説明

3次元像表示装置

【課題】装置全体を大型化することなく、立体画像の表示に必要な光線群を空間的に高い密度で生成・散布することができる3次元像表示装置を提供する。
【解決手段】3次元像表示装置1は、光源10;複数の画素を有する2次元画像形成装置30;入射する光を屈折させて略一点に集光する光学パワーを有する光学素子36が2次元マトリクス状に配列されて成り、透過する光の位相を変調する位相格子としての機能を有し、入射した2次元画像における空間周波数を、複数の回折次数に対応した回折角に沿って射出する光学装置35;2次元画像における空間周波数をフーリエ変換して、前記複数の回折次数に対応する数のフーリエ変換像を生成するフーリエ変換像形成手段40;所望の回折次数に対応するフーリエ変換像を選択するフーリエ変換像選択手段50;並びに、フーリエ変換像の共役像を形成する共役像形成手段60を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、立体画像を表示することができる3次元像表示装置に関する。
【背景技術】
【0002】
観察者の両目が、それぞれ、視差画像と呼ばれる異なる画像を観察することによって立体画像を得る2眼式立体画像技術や、視差画像を複数組用意することによって異なる視点からの立体画像を複数得る多眼式立体画像技術が知られており、これらに関連する技術が多く開発されている。しかしながら、2眼式立体画像技術や多眼式立体画像技術にあっては、立体画像は、立体画像として意図した空間に位置するのではなく、例えば2次元のディスプレイ面上に存在し、常に、一定の位置に位置する。従って、特に視覚系生理反応である輻輳と調節とが連動せず、これに伴う眼精疲労が問題となっている。
【0003】
一方、実世界において、物体表面の情報は、光波を媒体として観察者の眼球まで伝搬する。そして、実世界において物理的に存在する物体表面からの光波を人工的に再現する技術として、ホログラフィ技術が知られている。ホログラフィ技術を用いた立体画像は、光の干渉に基づき生成された干渉縞を用い、この干渉縞を光で照明した際に生じる回折波面そのものを画像情報媒体として用いる。従って、観察者が実世界において物体を観察しているときと同様の輻輳、調節などの視覚系生理反応が生じ、眼精疲労の少ない画像を得ることができる。更には、物体からの光波面が再現されているということは、画像情報を伝達する方向に対して連続性が確保されていることを意味する。従って、観察者の視点が移動しても、その移動に応じた異なる角度からの適切な画像を連続的に提示することが可能であり、運動視差が連続的に提供されることとなる。
【0004】
しかしながら、ホログラフィ技術においては、物体の3次元空間情報を2次元空間における干渉縞として記録しており、その情報量は、同じ物体を撮影した写真等の2次元空間の情報量と比較すると極めて膨大な量となる。これは、3次元空間情報を2次元空間情報に変換する際に、その情報が2次元空間上における密度に変換されていると考えることができるからである。そのために、CGH(Computer Generated Hologram)による干渉縞を表示する表示装置に求められる空間分解能は極めて高く、また、膨大な情報量が必要であり、実時間ホログラムに基づき立体画像を実現することは、現状において、技術的に困難である。
【0005】
ホログラフィ技術においては、連続的な情報と見做すことのできる光波を情報媒体として用い、物体からの情報を伝達する。一方、光波を離散化し、理論的にはほぼ実世界における光波から成る場と等価である状況を光線によって再現することで立体画像を生成する技術として、光線再生法(インテグラルフォトグラフィ法とも呼ばれる)が知られている。光線再生法にあっては、予め、多くの方向へ伝搬する多数の光線から構成された光線群を、光学的手段によって空間に散布する。次に、任意の位置に位置する仮想的な物体の表面から伝搬される光線をこの光線群から選択し、選択された光線の強度や位相の変調を行うことによって、光線から成る像を空間に生成する。観察者は、この像を立体画像として観察することができる。光線再生法による立体画像は、任意の点において、複数の方向からの像が多重結像されたものであり、実世界における3次元物体を見たときと同様に、任意の点について、見る位置によって見え方が異なる。
【0006】
