される処理用のレーザ(a)の集光又は結像位置よりも遠い位置に第2のミラー(6)を配設することを特徴とする請求項2のレーザ照射方法。
【請求項4】
第2のミラー(6)又は第1のミラー(5)の少なくとも一方に温度制御手段(26,27)を付属させ、第2のミラー(6)又は第1のミラー(5)の温度を制御することにより、処理用のレーザ(a)による処理時に被照射物(4)から反射される処理用のレーザ(a)の強度に合致させて、第1のミラー(5)によつて再度反射される処理用のレーザ(a)及び焦点距離計測用のレーザ(b)の強度を与えることを特徴とする請求項2又は3のレーザ照射方法。
【請求項5】
レーザ発振器(1)からの処理用のレーザ(a)をレンズ(2)に通して集光又は結像させ、被照射物(4)に照射させるレーザ照射装置において、
レンズ(2)と被照射物(4)との間に配置され、レンズ(2)と被照射物(4)との間の光路を遮つて処理用のレーザ(a)を反射する反射位置(I)と、レンズ(2)と被照射物(4)との間の光路を開放する開放位置(II)とを採ることができる第1のミラー(5)と、
反射位置(I)を採る第1のミラー(5)によつて反射される処理用のレーザ(a)の光軸(L)に対して垂直に配置され、処理用のレーザ(a)を所定の反射率で反射する第2のミラー(6)と、
焦点距離計測用のレーザ(b)をレンズ(2)を通して集光させ、第1のミラー(5)及び第2のミラー(6)によつて次々に反射させ、第1のミラー(5)によつて再度反射される焦点距離計測用のレーザ(b)をレンズ(2)を通して導き、レンズ(2)の焦点距離を計測する計測手段(7)とを設け、
第1のミラー(5)に反射位置(I)を採らせることにより、レンズ(2)を透過する処理用のレーザ(a)及び焦点距離計測用のレーザ(b)を、第1のミラー(5)及び第2のミラー(6)によつて次々に反射させ、第1のミラー(5)によつて再度反射される処理用のレーザ(a)及び焦点距離計測用のレーザ(b)の強度を、第1のミラー(5)が開放位置(II)を採る状態で被照射物(4)から反射される処理用のレーザ(a)の処理時の強度に合致させて、レンズ(2)を透過させ、処理用のレーザ(a)を被照射物(4)に照射して処理を与えるときと同様にレンズ(2)を加熱することを特徴とするレーザ照射装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−119723(P2012−119723A)
【公開日】平成24年6月21日(2012.6.21)
【国際特許分類】
【出願番号】特願2012−29493(P2012−29493)
【出願日】平成24年2月14日(2012.2.14)
【分割の表示】特願2007−200516(P2007−200516)の分割
【原出願日】平成19年8月1日(2007.8.1)
【出願人】(000004215)株式会社日本製鋼所 (840)
【Fターム(参考)】