説明

低架橋樹脂封止シート及びそれを用いた太陽電池モジュール

【課題】長時間の熱キュア工程を必要とせず、且つ、太陽電池モジュールを製造する際の隙間埋め性及び耐クリープ性のバランスに優れた樹脂封止シートを提供すること。
【解決手段】有機過酸化物により架橋された低架橋樹脂封止シート。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、低架橋樹脂封止シート及びそれを封止材として用いた太陽電池モジュールに関する。
【背景技術】
【0002】
近年、世界的な温暖化現象により環境に対する意識が高まり、炭酸ガス等の温暖化ガスを発生しない新しいエネルギーシステムが関心を集めている。太陽電池発電によるエネルギーは炭酸ガス等の温暖化の原因となるガスを排出しないため、クリーンなエネルギーとして研究開発が行われており、産業用エネルギーとして注目されている。太陽電池の代表例としては、単結晶、多結晶のシリコンセル(結晶系シリコンセル)を用いたものや、アモルファスシリコン、化合物半導体を用いたもの(薄膜系セル)等が挙げられる。太陽電池は、長期間、屋外で風雨に曝されて使用されることが多く、発電部分をガラス板やバックシート等を貼り合わせてモジュール化し、外部からの水分の侵入を防止し、発電部分の保護、漏電防止等を図っていた。発電部分を保護する部材には、発電に必要な光透過を確保するために、光入射側に透明ガラスや透明樹脂を使用している。反対側の部材には、バックシートといわれるアルミ箔、フッ化ポリビニル樹脂(PVF)、ポリエチレンテレフタレート(PET)やそのシリカ等のバリアーコート加工の積層シートを使用している。そして発電素子を樹脂封止シートで挟み込み、ガラスやバックシートでさらに外部を被覆して熱処理を施して樹脂封止シートを溶融し、全体を一体化封止(モジュール化)している。
【0003】
上述した樹脂封止シートは、次の(1)〜(3)が特性として要求される。すなわち、(1)ガラス、発電素子、バックシートとの良好な接着性、(2)高温状態での樹脂封止シートの溶融に起因する発電素子の流動防止性(耐クリープ性)、(3)太陽光の入射を阻害しない透明性、である。このような観点から樹脂封止シートは、エチレン−酢酸ビニル共重合体(以下、EVAとも略される。)に、紫外線劣化対策として紫外線吸収剤、ガラスとの接着性向上のためカップリング剤、架橋のため有機過酸化物等の添加剤を配合し、カレンダー成形やTダイキャストにより製膜されている。さらに長期に亘って太陽光に曝されることに鑑み、樹脂の劣化による光学特性の低下の防止を図るため耐光剤等の各種添加剤が配合されている。これにより、長期に亘り太陽光の入射を阻害しない透明性を維持している。
【0004】
上述したような樹脂封止シートにより太陽電池をモジュール化する形態として、ガラス/樹脂封止シート/結晶系シリコンセル等の発電素子/樹脂封止シート/バックシートの順で重ね合わせ、ガラス面を下にして専用の太陽電池真空ラミネーターを用いて、樹脂の溶融温度以上(EVAの場合は150℃の温度条件)で余熱する工程とプレス工程を経て、樹脂封止シートを溶融して貼り合わせる方法がある。この方法においては、先ず、余熱工程で樹脂封止シートの樹脂が溶融し、プレス工程で溶融した樹脂に接している部材と密着して真空ラミネートされる。このラミネート工程においては、(i)樹脂封止シートに含有されている架橋剤、例えば有機過酸化物が熱分解し、EVAの架橋が促進される。(ii)樹脂封止シートに含有しているカップリング剤が接触している部材と共有結合する。これにより互いの接着性がより向上し、高温状態での樹脂封止シートの溶融に起因する発電部分の流動が防止(耐クリープ性)され、ガラス、発電素子、バックシートとの優れた接着性が実現されるのである。
【0005】
特許文献1には、カップリング剤及び有機過酸化物を含有するエチレン系共重合体樹脂からなる太陽電池用充填接着材シートが開示されている。
特許文献2には、架橋剤及びシランカップリング剤を配合したエチレンビニルアセテート共重合体からなるシートであって、一定のゲル分率まで放射線架橋させたことを特徴とする太陽電池封止用シートが開示されている。
上記文献においては、ガラス、封止シート、セル、バックシート等の各部材を重ね合わせた後、真空ラミネーターを用いて溶融貼り合せ及び有機過酸化物による架橋を行うことで太陽電池モジュールを製造している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開昭58−060579号公報
【特許文献2】特開平8−283696号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、従来の樹脂封止シートは、有機過酸化物による架橋を施すことで耐熱性や接着性を付与しているが、その際に長時間の熱キュア工程を行う必要があり、太陽電池モジュール等の封止材として用いた場合に生産性に劣るという問題がある。また、モジュールに耐クリープ性を付与するために封止シートを高度に架橋した場合、太陽電池セルの隙間埋め性が不十分となるおそれがある。
【0008】
上記事情に鑑み、本発明が解決しようとする課題は、長時間の熱キュア工程を必要とせず、且つ、太陽電池モジュールを製造する際の隙間埋め性及び耐クリープ性のバランスに優れた樹脂封止シートを提供することである。
【課題を解決するための手段】