以上で述べた光線再生法を実現するための装置として、液晶表示装置やプラズマ表示装置等の平面型表示装置とマイクロレンズアレイやピンホールアレイとを組み合わせた装置が提案されている(例えば、以下の特許文献1〜特許文献7を参照のこと)。また、プロジェクタ・ユニットを多数並べた装置も考えられる。図24に、プロジェクタ・ユニットを用いて光線再生法を実現する3次元像表示装置の一構成例を示す。この装置は、多数のプロジェクタ・ユニット301を水平方向及び垂直方向に並列的に配置し、各プロジェクタ・ユニット301から角度の異なる光線を出射するようにしたものである。これにより、ある断面302内の任意の点において多視角の像を多重再生し、立体画像を実現している。
【0007】
【特許文献1】特開2003−173128号公報
【特許文献2】特開2003−161912号公報
【特許文献3】特開2003−295114号公報
【特許文献4】特開2003−75771号公報
【特許文献5】特開2002−72135号公報
【特許文献6】特開2001−56450号公報
【特許文献7】特許第3523605号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
上述の光線再生法によれば、2眼式立体画像技術や多眼式立体画像では不可能であった視覚機能としての焦点調節及び両眼輻輳角調節に対して有効に働く程度の光線によって画像を生成するので、眼精疲労が極めて少ない立体画像を提供することができる。それだけでなく、仮想物体上の同一要素から複数の方向へ連続的に光線が射出されていることから、視点位置の移動に伴う画像の変化を連続的に提供することができる。
【0009】
しかしながら、現状の光線再生法によって生成された画像は、実世界における物体と比較すると臨場感に欠ける。これは、現状の光線再生法による立体画像が、実世界の物体から観察者が得る情報量に対して非常に少量の情報、即ち、少量の光線によって生成されていることに起因していると考えられる。一般に、人間の視認限界は角度分解能で1分程度と云われており、現状の光線再生法による立体画像は、この人間の視覚に対して不十分な光線によって生成されている。従って、実世界の物体が有する高い臨場感やリアリティを有する立体画像を生成するためには、少なくとも多量の光線によって画像を生成することが課題である。
【0010】
そして、その実現のためには、空間的に高い密度で光線群を生成することのできる技術が必要とされ、液晶表示装置等の表示装置の表示密度を高くすることが考えられる。あるいは又、図24に示した多数のプロジェクタ・ユニット301を配置する装置の場合、各プロジェクタ・ユニット301を出来るだけ小型化し、空間的に高い密度で並べることが考えられる。しかしながら、現在の表示装置における表示密度の飛躍的な向上は、光利用効率や回折限界の問題から困難である。また、図24に示した装置の場合、各プロジェクタ・ユニット301を小型化するのには限界があるため、空間的に高い密度で並べることは困難であると考えられる。いずれの場合にあっても、高密度の光線群を生成するためには、複数のデバイスが必要となり、装置全体の大型化は避けられない。
【0011】
従って、本発明の目的は、3次元像表示装置全体を大型化することなく、立体画像の表示に必要な光線群を空間的に高い密度で生成・散布することができ、実世界の物体と同質に近い光線による立体画像を得ることを可能とする3次元像表示装置を提供することにある。
【課題を解決するための手段】
【0012】
上記の目的を達成するための本発明の第1の態様に係る3次元像表示装置は、
(A)光源、
(B)複数の画素を有し、光源からの光に基づき2次元画像を生成する2次元画像形成装置、
(C)入射する光を屈折させて略一点に集光する光学パワーを有する光学素子が2次元マトリクス状に配列されて成り、透過する光の位相を変調する位相格子としての機能を有し、入射した2次元画像における空間周波数を、複数の回折次数に対応した回折角に沿って射出する光学装置、
(D)光学装置から射出された2次元画像における空間周波数をフーリエ変換して、前記複数の回折次数に対応する数のフーリエ変換像を生成するフーリエ変換像形成手段、
(E)前記複数の回折次数に対応する数だけ生成されたフーリエ変換像の内、所望の回折次数に対応するフーリエ変換像を選択するフーリエ変換像選択手段、並びに、
(F)フーリエ変換像選択手段によって選択されたフーリエ変換像の共役像を形成する共役像形成手段、
を備えていることを特徴とする。
【0013】
本発明の第1の態様に係る3次元像表示装置において、共役像形成手段には、フーリエ変換像選択手段によって選択されたフーリエ変換像を逆フーリエ変換することにより、2次元画像形成装置によって生成された2次元画像の実像を形成する逆フーリエ変換手段が含まれる構成とすることが好ましい。
