説明

粒子分級装置

【課題】1mm以上で20mm以下の所定の長径を有する中間粒径の粒子を効率的に分級すること。
【解決手段】粒子分級装置100は、分級容器11と、分粒対象試料を供給する試料投入部(試料投入ライン)12と、粗粒回収ライン13および粗粒回収ボックス14と、微粒回収ライン15を備えている。試料投入部(試料投入ライン)12からは、1mm以上で20mm以下の所定の長径dを有する選別対象となる粒子を含む試料が投入される。分級容器11の内部(分級空間)には、下方から上方に向かう旋回気流が形成されており、分級空間に投入された分粒対象試料は、その粒径により、旋回気流により上方に運ばれるか、若しくは、重力により下方に運ばれるかして、粗粒回収ライン13と粗粒回収ボックス14で構成される粗粒選別部に回収されるか、若しくは、微粒選別部としての微粒回収ライン15へと導かれて回収がなされる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多結晶シリコン等の分級技術に関し、より詳細には、1mm以上で20mm以下の所定の長径を有する粒子を分級して回収する技術に関する。
【背景技術】
【0002】
粉砕等によって得られた粒子を、その粒径の大小により分離する分級技術は、食品やコピー用トナーの製造現場で多用されている。
【0003】
例えば、特許文献1(特開平7−60194号公報)では、分級対象である粒子を噴出気流として分級部に投入し、分級用の2本の気流により、粒子のもつ慣性力とコアンダ効果による湾曲気流の遠心力によって粗粒子と微粒子に分級する方法が提案されている。
【0004】
また、サイクロンを用いた方法として、例えば、特許文献2(特開2010−274234号公報)では、サイクロンにより、粗粒子を分級空間の外周側に集めると共に微粒子を分級空間の中心部に集め、外周側から下方に粗粒子を回収すると共に中心部より上方に微粒子を回収することで、微粒子を効率的に分級する方法が提案されている。
【0005】
ところで、半導体製造用原料となる単結晶シリコンの製造に用いられる多結晶シリコンは、石英ルツボ内での溶融が容易となるように、多結晶シリコンロッドを破砕して得られる多結晶シリコン塊(ポリシリコンチャンク)として流通している。このようなポリシリコンチャンクは、サイズが小さすぎると単位質量あたりの表面積(比表面積)が大きくなって汚染確率が高くなってしまうため、概ね人の拳程度の大きさのものが好まれる。
【0006】
ところが、多結晶シリコンロッドを破砕すると、拳大よりも遥かに小さな塊や粒子状のものが多量に発生してしまう。このような小さなサイズの多結晶シリコンは、比表面積が大きく半導体製造用の超高純度シリコン原料としては不向きであるが、他の用途としての利用価値は高い。例えば、長径が1mm以下の粒子が5質量%以下、特に1質量%以下のものは、太陽電池を製造するための単結晶シリコンや多結晶シリコンの原材料として用いることができる。また、長径が1mm以下の粒子が20%以下、特に15%以下のものは、一般金属や鉄の改質用として用いることができる。
【0007】
サイクロンを用いた一般的な分級装置は、粒径が1mm未満の微粒子を分離するのに有効である半面、長軸が1mm以上の大きさ(例えば、長軸が5mmを超える程度の大きさ)の粒子を選別しようとすると、その構造は複雑なものとなることに加え、分級中に粒子が装置内で架橋(ブリッジ)するような詰まり現象が起き易いという問題がある。
【0008】
また、最も簡便な手法である篩を用いる分級は、粒径が20mmを超えるような比較的大きな粒子に対しては効率的であるが、長径が1mm〜20mm程度の中程度の大きさの粒子を選別しようとすると、粒子が不定形であることも相まって、目詰まりを起こし易く、容易には篩過が起こらずに作業時間が長くなり、しかも分級の質も低下してしまうという問題がある。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平7−60194号公報
【特許文献2】特開2010−274234号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、長径が1mm〜20mm程度の中程度の大きさの粒子の分級を効率的に行う技術を提供すること、特に、上記長径範囲の粒子をさらに、粗粒子と微粒子に効率的に分級する技術を提供することにある。