【0009】
本発明者らは、上記課題に対して鋭意検討を行った結果、有機過酸化物により架橋された低架橋樹脂封止シートが、上記課題を解決し得ることを見出し、本発明を完成させた。
【0010】
即ち、本発明は以下のとおりである。
[1]
有機過酸化物により架橋された低架橋樹脂封止シート。
[2]
ゲル分率が1〜65質量%に調整された、上記[1]記載の低架橋樹脂封止シート。
[3]
前記有機過酸化物を0.2〜1質量%の範囲で含有する、上記[1]又は[2]記載の低架橋樹脂封止シート。
[4]
ラジカル捕捉剤を1〜3質量%の範囲で含有する、上記[1]〜[3]のいずれか記載の低架橋樹脂封止シート。
[5]
前記ラジカル捕捉剤は、フェノール系捕捉剤、リン系捕捉剤、イオウ系捕捉剤、HALS系捕捉剤からなる群から選択されるいずれか1種である、上記[4]記載の低架橋樹脂封止シート。
[6]
エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族カルボン酸エステル共重合体、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物からなる群から選択される少なくとも1種の樹脂を含有する、上記[1]〜[5]のいずれか記載の低架橋樹脂封止シート。
[7]
上記[1]〜[6]のいずれか記載の低架橋樹脂封止シートを封止材として用いた太陽電池モジュール。
【発明の効果】
【0011】
本発明の樹脂封止シートは、架橋を施すための長時間の熱キュア工程を必要とせず、且つ、太陽電池モジュールを製造する際の隙間埋め性及び耐クリープ性のバランスに優れた樹脂封止シートを提供することができる。
【発明を実施するための形態】
【0012】
以下、本発明を実施するための形態(以下、「本実施の形態」という。)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
【0013】
本実施の形態における樹脂封止シートは、有機過酸化物により架橋された低架橋樹脂封止シートである。
【0014】
樹脂封止シートは、シートを構成する樹脂成分に熱等のエネルギーを直接与える方法や、樹脂成分に固有の振動を与え樹脂自身を発熱させる方法等により、樹脂を軟化させ、その軟化状態を利用して他の物質(被封止物)に密着させることで封止することができる。樹脂を軟化させる方法としては、樹脂成分への直接加熱、輻射熱等の間接熱、超音波等の振動発熱等を用いる公知の方法を使用することができる。
【0015】
本発明者らは、有機過酸化物により架橋された低架橋樹脂封止シートが、従来のように架橋を施すための長時間の熱キュア工程を必要とせず、且つ、太陽電池モジュールを製造する際の隙間埋め性及び耐クリープ性のバランスに優れることを見出した。ここで、「低架橋」とは、樹脂封止シートが低度に架橋された状態を示し、ゲル分率として、好ましくは1〜65質量%、より好ましくは3〜60質量%、さらに好ましくは5〜45質量%に調整された状態を意味する。樹脂封止シートのゲル分率が1質量%以上であると耐クリープ性が向上する傾向にあり、65質量%以下であると隙間埋め性が良好となる傾向にある。なお、樹脂封止シートが後述する単層構造又は多層構造のいずれの構造を有する場合であっても、上記ゲル分率は、樹脂封止シート全体の平均のゲル分率(全層ゲル分率)の値を意味する。
【0016】
樹脂封止シートのゲル分率は、沸騰p−キシレン中で樹脂封止シートを12時間抽出し、不溶解部分の割合から下記式により求めることができる。
ゲル分率(質量%)=(抽出後の試料質量/抽出前の試料質量)×100
【0017】
有機過酸化物を用いて架橋を行う場合、架橋剤として有機過酸化物を樹脂中に配合し、或いは含浸させて熱架橋を行う。この場合100〜130℃における半減期が1時間以内の有機過酸化物が好ましい。
【0018】
有機過酸化物としては、良好な相溶性が得られ、かつ上記半減期を有するものとして、例えば、1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、n−ブチル−4,4−ビス(t−ブチルパーオキシ)バレレート、2,2−ビス(t−ブチルパーオキシ)ブタン等が挙げられる。これらの有機過酸化物を用いた樹脂封止シートは、架橋時間を比較的短くすることができ、かつ、キュア工程を、従来汎用されている100〜130℃における半減期が1時間以上の有機過酸化物を用いた場合と比較して半分程度に短縮することができる。
【0019】
本実施の形態においては、上述した有機過酸化物を用いて樹脂封止シートを低度に架橋する。ここで、有機過酸化物を用いてシートを低度に架橋する方法としては、特に限定されないが、以下の2つの方法が好適なものとして挙げられる。
(i)樹脂封止シート中に有機過酸化物を低濃度で含有させる。
(ii)樹脂封止シート中に有機過酸化物と共にラジカル捕捉剤を含有させる。
【0020】
(i)の方法について
(i)の方法は、樹脂封止シート中に有機過酸化物を低濃度で含有させることで、樹脂
封止シートの架橋度を低度に制御する方法である。この方法の場合、樹脂封止シート中の有機過酸化物の含有量は、好ましくは0.2〜1質量%、より好ましくは0.3〜0.8質量%、さらに好ましくは0.3〜0.6質量%である。有機過酸化物の含有量が上記範囲内であると、樹脂封止シートが低度に架橋され、太陽電池モジュールを製造する際の隙間埋め性及び耐クリープ性のバランスに優れる傾向にある。