【0014】
上記の好ましい構成を含む本発明の第1の態様に係る3次元像表示装置において、2次元画像形成装置を液晶表示装置(より具体的には、透過型若しくは反射型の液晶表示装置)から構成することが好ましい。
【0015】
あるいは又、上記の好ましい構成を含む本発明の第1の態様に係る3次元像表示装置において、2次元画像形成装置は、
(B−1)1次元画像を生成する1次元画像形成装置、及び、
(B−2)1次元画像形成装置によって生成された1次元画像を2次元的に展開して2次元画像を生成する走査光学系、
から成る形態とすることができる。
【0016】
更には、以上に説明した好ましい形態、構成を含む本発明の第1の態様に係る3次元像表示装置において、フーリエ変換像形成手段はレンズから成り;該レンズの前側焦点面に、光学装置を構成する光学素子の焦点が位置しており;該レンズの後側焦点面にフーリエ変換像選択手段が配置されている構成とすることができる。
【0017】
また、以上に説明した好ましい構成、形態を含む本発明の第1の態様に係る3次元像表示装置において、フーリエ変換像選択手段は、前記複数の回折次数に対応する数の開閉制御可能な開口部を有する構成とすることができ、この場合、フーリエ変換像選択手段は液晶表示装置(より具体的には、透過型若しくは反射型の液晶表示装置)から成る形態とすることができるし、可動ミラーが2次元マトリクス状に配列された2次元型のMEMSから成る形態とすることもできる。また、フーリエ変換像選択手段においては、2次元画像形成装置による2次元画像の生成タイミングと同期して所望の開口部を開状態とすることによって、所望の回折次数に対応するフーリエ変換像を選択する構成とすることができる。
【0018】
更には、上記の好ましい構成、形態を含む本発明の第1の態様に係る3次元像表示装置において、前記2次元画像における空間周波数は、2次元画像形成装置における画素構造の空間周波数をキャリア周波数とした画像情報に相当する構成とすることができる。
【0019】
上記の目的を達成するための本発明の第2の態様に係る3次元像表示装置は、
(A)光源、
(B)複数の画素を有し、光源からの光に基づき2次元画像を生成する2次元画像形成装置、
(C)入射する光を屈折させて略一点に集光する光学パワーを有する光学素子が、X方向及びY方向に沿って2次元マトリクス状にP×Q個(但し、P及びQは任意の正の整数)配列されて成り、透過する光の位相を変調する位相格子としての機能を有し、入射した2次元画像における空間周波数を、複数の回折次数(総数M×N)に対応した回折角に沿って射出する光学装置、
(D)その前側焦点面に光学装置を構成する光学素子の焦点が位置している第1のレンズ、
(E)第1のレンズの後側焦点面に配置され、X方向に沿ってM個、Y方向に沿ってN個の、合計、M×N個の開閉制御可能な開口部を有する空間フィルタ、
(F)その前側焦点面に空間フィルタが配置されている第2のレンズ、並びに、
(G)第2のレンズの後側焦点に、その前側焦点が位置している第3のレンズ、
を備えていることを特徴とする。
【0020】
本発明の第2の態様に係る3次元像表示装置において、2次元画像形成装置は、2次元的に配列されたP0×Q0個(但し、P≧P0,Q≧Q0)の画素を有する液晶表示装置(より具体的には、透過型若しくは反射型の液晶表示装置)から成る構成とすることができる。尚、PとP0、QとQ0のより具体的な関係として、1≦P/P0≦4、1≦Q/Q0≦4を例示することができる。
【0021】
あるいは又、本発明の第2の態様に係る3次元像表示装置において、2次元画像形成装置は、
(B−1)1次元画像を生成する1次元画像形成装置、及び、
(B−2)1次元画像形成装置によって生成された1次元画像を2次元的に展開して2次元画像を生成する走査光学系、
から成る構成とすることができる。そして、この場合にあっては、1次元画像形成装置は、光源からの光を回折することによって1次元画像を生成する構成とすることができる。更には、第3のレンズの後方には、更に、異方性の光拡散を生じさせる部材(異方性拡散フィルタ、異方性拡散シート、あるいは、異方性拡散フィルム)が配置されている形態とすることもできる。
【0022】