【課題を解決するための手段】
【0011】
上記課題を解決するために、本発明に係る第1の態様の粒子分級装置は、円筒状の分級空間を有する分級容器と、前記分級容器内に分粒対象試料を供給する試料投入部と、前記分級容器内に下方から上方に向かう旋回気流を形成する気流生成部と、前記分級容器の下部側であって前記旋回気流の供給部よりも下方に設けられた粗粒選別部と、前記分級容器の上部側分級空間を形成する側壁上にあって前記旋回気流の供給部よりも上方に設けられた微粒選別部とを備え、前記旋回気流の供給部からは、1mm以上で20mm以下の所定の長径dを有する選別粒子に作用する浮力が該選別粒子に働く重力を超えない旋回気流が供給されることを特徴とする。
【0012】
本発明に係る粒子分級装置は、前記試料投入部は前記気流生成部を兼ね、前記試料投入部からは前記分粒対象試料が気体を輸送媒体として供給され、該輸送媒体が前記旋回気流を形成する態様とすることもできる。
【0013】
また、本発明に係る粒子分級装置は、前記微粒選別部は、前記分級容器の上部側壁に筒状に設けられており、該微粒選別部の突出方向は、前記分級容器の内壁に沿う前記旋回気流の向きと逆の方向である態様とすることが好ましい。
【0014】
好ましくは、前記試料投入部の直上部と前記微粒選別部の直下部との高低差H1は、前記円筒状の分級空間の直径D1の2.5倍以上である。
【0015】
本発明に係る第2の態様の粒子分級装置は、上述の第1の態様の粒子分級装置である第1の粒子分級装置の微粒選別部の下流に第2の粒子分級装置が設けられており、前記第2の粒子分級装置は、円筒状の第2の分級空間を有する第2の分級容器と、前記第1の粒子分級装置の微粒選別部に分離された試料を前記第2の分級容器内に分粒対象試料として供給する第2の試料投入部と、前記第2の分級容器内に下方から上方に向かう旋回気流を形成する第2の気流生成部と、前記第2の分級容器の下部側であって前記第2の気流生成部で形成された旋回気流の供給部よりも下方に設けられた第2の粗粒選別部と、前記第2の分級容器の上部側分級空間を形成する側壁上にあって前記第2の気流生成部で形成された旋回気流の供給部よりも上方に設けられた第2の微粒選別部とを備え、前記第2の気流生成部で形成された旋回気流の供給部からは、1mm以上で20mm以下の所定の長径であって前記dよりも小さい長径d´(<d)を有する選別粒子に作用する浮力が該選別粒子に働く重力を超えない旋回気流が供給されることを特徴とする。
【0016】
好ましくは、前記第2の試料投入部の直上部と前記第2の微粒選別部の直下部との高低差H2は、前記円筒状の第2の分級空間の直径D2の2.5倍以上である。
【発明の効果】
【0017】
本発明により、1mm以上で20mm以下の所定の長径を有する中間粒径の粒子を効率的に分級することができる。本発明に係る粒子分級装置は、構造がシンプルであり、分級粒子が目詰まりを起こすなどのトラブルが生じ難いことに加え、金属汚染や異物の混入が生じ難く、例えば、半導体製造用原料である高純度の多結晶シリコンチャンクの分級処理に好適である。また、分級用の試料にプラスチック繊維等が混入していた場合には、本発明の分級を行うことで、極めて容易に除去することができる。
【図面の簡単な説明】
【0018】
【図1】本発明の粒子分級装置の第1の構成例を説明するための概略図で、図1Aは断面図、図1Bは上面図である。
【図2】本発明の粒子分級装置の第2の構成例を説明するための概略図である。
【図3】本発明の粒子分級装置の第3の構成例を説明するための概略図である。
【図4】実施例8における微粒選別部の突出方向を説明するための図である。
【発明を実施するための形態】
【0019】
以下に、図面を参照して、本発明に係る粒子分級装置について説明する。
【0020】
図1は、本発明の粒子分級装置の構成例を説明するための概略図で、図1Aは断面図、図1Bは上面図である。
【0021】
粒子分級装置100は、円筒状の分級空間を有する分級容器11と、この分級容器11の内部(分級空間)に分粒対象試料を供給する試料投入部(試料投入ライン)12と、分級容器11の下部側に設けられた粗粒回収ライン13および粗粒回収ボックス14と、分級容器11の上部側分級空間を形成する側壁上にあって後述する旋回気流の供給部よりも上方に設けられた微粒回収ライン15を備えている。