【0021】
(ii)の方法について
(ii)の方法は、樹脂封止シート中に有機過酸化物と共にラジカル捕捉剤をさらに含有させることで、樹脂封止シートの架橋度を低度に制御する方法である。この方法の場合、樹脂封止シート中の有機過酸化物の含有量は、好ましくは0.5〜1質量%、より好ましくは0.6〜1質量%、さらに好ましくは0.7〜1質量%である。
【0022】
ラジカル捕捉剤としては、有機過酸化物の分解により発生するラジカルを捕捉する化合物であれば特に限定されず、例えば、フェノール系捕捉剤、リン系捕捉剤、イオウ系捕捉剤、HALS系捕捉剤からなる群から選択されるいずれか1種を用いることができる。
【0023】
樹脂封止シート中のラジカル捕捉剤の含有量は、有機過酸化物の含有量や捕捉剤の種類にもよるが、好ましくは1〜3質量%、より好ましくは1.2〜3質量%、さらに好ましくは1.5〜3質量%である。
【0024】
有機過酸化物及びラジカル捕捉剤のの含有量がそれぞれ上記範囲内であると、樹脂封止シートが低度に架橋され、太陽電池モジュールを製造する際の隙間埋め性及び耐クリープ性のバランスに優れる傾向にある。
【0025】
樹脂封止シートを構成する樹脂としては、有機過酸化物により架橋される樹脂であれば特に限定されないが、良好な透明性、柔軟性、被接着物の接着性や取り扱い性を確保する観点から、エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族カルボン酸エステル共重合体、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物からなる群から選択される少なくとも1種の樹脂を含有することが好ましい。
【0026】
エチレン−酢酸ビニル共重合体とは、エチレンモノマーと酢酸ビニルとの共重合により得られる共重合体を示す。また、エチレン−脂肪族不飽和カルボン酸共重合体とは、エチレンモノマーと、脂肪族不飽和カルボン酸から選ばれる少なくとも1種のモノマーとの共重合により得られる共重合体を示す。さらに、エチレン−脂肪族不飽和カルボン酸エステル共重合体とは、エチレンモノマーと、脂肪族不飽和カルボン酸エステルから選ばれる少なくとも1種のモノマーとの共重合により得られる共重合体を示す。
【0027】
上記共重合は、高圧法、溶融法等の公知の方法により行うことができ、重合反応の触媒としてマルチサイト触媒やシングルサイト触媒等を用いることができる。また、上記共重合体において、各モノマーの結合形状は特に限定されず、ランダム結合、ブロック結合等の結合形状を有するポリマーを使用することができる。なお、光学特性の観点から、上記共重合体としては、高圧法を用いてランダム結合により重合した共重合体が好ましい。
【0028】
上記エチレン−酢酸ビニル共重合体は、光学特性、接着性、柔軟性の観点から、共重合体を構成する全モノマー中の酢酸ビニルの割合が、10〜40質量%であることが好ましく、13〜35質量%であることがより好ましく、15〜30質量%であることが更に好ましい。また、樹脂封止シートの加工性の観点より、JIS−K−7210に準じて測定されるメルトフローレートの値(以下、「MFR」とも略記される。)(190℃、2.16kg)が0.3g/10min〜30g/10minであることが好ましく、0.5g/min〜30g/minであることがより好ましく、0.8g/min〜25g/minであることが更に好ましい。
【0029】
上記エチレン−脂肪族不飽和カルボン酸共重合体としては、例えば、エチレン−アクリル酸共重合体(以下、「EAA」とも略記される。)、エチレン−メタクリル酸共重合体(以下、「EMAA」とも略記される。)等が挙げられる。また、上記エチレン−脂肪族不飽和カルボン酸エステル共重合体としては、例えば、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸エステル共重合体等が挙げられる。ここで、アクリル酸エステル及びメタクリル酸エステルとしては、メタノール、エタノール等の炭素数1〜8のアルコールとのエステルが好適に使用される。
【0030】
これらの共重合体は、3成分以上のモノマーを共重合してなる多元共重合体であってもよい。上記多元共重合体としては、例えば、エチレン、脂肪族不飽和カルボン酸及び脂肪族不飽和カルボン酸エステルから選ばれる少なくとも3種類のモノマーを共重合してなる共重合体が挙げられる。
【0031】
上記エチレン−脂肪族不飽和カルボン酸共重合体は、共重合体を構成する全モノマー中の脂肪族不飽和カルボン酸の割合が、3〜35質量%であることが好ましい。また、MFR(190℃、2.16kg)は、0.3g/10min〜30g/10minであることが好ましく、0.5g/10min〜30g/10minであることがより好ましく、0.8g/10min〜25g/10minであることが更に好ましい。
【0032】
上記エチレン−酢酸ビニル共重合体ケン化物としては、例えば、エチレン−酢酸ビニル共重合体の部分或いは完全ケン化物が挙げられ、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物としては、エチレン−酢酸ビニル−アクリル酸エステル共重合体の部分或いは完全ケン化物等が挙げられる。
【0033】