【0022】
試料投入部(試料投入ライン)12からは、1mm以上で20mm以下の所定の長径dを有する選別対象となる粒子を含む試料が投入される。
【0023】
分級容器11の内部(分級空間)には、下方から上方に向かう旋回気流が形成されており、分級空間に投入された分粒対象試料は、その粒径により、旋回気流により上方に運ばれるか、若しくは、重力により下方に運ばれるかして、粗粒回収ライン13と粗粒回収ボックス14で構成される粗粒選別部に回収されるか、若しくは、微粒選別部としての微粒回収ライン15へと導かれて回収がなされる。
【0024】
この図に示した例では、試料投入部12が気流生成部を兼ねており、試料投入ライン12の試料の供給部は、分級空間の内壁の周方向に旋回気流Cを生じるように設けられており、試料投入部12からは分粒対象試料Iが気体を輸送媒体として供給され、この輸送媒体が分粒空間内での旋回気流を形成する。なお、気流生成部は、独立したものとして設ける態様(例えば、分級空間の下部にファンを設ける態様)としてもよいが、旋回気流を分粒空間に供給する部位(供給部)は、粗粒選別部よりも上方であって、且つ、微粒選別部よりも下方に配置される。
【0025】
分級空間内に、垂直方向成分が下から上に正の速度をもつ旋回気流が作られることにより、比表面積の大きな粒子(微粒子)は旋回気流による浮力により分級空間内を旋回しながら上昇し、微粒回収ライン15へと導かれて装置外に排出される。一方、比表面積の小さな粒子(粗粒子)は、作用する浮力が重力を下回ることから、粗粒回収ライン13へと導かれることとなるというシンプルなメカニズムにより粒子の選別がなされる。更に、プラスチック繊維のように比重の異なる異物が混入していた場合にも、詰り等のトラブルを起こさず容易に除去される。
【0026】
このような構成を有する本発明の粒子分級装置は、1mm以上で20mm以下の所定の長径dを有する中間粒径の粒子を効率的に選別(分級)することができる。ここで、上記旋回気流の供給条件は、選別対象粒子の「所定の長径d」に応じて決定される。
【0027】
すなわち、長径dが5mm以上の粒子を粗粒として回収する場合には、粗粒として回収する粒子の長径dが7mm以上である場合よりも、旋回気流の速度の垂直方向成分がより小さくなるように設定される。逆に、長径dが10mm以上の粒子を粗粒として回収する場合には、粗粒として回収する粒子の長径dが7mm以上である場合よりも、旋回気流の速度の垂直方向成分がより大きくなるように設定される。
【0028】
なお、微粒選別部である微粒回収ライン15は、分級容器11の上部側壁に筒状に設けられており、この微粒回収ライン15の突出方向を、分級容器11の内壁に沿う旋回気流Cの向きと逆の方向とすると、粗粒と微粒の分級効率があがり、同条件で運転した場合の粗粒回収量を高めることができる。
【0029】
本発明では、最も適する用途として、1mm以上で20mm以下の所定の長径dを有する粒子を選別対象とするが、分級の精度は、円筒状の分級空間の高さが高いほど高くなる。分級される各粒子は旋回気流に乗って上昇するものと重力によって落下するものに分けられるが、粒子間の衝突等の影響があることから、一定以上の分離距離を設けることでより良好な分級が可能となる。本発明者らが行った検討によれば、試料投入部の直上部と微粒選別部の直下部との高低差Hを、円筒状の分級空間の直径Dの2.5倍以上とすることで、本来は粗粒選別部へと導かれるべき粗粒が、微粒選別部へと導かれる率をかなり下げることができる。また、この値(H/D)が3.5以上であれば、粗粒が微粒選別部へと導かれる率を略ゼロにすることができる。
【0030】
なお、旋回気流を形成するための手段として市販の排風機を用いる場合には、例えば気体吸引量が300〜800L/分である場合、分級空間の直径を10〜15cmとすると、分級に良好な旋回流を作ることができる。
【0031】
粗粒選別部を構成する粗粒回収ライン13は、分級空間から下方に落下する粗粒を回収するラインであり、その形状に特別な制限はないが、ロート状としておくことが好ましい。なお、粗粒回収ライン13と粗粒回収ボックス14の間の経路に開閉部を設けておくと、粗粒回収ボックス14に一定量の粗粒が溜まった段階で別途用意した粗粒回収ボックスと交換でき、分級作業を連続して行うことができる。
【0032】