上記各ケン化物中の水酸基の割合は、樹脂封止シートを構成する樹脂中において、0.1質量%〜15質量%であることが好ましく、より好ましくは0.1質量%〜10質量%、更に好ましくは0.1質量%〜7質量%である。水酸基の割合が0.1質量%以上であると接着性が良好となる傾向にあり、15質量%以下であると相溶性が良好となる傾向にあり、最終的に得られる樹脂封止シートが白濁化するリスクを低減することができる。
【0034】
水酸基の割合は、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物の元のオレフィン系重合体樹脂と、この樹脂のVA%(NMR測定による酢酸ビニル共重合比)と、そのケン化度と、樹脂中における配合割合とから算出することができる。
【0035】
ケン化前のエチレン−酢酸ビニル共重合体及びエチレン−酢酸ビニル−アクリル酸エステル共重合体中の酢酸ビニルの含有量は、良好な光学特性、接着性、及び柔軟性を得る観点から、共重合体全体に対して、10〜40質量%であることが好ましく、13〜35質量%であることがより好ましく、15〜30質量%であることが更に好ましい。また、エチレン−酢酸ビニル共重合体ケン化物及びエチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物のケン化度は、良好な透明性及び接着性を得る観点から、10〜70%であることが好ましく、15〜65%であることがより好ましく、20〜60%であることが更に好ましい。
【0036】
ケン化方法としては、例えば、エチレン−酢酸ビニル共重合体、エチレン−酢酸ビニル−アクリル酸エステル共重合体のペレット或いは粉末をメタノール等の低級アルコール中でアルカリ触媒を用いてケン化する方法、トルエン、キシレン、ヘキサンのような溶媒を用いて予め共重合体を溶解した後、少量のアルコールとアルカリ触媒を用いてケン化する方法等が挙げられる。また、ケン化した共重合体に水酸基以外の官能基を含有するモノマーをグラフト重合してもよい。
【0037】
上記各ケン化物は、側鎖に水酸基を有しているため、ケン化前の共重合体と比較して接着性が向上している。また、水酸基の量(ケン化度)を調整することにより、透明性や接着性を制御することができる。
【0038】
また、樹脂封止シートを構成する樹脂中には、グリシジルメタクリレートを含むエチレン共重合体が含まれていてもよい。グリシジルメタクリレートを含むエチレン共重合体とは、反応サイトとしてエポキシ基を有するグリシジルメタクリレートとのエチレンコポリマー及びエチレンターポリマーを示し、例えば、エチレン−グリシジルメタクリレート共重合体、エチレン−グリシジルメタクリレート−酢酸ビニル共重合体、エチレン−グリシジルメタクリレート−アクリル酸メチル共重合体等が挙げられる。上記化合物は、グリシジルメタクリレートの反応性が高いため安定した接着性を発揮でき、また、ガラス転移温度が低く柔軟性が良好となる傾向にある。
【0039】
本実施の形態の樹脂封止シートは、単層構造、多層構造のいずれの構造を有していてもよい。以下、各構造について説明する。
[単層構造]
樹脂封止シートが単層構造を有する場合、良好な透明性、柔軟性、被接着物の接着性や取扱性を確保する観点から、エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族不飽和カルボン酸エステル共重合体、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物よりなる群から選ばれる少なくとも1種の樹脂からなる層であることが好ましい。
【0040】
樹脂封止シートを構成する樹脂層に、接着性樹脂としてエチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物が含有されている場合は、そのケン化度及び含有量は適宜調整でき、これにより被封止物との接着性を制御できる。接着性と光学特性の観点から、樹脂層中のエチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物の含有量は、3〜60質量%であることが好ましく、3〜55質量%であることがより好ましく、5〜50質量%であることが更に好ましい。
【0041】
[多層構造]
本実施の形態における樹脂封止シートは、表面層と、前記表面層に積層された内層とを含む少なくとも2層以上の多層構造を有していてもよい。ここで、樹脂封止シートの両表面を形成する2層を「表面層」といい、それ以外を「内層」という。
【0042】
多層構造を有する場合には、接着性樹脂としてエチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物を含有する樹脂層が被封止物と接触する層(表面層の少なくとも1層)として形成されていることが好ましい。また、表面層としては、上述したケン化物のみからなる層でもよいが、良好な透明性、柔軟性、被接着物の接着性や取扱性を確保する観点から、ケン化物と、エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族不飽和カルボン酸エステル共重合体よりなる群から選ばれる少なくとも1種の樹脂との混合樹脂からなる層であることが好ましい。
【0043】
被封止物と接触する表面層の層比率は、良好な接着性を確保する観点から、樹脂封止シートの全厚に対し、少なくとも5%以上の厚さを有していることが好ましい。厚さが5%以上であると、上述した単層構造の場合と同等の接着性が得られる傾向にある。
【0044】
内層を構成する樹脂としては、特に限定されず、上述した表面層に含まれる樹脂に加えて、他のいかなる樹脂を用いてもよい。内層には、他の機能を付与することを目的として、樹脂材料、混合物、添加物等を適宜選定できる。例えば、新たにクッション性を付与する目的として、内層として熱可塑性樹脂を含有する層を設けてもよい。
【0045】
内層として用いられる熱可塑性樹脂としては、ポリオレフィン系樹脂、スチレン系樹脂、塩化ビニル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、塩素系エチレンポリマー系樹脂、ポリアミド系樹脂等が挙げられ、生分解性を有したものや植物由来原料系のもの等も含まれる。上記の中でも、結晶性ポリプロピレン系樹脂との相溶性がよく、透明性が良好な水素添加ブロック共重合体樹脂、プロピレン系共重合樹脂、エチレン系共重合体樹脂が好ましく、水素添加ブロック共重合体樹脂及びプロピレン系共重合樹脂がより好ましい。
【0046】
水素添加ブロック共重合体樹脂としては、ビニル芳香族炭化水素と共役ジエンのブロック共重合体が好ましい。ビニル芳香族炭化水素としては、スチレン、o−メチルスチレン、p−メチルスチレン、p−tert−ブチルスチレン、1,3−ジメチルスチレン、α−メチルスチレン、ビニルナフタレン、ビニルアントラセン、1,1−ジフェニルエチレン、N,N−ジメチル−p−アミノエチルスチレン、N,N−ジエチル−p−アミノエチルスチレン等が挙げられ、特にスチレンが好ましい。これらは単独で用いてもよく、2種以上を混合して用いてもよい。共役ジエンとは、1対の共役二重結合を有するジオレフィンであり、例えば、1,3−ブタジエン、2−メチル−1,3−ブタジエン(イソプレン)、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン等が挙げられる。これらは単独で用いてもよく2種以上を混合して用いてもよい。
【0047】
プロピレン系共重合体樹脂としては、プロピレンとエチレン又は炭素原子数4〜20のα−オレフィンとから得られる共重合体が好ましい。そのエチレン又は炭素原子数4〜20のα−オレフィンの含有量は6〜30質量%が好ましい。この炭素原子数4〜20のα−オレフィンとしては、1−ブテン、1−ペンテン、1−へキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ペンテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセン、1−エイコサン等が挙げられる。
【0048】
プロピレン系共重合体樹脂は、マルチサイト系触媒、シングルサイト系触媒、その他、いずれの触媒を用いて重合されたものでもよい。さらにポリマーの結晶/非晶構造(モルフォロジ−)をナノオーダーで制御したプロピレン系共重合体を使用できる。
【0049】
エチレン系共重合体樹脂は、マルチサイト系触媒、シングルサイト系触媒、その他、いずれの触媒で重合されたものでもよい。また、ポリマーの結晶/非晶構造(モルフォロジ−)をナノオーダーで制御したエチレン系共重合体を使用できる。
【0050】
内層の材料としてポリエチレン系樹脂を用いる場合、ポリエチレン系樹脂の密度は、適度なクッション性を得る観点から、0.860〜0.920g/cm3であることが好ましく、0.870〜0.915g/cm3であることがより好ましく、0.870〜0.910g/cm3であることが更に好ましい。密度が0.920g/cm3以上の樹脂層を被封止物と接触しない層(内層)として形成した場合、透明性が悪化する傾向にある。
【0051】
また、樹脂封止シートは、中央層の両面に、中央層に対して対称の配置となるように同一成分の層が1又は2以上積層された構造を有していてもよい。このような樹脂封止シートとしては、例えば、2層の表面層(以下、「スキン層」と記載する場合がある。)と3層の内層からなる樹脂封止シートであって、2層の表面層が同一成分からなり、表面層に隣接する2層の内層(以下、「ベース層」と記載する場合がある。)が同一成分からなる樹脂封止シートが挙げられる。
【0052】
上記構造を有する樹脂封止シートにおいて、表面層の膜厚は、樹脂封止シート全体の膜厚に対して5〜40%であることが好ましく、上記ベース層の膜厚は、樹脂封止シート全体の膜圧に対して50〜90%であることが好ましく、ベース層に挟まれた内層(以下、「コア層」と記載する場合がある。)の膜厚は、樹脂封止シート全体の膜厚に対して5〜40%であることが好ましい。
【0053】
次に、樹脂封止シート加工性の観点について検討する。樹脂封止シートを構成する樹脂のMFR(190℃、2.16kg)は、良好な加工性を確保する観点から、0.5〜30g/10minであることが好ましく、0.8〜30g/10minであることがより好ましく、1.0〜25g/10minであることが更に好ましい。樹脂封止シートが2層以上の多層構造の場合、内層(ベース層やコア層)を構成する樹脂のMFRは、樹脂封止シート加工性の観点から、表面層のMFRより低いことが好ましい。
【0054】