本発明の粒子分級装置を2段構成とし、上述した構成の粒子分級装置(第1の粒子分級装置)の微粒選別部の下流に、第2の粒子分級装置を設ける構成としてもよい。
【0033】
図2は、本発明の粒子分級装置の第2の構成例を説明するための概略図で、第1の粒子分級装置100の微粒選別部の下流に、第2の粒子分級装置200が設けられており、この第2の粒子分級装置200は、第1の粒子分級装置100と同様に、円筒状の分級空間を有する分級容器21と、この分級容器21の内部(分級空間)に分粒対象試料を供給する試料投入部(試料投入ライン)22と、分級容器21の下部側に設けられた粗粒回収ライン23および粗粒回収ボックス24と、分級容器21の上部側分級空間を形成する側壁上にあって旋回気流の供給部よりも上方に設けられた微粒回収ライン25を備えている。
【0034】
試料投入部(試料投入ライン)22は、第1の粒子分級装置100の微粒選別部である微粒回収ライン15と繋がっており、第1の粒子分級装置100で微粒として選別された粒子群が、分級容器21の内部(分級空間)に分粒対象試料として投入される。
【0035】
分級容器21の内部(分級空間)には、下方から上方に向かう旋回気流が形成されており、分級空間に投入された分級対象試料は、その粒径により、旋回気流により上方に運ばれるか、若しくは、重力により下方に運ばれるかして、粗粒回収ライン23と粗粒回収ボックス24で構成される粗粒選別部に回収されるか、若しくは、微粒選別部としての微粒回収ライン25へと導かれて回収がなされる。
【0036】
この図に示した例でも、試料投入部22が気流生成部を兼ねており、第1の粒子分級装置100につき説明したのと同様に、試料投入ライン22の試料の供給部は、分級空間の内壁の周方向に旋回気流Cを生じるように設けられており、試料投入部22からは分粒対象試料Iが気体を輸送媒体として供給され、この輸送媒体が分粒空間内での旋回気流を形成する。なお、上述したように、気流生成部は、独立したものとして設ける態様(例えば、分級空間の下部にファンを設ける態様)としてもよいが、旋回気流を分粒空間に供給する部位(供給部)は、粗粒選別部よりも上方であって、且つ、微粒選別部よりも下方に配置される。
【0037】
第2の粒子分級装置200の旋回気流の供給部からは、第1の粒子分級装置100で粗粒として選別された粒子の長径dよりも小さな長径d´(<d)を有する選別粒子に作用する浮力が該選別粒子に働く重力を超えない旋回気流が供給される。
【0038】
例えば、第1の粒子分級装置100で粗粒として選別された粒子の長径dが7mm以上である場合、第2の粒子分級装置200に供給される選別粒子の長径は概ね7mm未満のものであり、この中から粗粒と微粒の選別を行うのであるが、第2の粒子分級装置200により粗粒として選別される粒子の長径d´は当然、第1の粒子分級装置100により粗粒として選別された粒子の長径dよりも小さいから、第2の粒子分級装置200における旋回気流の速度の垂直方向成分は、第1の粒子分級装置100における旋回気流の速度の垂直方向成分に比較して、小さく設定される。
【0039】
第2の粒子分級装置200における旋回気流の速度の垂直方向成分を、第1の粒子分級装置100における旋回気流の速度の垂直方向成分に比較して小さく設定するためには、例えば、分級容器21の内部(分級空間)に分粒対象試料を供給する試料投入部(試料投入ライン)22の近傍で、輸送媒体である気体の一部を系外に抜いてやる等の手法を例示することができる。なお、気体の一部を系外に抜く際には、バグフィルタを用いて、粒子が系外へと流出しないようにする必要がある。
【0040】
より簡便な手法で第2の粒子分級装置200における旋回気流の速度の垂直方向成分を低くするためには、分級空間の直径方向の断面積を、第1の粒子分級装置100のそれに比較して大きくしてやればよい。第2の粒子分級装置200で粗粒として回収する粒子の長径が恒常的なものである場合には、このようなシンプルな装置構成とすることにより目詰まり等のトラブルが抑制されるという利点がある。第2の粒子分級装置200で粗粒として回収する粒子の長径が頻繁に変更されるような場合には、上述したような、輸送媒体である気体の一部を系外に抜く等の方法によることが好ましい。
【0041】