本実施の形態における樹脂封止シートには、特性を損なわない範囲で、各種添加剤、例えば、カップリング剤、防曇剤、可塑剤、酸化防止剤、界面活性剤、着色剤、紫外線吸収剤、帯電防止剤、結晶核剤、滑剤、アンチブロッキング剤、無機フィラー、架橋調整剤等を添加してもよい。
【0055】
樹脂封止シートには、安定した接着性を確保する目的でカップリング剤を添加してもよい。上記カップリング剤の添加量及び種類は、所望の接着性の度合いや被接着物の種類によって適宜選択できる。上記カップリング剤の添加量としては、カップリング剤を添加する樹脂層の全質量基準で、0.01〜5質量%であることが好ましく、0.03〜4質量%であることがより好ましく、0.05〜3質量%であることが更に好ましい。上記カップリング剤の種類としては、樹脂層に、太陽電池セルやガラスへの良好な接着性を付与する物質が好ましく、例えば、有機シラン化合物、有機シラン過酸化物、有機チタネート化合物等が挙げられる。また、これらのカップリング剤は、押出機内にて樹脂に注入混合する、押出機ホッパー内に混合して導入する、マスターバッチ化して混合して添加する等の公知の添加方法で添加することができる。ただし、押出機を経由する場合、押出機内の熱や圧力等によりカップリング剤の機能が阻害されることがあるため、カップリング剤の種類によっては添加量を適宜調整する必要がある。また、カップリング剤の種類は、樹脂封止シートの透明性や分散具合の観点、押出機への腐食や押出安定性の観点等を考慮して、適宜選択すればよい。好ましいカップリング剤としては、γ−クロロプロピルメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニル−トリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エトキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラングリシドキシプロピルトリエトキシシラン等の不飽和基やエポキシ基を有するものが挙げられる。
【0056】
また、樹脂封止シートには、紫外線吸収剤、酸化防止剤、変色防止剤等を添加することができる。特に長期に渡って透明性や接着性を維持する必要がある場合、紫外線吸収剤、酸化防止剤、変色防止剤等を添加することが好ましい。これらの添加剤を樹脂に添加する場合、その添加量は、添加する樹脂の総量に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
【0057】
紫外線吸収剤としては、例えば、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−5−スルホベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシロキシベンゾフェノン、2,4−ジヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン等が挙げられる。酸化防止剤としては、フェノール系、イオウ系、リン系、アミン系、ヒンダードフェノール系、ヒンダードアミン系、ヒドラジン系等の酸化防止剤が挙げられる。
【0058】
これらの紫外線吸収剤、酸化防止剤、変色防止剤等は樹脂封止シートを構成する樹脂中に、好ましくは0〜10質量%、より好ましくは0〜5質量%を添加する。エチレン系樹脂に添加する場合、シラノール基を有する樹脂をマスターバッチ化して混合することで、さらに接着性を付与することもできる。添加方法としては、特に限定されず、液体の状態で溶融樹脂に添加する、直接対象樹脂層に練り込み添加する、シーティング後に塗布する等の方法が挙げられる。
【0059】
樹脂封止シートは、厚さが50〜1500μmであることが好ましく、100〜1000μmであることがより好ましく、150〜800μmであることが更に好ましい。厚さが50μm未満であると、構造的にクッション性が乏しい場合や、作業性の観点で、耐久性や強度に問題が生ずる傾向にある。一方、厚さが1500μmを超えると、生産性の低下や密着性の低下を招来するという問題が生じる傾向にある。
【0060】
次に、樹脂封止シートの光学特性について説明する。光学特性の指標としてはヘイズ値が用いられる。ヘイズ値が10.0%以下であると樹脂封止シートにより封止された被封止物を外観上確認できると同時に、太陽電池の封止材として用いた場合に、実用上十分な発電効率が得られるため好ましい。上記観点から、ヘイズ値は9.5%以下であることが好ましく、9.0%以下であることがより好ましい。ここで、ヘイズ値は、ASTM D−1003に準拠して測定することができる。
【0061】
また、樹脂封止シートは、太陽電池の封止材として用いた場合に、実用上十分な発電効率を確保するために、全光線透過率が85%以上であることが好ましく、87%以上であることがより好ましく、88%以上であることが更に好ましい。ここで、全光線透過率は、ASTM D−1003に準拠して測定することができる。
【0062】
[樹脂封止シートの製造方法]
樹脂封止シートの製造方法としては、特に制限はないが、例えば、以下の方法が挙げられる。まず、樹脂を押出機で溶融し、ダイより溶融樹脂を押出し、急冷固化して原反を得る。押出機としては、Tダイ、環状ダイ等が用いられる。樹脂封止シートが多層構造を有する場合には、環状ダイが好ましい。
【0063】