第2の粒子分級装置200においても、微粒選別部である微粒回収ライン25は、分級容器21の上部側壁に筒状に設けられており、この微粒回収ライン25の突出方向を、分級容器21の内壁に沿う旋回気流Cの向きと逆の方向とすると、粗粒と微粒の分級効率があがり、同条件で運転した場合の粗粒回収量を高めることができる。
【0042】
また、試料投入部の直上部と微粒選別部の直下部との高低差Hを、円筒状の分級空間の直径Dの2.5倍以上とすることで、本来は粗粒選別部へと導かれるべき粗粒が、微粒選別部へと導かれる率をかなり下げることができる点についても、第1の粒子分級装置100と同様である。
【0043】
上述した第1の粒子分級装置100や第2の粒子分級装置200の微粒回収ライン(15、25)から排出される微粒を回収するには、これらの微粒が環境中に放出等されないように、また、他の用途に再使用できるように、回収されることが好ましい。
【0044】
図3は、本発明の粒子分級装置の第3の構成例を説明するための概略図で、この装置は、第2の粒子分級装置200の微粒回収ライン25から排出される微粒を含有する気体(輸送媒体)を、水を満たした水槽に向かって排気して水中で微粒を捕捉する構成としたものである。
【0045】
この図に示した構成では、第1の粒子分級装置100の微粒選別部の下流に設けられた第2の粒子分級装置200の微粒回収ライン25の下流側に、微粒捕捉装置300を設けている。この図中、符号30は排風機、31は水槽、32は微粒排出口、33は水槽内に満たされた水、34は微粒混合物、35は最終排気口、36はドレインである。
【0046】
第2の粒子分級装置200の微粒回収ライン25から排出された微粒を含有する気体(輸送媒体)は、排風機30を介して水槽31内に排気され、水33の中で微粒が捕捉された後、輸送媒体である気体は最終排気口35から環境に放出される一方、水33により捕捉された微粒は水槽31下部に微粒混合物34として沈澱し、ドレイン36より回収される。
【0047】
このような、水槽に向かって排気する方法は、多結晶シリコン等の金属系粒子等、微粒子の比重がある程度大きい場合に特に有効である。なお、輸送媒体である気体は、多結晶シリコンの分級を行う場合には清浄空気を用いればよいが、分級する粒子によっては、窒素、アルゴン等を用いることもできる。
【0048】
上述の方法以外にも、微粒回収ラインから排出される微粒を含有する気体を、スクラバ中に排気して水に捕捉させる方法や、最終段階でバグフィルタを用いて気体をろ過する方法等を採用してもよい。
【実施例】
【0049】
[実施例1]
図3に示した構成の装置を用い、多結晶シリコンロッドを破砕して得られた多結晶シリコン塊の中から粒径(長径)が概ね20mmを超えるサイズのものを篩過して除いたもの(約100kg)を分粒対象試料として装置に投入して分級を行った。なお、当該装置を構成する第1の粒子分級装置100は、試料投入ラインの直径が30mm、分級空間の内径D1が118mmで試料投入部の直上部と微粒選別部の直下部との高低差H1が413mm、微粒回収ラインの直径が40mmである。また、第2の粒子分級装置200は、試料投入ラインの直径が40mm、分級空間の内径D2が147mmで試料投入部の直上部と微粒選別部の直下部との高低差H2が552mm、微粒回収ラインの直径が50mmである。さらに、排風機30による吸引量は590L/分である。
【0050】
上述した粒径(長径が概ね20mm以下)の分級対象試料100kgを、少量ずつ20時間かけて装置に投入し、第1の粒子分級装置100では長径dが概ね5mm以上の多結晶シリコン塊を粗粒として回収することを目的とし、第2の粒子分級装置200では長径d´が概ね1mm以上の多結晶シリコン塊を粗粒として回収することを目的として、分級作業を行った。
【0051】
第2の粒子分級装置200の微粒回収ライン25から排出された微粒は排風機30を介して水槽31内に排気した。このとき、排風機30の排気は、排気口を水槽31の水面に向けて行われ、水面が大きく変動しない線速度である14cm/秒(水面からの距離を約70cm)に調整して微粒を水33の中に捕捉した。
【0052】
この捕捉作業が終了した後、4時間靜置した。水槽31内では微粒の殆どが沈降しており、上澄みを廃棄して沈降物を微粒混合物34として回収した。沈降後の上澄み液の浮遊物質を測定(1μm以上の粒径のものが対象)すると、定量下限以下(<1mg/リットル)であった。この微粒捕捉装置300で回収された微粒混合物34を乾燥して重量を計測したところ11.5kgであり、埃等軽量の異物は上澄みの廃棄時に完全に除かれていた。