原反の表面には、最終的に目的とする樹脂封止シートの形態に応じてエンボス加工処理を施してもよい。例えば、両面にエンボス加工処理を行う場合には、2本の加熱エンボスロール間に、片面エンボス加工処理を行う場合には、片方のみ加熱されたエンボスロール間に、前記原反を通過させることによりエンボス加工処理を施すことができる。樹脂封止シートが多層構造の場合、多層Tダイ法、多層環状(サーキュラー)ダイ法が好適であり、その他公知のラミネート方法によって多層構造を形成してもよい。
【0064】
さらに、後処理として、例えば寸法安定化のためのヒートセット、コロナ処理、プラズマ処理、他種樹脂封止シート等とのラミネーションを行ってもよい。
【0065】
樹脂封止シートを構成する樹脂に対する架橋処理、すなわち有機過酸化物の利用等による熱処理は、それぞれの場合に応じてエンボス加工処理の前工程又は後工程として行うか選定することができる。
【0066】
[樹脂封止シートの用途]
本実施の形態における樹脂封止シートは、太陽電池を構成する素子等の部材を保護するための封止材として特に有用である。すなわち透明性や耐クリープ特性に優れ、かつ被封止物との接着性が良好であり、用途に応じて接着性の制御を行うことができる。また、太陽電池を構成するガラス板や、アクリルやポリカーボネート等の樹脂板に対しても安定的に強固な接着性を発揮する。本実施の形態における樹脂封止シートを用いることにより、太陽電池用ガラス自身や各種配線や発電素子等、凹凸を有している各種部材を確実に隙間なく封止できる。
【0067】
また、本実施の形態のおける樹脂封止シートは、太陽電池用の封止シートとして使用できる他、LEDの封緘、合わせガラスや防犯ガラスの中間膜等、プラスチックとガラス、プラスチック同士、ガラス同士の接着等にも使用することができる。
【0068】
ここで、樹脂封止シートを合わせガラスの中間膜として用いる場合には、例えば、2枚のガラス板及び/又は樹脂板の間に樹脂封止シートを挟持することで、複合材を得ることができる。
【実施例】
【0069】
以下、具体的な実施例及び比較例を挙げて説明するが、本実施の形態はこれらの実施例のみに限定されるものではない。
【0070】
実施例及び比較例における各物性の測定方法及び評価方法は以下の通りである。
<ゲル分率>
全層ゲル分率については、沸騰p−キシレン中で、樹脂封止シートを12時間抽出し、不溶解部分の割合を下記式により求めた。
ゲル分率(質量%)=(抽出後の試料質量/抽出前の試料質量)×100
【0071】
<発電部分隙間埋め性>
太陽電池用ガラス板(AGC社製白板ガラス5cm×10cm角:厚さ3mm)/樹脂封止シート/発電部分(多結晶シリコンセル)(厚さ250μm)/樹脂封止シート/太陽電池用ガラス板の順に重ね、LM50型真空ラミネート装置(NPC社)を用いて150℃、15分間の条件で真空ラミネートすることで太陽電池モジュールを作製し、発電部分の多結晶シリコンセルと樹脂封止シートとの接触状況を目視にて確認した。
【0072】
<全光線透過率>
ASTM D−1003に準拠して測定した。
【0073】
耐クリープ性の評価としては、以下の高温高湿試験及び温度サイクル試験を行った。
<高温高湿試験>
6インチ多結晶セルを6枚(2列x3枚)に配置し、AGC社製白板ガラス(530mm×350mm角:厚さ3mm)/樹脂封止シート/発電部分(多結晶シリコンセル(厚さ250μm)/樹脂封止シート/バックシート(PET製180μm)の順に重ね、LM50型真空ラミネート装置(NPC社)を用いて150℃、15分間の条件で真空ラミネートすることで太陽電池モジュールを作製した。作製したモジュールを試験槽内に設置し、試験温度:85℃、相対湿度:85%に保持し、各時間経過後のモジュールの外観をチェックした。
【0074】
<温度サイクル試験>
6インチ多結晶セルを6枚(2列x3枚)に配置し、AGC社製白板ガラス(530mm×350mm角:厚さ3mm)/樹脂封止シート/発電部分(多結晶シリコンセル(厚さ250μm)/樹脂封止シート/バックシート(PET製180μm)の順に重ね、LM50型真空ラミネート装置(NPC社)を用いて150℃、15分間の条件で真空ラミネートすることで太陽電池モジュールを作製した。作製したモジュールを試験槽内に設置し、試験槽を閉じ、モジュールの周囲の空気を2m/s以上の速度で循環させ、試験槽内の温度を−40℃〜+85℃との間で周期的に変化させた。1サイクルを4時間とし、最低温度及び最高温度で30分ずつ保持し、温度サイクル行った。200回等の所定回数後のモジュールの外観をチェックした。
【0075】
<エチレン系重合体のMFR>
JIS―K−7210に準拠して測定した。MFRの単位は、g/10minである。
【0076】
実施例及び比較例において用いた各材料は以下の通りである。
<樹脂封止シート>
(1)エチレン−酢酸ビニル共重合体(EVA)
東ソー社製 ウルトラセン751
(2)エチレン−メチルアクリレート共重合体(EMA)
三井デュポンケミカル社製 エルバロイ1218AC
(3)エチレン−エチルアクリレート共重合体(EEA)
三井デュポンケミカル社製 エルバロイ2615AC
(4)エチレン−メタクリル酸共重合体(EMMA)
三井デュポンケミカル社製 ニュクレルN1207C
<有機過酸化物>
吉富社製 ルパール101
<ラジカル捕捉剤>
(1)フェノール系捕捉剤