【0053】
第1の粒子分級装置100により粗粒として回収された粒子は、総量で72.5kgである。この中から250gのサンプルを採取し、篩過により粒子の径分布を確認したところ、長径が5〜20mmであるもののは95質量%を占め、長径が20mmを超えるものが5質量%含有されているものの、長径が1mm以下の粒子は含まれていなかった。また、埃等軽量の異物は完全に除かれていた。
【0054】
第2の粒子分級装置200により粗粒として回収された粒子は、総量で15.0kgである。この中から250gのサンプルを採取し、篩過により粒子の径分布を確認したところ、長径が5mmを超えるものは含有されておらず、長径が1mm以下の粒子の合計の質量は10%であった。また、埃等軽量の異物は完全に除かれていた。
【0055】
[実施例2〜6]
円筒状の分級空間の、試料投入部の直上部と微粒選別部の直下部との高低差Hと内径Dの比(H/D)を変化させた場合の回収効率を検討した。このH/Dを変化させるに際しては、第1の粒子分級装置100および第2の粒子分級装置200ともに内径Dは上述の実施例1と同じとし(D1=118mm、D2=147mm)、試料投入部の直上部と微粒選別部の直下部との高低差(H1およびH2)を変化させた。なお、何れの実施例においても、H/D値は等しくした(H1/D1=H2/D2)。
【0056】
図3に示した構成の装置を用い、多結晶シリコンロッドを破砕して得られた多結晶シリコン塊の中から粒径(長径)が概ね20mmを超えるサイズのものを篩過して除いたもの(約20kg)を分粒対象試料として装置に投入し、実施例1と同様に、第1の粒子分級装置100では長径dが概ね5mm以上の多結晶シリコン塊を粗粒として回収することを目的とし、第2の粒子分級装置200では長径d´が概ね1mm以上の多結晶シリコン塊を粗粒として回収することを目的として、分級作業を行った。なお、ここでは第2の分級装置で捕捉されなかった微粒子の回収は行っていない。第1および第2の粒子分級装置それぞれの粗粒回収率を表1に纏めた。
【0057】
【表1】

【0058】
なお、表1中の「回収率」は、合計の回収量が最も多かった実施例6の合計回収量を100として、その他の実施例2〜5の回収率を求めている。
【0059】
何れの実施例においても、第1の粒子分級装置100により粗粒として回収された粒子中の長径が1mm以下の粒子は1質量%以下であり、第2の粒子分級装置200により粗粒として回収された粒子中の長径が1mm以下の粒子は15質量%以下であった。従って、実施例1および2で回収量が下がっている原因は、回収すべき粒度を持つシリコン塊の一部が回収できていないためであると推定される。
【0060】
[実施例7−8]
分級容器の上部側壁に筒状に設けられる微粒選別部の取り付けの向きが分級効果に及ぼす影響を確認した。実施例7では、第1の粒子分級装置100において、図1に示したように微粒選別部の突出方向を分級容器の内壁に沿う旋回気流の向きと逆の方向とする一方、実施例8では、第1の粒子分級装置100において、図4に示したように微粒選別部の突出方向を分級容器の内壁に沿う旋回気流の向きと同じ方向とした。その他の構成は、実施例1で説明した装置構成(図3)と同様である。
【0061】
多結晶シリコンロッドを破砕して得られた多結晶シリコン塊の中から粒径(長径)が概ね20mmを超えるサイズのものを篩過して除いたもの(約20kg)を分粒対象試料として装置に投入し、実施例1と同様に、第1の粒子分級装置100では長径dが概ね5mm以上の多結晶シリコン塊を粗粒として回収することを目的とし、第2の粒子分級装置200では長径d´が概ね1mm以上の多結晶シリコン塊を粗粒として回収することを目的として、分級作業を行った。なお、分級作業はそれぞれ3回実施した。第1の粒子分級装置の粗粒回収率を表2に纏めた。
【0062】
【表2】

【0063】
なお、表2中の「回収率」は、合計の回収量が多かった実施例7の1回目の回収量を100として求めた。
【0064】
何れの実施例においても長径が1mm以下である粒子は含まれていなかったが、微粒選別部の突出方向を分級容器の内壁に沿う旋回気流の向きと逆の方向とすると回収率は高くなり、分級の程度も高い。