チバスペシャリティーケミカル社製 IRGANOX1010
(2)リン系捕捉剤
チバスペシャリティーケミカル社製 IRGAFOS168
(3)イオウ系捕捉剤
チバスペシャリティーケミカル社製 IRGANOXPS
(4)HALS系捕捉剤
チバスペシャリティーケミカル社製 CHIMASORB944
<透光性絶縁基板>
AGC社製 太陽電池用ガラス
<裏面絶縁基板(バックシート)>
三菱アルミパッケージング社製バックシート
<太陽電池セル>
E−TON社製 結晶性シリコンセル
【0077】
<実施例1〜11>
表1及び2に示す材料を用いて、樹脂封止シートを製造した。3台(表面層用、中間層用、内層用)の押出機に接続された多層環状ダイ(直径250φmm、スリット厚さ1mm)より下向き方向にて樹脂をチューブ状に溶融押出し、引き取りながら1対のゴムロールにて封じ、この溶融押出にて形成されたチューブに空気を入れて、所望のシート厚さ、シート折幅になるように水冷リングを用いて急冷固化した。3台の押出機に同じ樹脂を導入することで単層の樹脂封止シートを得た。有機過酸化物、ラジカル捕捉剤等の添加物は、前もって同じ樹脂にプレブレンドして、樹脂に押出機を用いて練りこんだ3質量%マスターバッチを所定の量になるように混合した。
得られた実施例1〜11の樹脂封止シートに対して、有機過酸化物による架橋処理を施した。樹脂封止シートのゲル分率、全光線透過率を測定し、測定結果を表1及び2に示した。
得られた樹脂封止シートを用いて、表1及び2に示す各条件に従って太陽電池モジュールを製造し、上述した各評価試験を行った。評価結果を表1に示す。なお、真空ラミネーターとしては、NPC社製太陽電池用真空ラミネーターLM50を用いた。
【0078】
<比較例1〜3>
表2に示す材料を用いて、実施例と同様の方法により樹脂封止シートを製造した。
比較例1の樹脂封止シートに対しては有機過酸化物による架橋処理を施さず、比較例2の樹脂封止シートに対しては、真空ラミネート後、150℃において60分間熱キュアを行うことにより架橋処理を施した。比較例3の樹脂封止シートに対しては、真空ラミネート前に、有機過酸化物による架橋処理を施した。樹脂封止シートのゲル分率、全光線透過率を測定し、測定結果を表1に示した。
比較例1においては有機過酸化物を含有しているが架橋を施すための熱処理を行わなかった。そのため、樹脂が架橋されておらず、高温高湿試験結果、温度サイクル試験結果においてセルが移動してしまった。比較例2においては比較例1と同様の組成で、高温高湿試験結果、温度サイクル試験結果が良好になる条件を架橋度に関して模索した。その結果、樹脂を架橋するためにはキュア条件として、150℃、60分という長時間のキュアが必要であることがわかった。さらに、架橋のためにキュア炉が必要であるほか、時間がかかり生産効率が低いこと、電気等のコストがかかることが判明した。比較例3においては架橋した後のシートを用いてラミネートをしたため、セルを隙間なく封止することができなかった。
得られた樹脂封止シートを用いて、表2に示す各条件に従って太陽電池モジュールを製造し、上述した各評価試験を行った。評価結果を表2に示す。なお、真空ラミネーターとしては、NPC社製太陽電池用真空ラミネーターLM50を用いた。
【0079】
【表1】

【0080】
【表2】

【0081】
表1の結果から明らかなように、本実施の形態の樹脂封止シート(実施例1〜11)は、有機過酸化物により低度に架橋されているため、架橋を施すための長時間の熱キュア工程を必要とせず、且つ、太陽電池モジュールを製造する際の隙間埋め性及び耐クリープ性のバランスに優れたものであった。
【産業上の利用可能性】
【0082】
本発明の樹脂封止シートは、太陽電池を構成する素子等の部材を保護するための封止材としての産業上利用可能性を有する。

【特許請求の範囲】
【請求項1】
有機過酸化物により架橋された低架橋樹脂封止シート。
【請求項2】
ゲル分率が1〜65質量%に調整された、請求項1記載の低架橋樹脂封止シート。
【請求項3】
前記有機過酸化物を0.2〜1質量%の範囲で含有する、請求項1又は2記載の低架橋樹脂封止シート。
【請求項4】
ラジカル捕捉剤を1〜3質量%の範囲で含有する、請求項1〜3のいずれか1項記載の低架橋樹脂封止シート。
【請求項5】
前記ラジカル捕捉剤は、フェノール系捕捉剤、リン系捕捉剤、イオウ系捕捉剤、HALS系捕捉剤からなる群から選択されるいずれか1種である、請求項4記載の低架橋樹脂封止シート。
【請求項6】
エチレン−酢酸ビニル共重合体、エチレン−脂肪族不飽和カルボン酸共重合体、エチレン−脂肪族カルボン酸エステル共重合体、エチレン−酢酸ビニル共重合体ケン化物、エチレン−酢酸ビニル−アクリル酸エステル共重合体ケン化物からなる群から選択される少なくとも1種の樹脂を含有する、請求項1〜5のいずれか1項記載の低架橋樹脂封止シート。
【請求項7】
請求項1〜6のいずれか1項記載の低架橋樹脂封止シートを封止材として用いた太陽電池モジュール。

【公開番号】特開2010−226042(P2010−226042A)
【公開日】平成22年10月7日(2010.10.7)
【国際特許分類】
【出願番号】特願2009−74568(P2009−74568)
【出願日】平成21年3月25日(2009.3.25)
【出願人】(309002329)旭化成イーマテリアルズ株式会社 (771)
【Fターム(参考)】