【産業上の利用可能性】
【0065】
本発明の粒子分級装置は、1mm以上で20mm以下の所定の長径を有する中間粒径の粒子を効率的に分級することができる。サイクロン型分級装置は、回転方向外側に粗粒を集める一方、微粒を内側に集めて分級するという構造を有するのに対し、本発明の粒子分級装置では、分級容器の下部から粗粒を回収する一方、上部側壁から微粒を回収する構造となっている。本発明のように、分級容器の上下方向に粗粒と微粒を分離する構造とした場合には、装置の構造がシンプルとなり、分級粒子が目詰まりを起こすなどのトラブルが生じ難いことに加え、金属汚染や異物の混入が生じ難く、例えば、半導体製造用原料である高純度の多結晶シリコンチャンクの分級処理に好適である。
【符号の説明】
【0066】
100 第1の粒子分級装置
200 第2の粒子分級装置
300 微粒捕捉装置
11、21 分級容器
12、22 試料投入部(試料投入ライン)
13、23 粗粒回収ライン
14、24 粗粒回収ボックス
15、25 微粒回収ライン
30 排風機
31 水槽
32 微粒排出口
33 水槽内に満たされた水
34 微粒混合物
35 最終排気口
36 ドレイン

【特許請求の範囲】
【請求項1】
円筒状の分級空間を有する分級容器と、
前記分級容器内に分粒対象試料を供給する試料投入部と、
前記分級容器内に下方から上方に向かう旋回気流を形成する気流生成部と、
前記分級容器の下部側であって前記旋回気流の供給部よりも下方に設けられた粗粒選別部と、
前記分級容器の上部側分級空間を形成する側壁上にあって前記旋回気流の供給部よりも上方に設けられた微粒選別部と、を備え、
前記旋回気流の供給部からは、1mm以上で20mm以下の所定の長径dを有する選別粒子に作用する浮力が該選別粒子に働く重力を超えない旋回気流が供給される、ことを特徴とする粒子分級装置。
【請求項2】
前記試料投入部は前記気流生成部を兼ね、
前記試料投入部からは前記分粒対象試料が気体を輸送媒体として供給され、該輸送媒体が前記旋回気流を形成する、請求項1に記載の粒子分級装置。
【請求項3】
前記微粒選別部は、前記分級容器の上部側壁に筒状に設けられており、該微粒選別部の突出方向は、前記分級容器の内壁に沿う前記旋回気流の向きと逆の方向である、請求項1または2に記載の粒子分級装置。
【請求項4】
前記試料投入部の直上部と前記微粒選別部の直下部との高低差H1は、前記円筒状の分級空間の直径D1の2.5倍以上である、請求項1乃至3の何れか1項に記載の粒子分級装置。
【請求項5】
請求項1乃至4の何れか1項に記載の粒子分級装置である第1の粒子分級装置の微粒選別部の下流に第2の粒子分級装置が設けられており、
前記第2の粒子分級装置は、
円筒状の第2の分級空間を有する第2の分級容器と、
前記第1の粒子分級装置の微粒選別部に分離された試料を前記第2の分級容器内に分粒対象試料として供給する第2の試料投入部と、
前記第2の分級容器内に下方から上方に向かう旋回気流を形成する第2の気流生成部と、
前記第2の分級容器の下部側であって前記第2の気流生成部で形成された旋回気流の供給部よりも下方に設けられた第2の粗粒選別部と、
前記第2の分級容器の上部側分級空間を形成する側壁上にあって前記第2の気流生成部で形成された旋回気流の供給部よりも上方に設けられた第2の微粒選別部と、を備え、
前記第2の気流生成部で形成された旋回気流の供給部からは、1mm以上で20mm以下の所定の長径であって前記dよりも小さい長径d´(<d)を有する選別粒子に作用する浮力が該選別粒子に働く重力を超えない旋回気流が供給される、ことを特徴とする粒子分級装置。
【請求項6】
前記第2の試料投入部の直上部と前記第2の微粒選別部の直下部との高低差H2は、前記円筒状の第2の分級空間の直径D2の2.5倍以上である、請求項5に記載の粒子分級装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2013−31811(P2013−31811A)
【公開日】平成25年2月14日(2013.2.14)
【国際特許分類】
【出願番号】特願2011−169466(P2011−169466)
【出願日】平成23年8月2日(2011.8.2)
【出願人】(000002060)信越化学工業株式会社 (3,361)
【Fターム(参考)】