上記の好ましい構成、形態を含む本発明の第2の態様に係る3次元像表示装置においては、空間フィルタはM×N個の画素を有する液晶表示装置(より具体的には、透過型若しくは反射型の液晶表示装置)から成る構成とすることができるし、可動ミラーが2次元マトリクス状に配列された2次元型のMEMSから成る形態とすることもできる。また、空間フィルタにおいては、2次元画像形成装置による2次元画像の生成タイミングと同期して所望の開口部を開状態とする構成とすることができる。
【0023】
以上に説明した種々の好ましい構成、形態を含む本発明の第1の態様及び第2の態様に係る3次元像表示装置(以下、これらを総称して、単に、本発明の3次元像表示装置と呼ぶ)において、2次元画像形成装置における各画素は、平面形状が矩形の開口を有している。そして、本発明の3次元像表示装置における光学装置の具体的な構造として、以下の構成を例示することができる。即ち、光学素子の平面形状を、対応する画素の開口の平面形状と同一の形状あるいは相似の形状とすることが好ましい。また、各光学素子は、正の光学パワーを有する凸レンズから構成されており、あるいは又、負の光学パワーを有する凹レンズから構成されており、あるいは又、正の光学パワーを有するフレネルレンズから構成されており、あるいは又、負の光学パワーを有するフレネルレンズから構成されていることが望ましい。云い換えれば、各光学素子は屈折型の格子状素子から成る。そして、光学装置は、一種のマイクロレンズアレイから構成されており、光学装置を構成する材料としてガラスやプラスチックを挙げることができ、マイクロレンズアレイを製造する周知の方法に基づき作製することができる。尚、光学装置は、2次元画像形成装置の後方に隣接して配置されている。このように、光学装置を2次元画像形成装置の後方に隣接して配置することで、2次元画像形成装置に起因した回折現象の影響を無視することができる。あるいは又、2次元画像形成装置と光学装置との間に、例えば、2枚の凸レンズを配置し、一方の凸レンズの前側焦点面に2次元画像形成装置を配置し、一方の凸レンズの後側焦点に他方の凸レンズの前側焦点を位置させ、他方の凸レンズの後側焦点面に光学装置を配置する構成とすることもできる。一般に、回折格子を2つの範疇に分類すると、入射光波の振幅(強度)を周期的に変調し、格子の光透過率分布に一致した光量分布が得られる振幅格子と、透過光量の位相を変調する、即ち、光の振幅(強度)はそのままで、位相を変調する位相格子とに分類することができるが、本発明における光学装置は、後者の位相格子として機能する。
【0024】
光学装置においては、入射した2次元画像における空間周波数が、複数の回折次数(総計M×N)に対応した回折角に沿って射出されるが、ここで、X方向に沿って第m次から第m’次までのM組の(但し、m及びm’は整数であり、Mは正の整数)、Y方向に沿って第n次から第n’次までのN組の(但し、n及びn’は整数であり、Nは正の整数)の、合計、M×N組の回折光が生成されるとしたとき、m,m’,Mの関係は、m≦m’であり、且つ、M=m’−m+1である。また、n及びn’は整数であり、Nは正の整数であるが、n,n’,Nの関係は、n≦n’であり、且つ、N=n’−n+1である。また、回折次数の総数に相当するM,Nの数として、限定するものではないが、
0≦M(=m’−m+1)≦21
好ましくは、例えば、
5≦M(=m’−m+1)≦21
また、
0≦N(=n’−n+1)≦21
好ましくは、例えば、
5≦N(=n’−n+1)≦21
を例示することができる。Mの値とNの値は、等しくてもよいし、異なっていてもよいし、|m’|の値と|m|の値は、等しくてもよいし、異なっていてもよいし、|n’|の値と|n|の値は、等しくてもよいし、異なっていてもよい。
【0025】
本発明の3次元像表示装置における光源として、レーザ、発光ダイオード(LED)や白色光源を挙げることができる。光源と2次元画像形成装置との間に、光源から射出された光を整形するための照明光学系を配置してもよい。
【0026】
2次元画像形成装置を構成する液晶表示装置においては、例えば、次に述べる透明第1電極と透明第2電極の重複領域であって液晶セルを含む領域が、1画素(1ピクセル)に相当する。そして、液晶セルを一種の光シャッター(ライト・バルブ)として動作させることによって、即ち、各画素の光透過率を制御することによって、光源から射出された光の光透過率を制御し、全体として、2次元画像を得ることができる。
【0027】
液晶表示装置は、例えば、透明第1電極を備えたフロント・パネル、透明第2電極を備えたリア・パネル、及び、フロント・パネルとリア・パネルとの間に配された液晶材料から成る。フロント・パネルは、より具体的には、例えば、ガラス基板やシリコン基板から成る第1の基板と、第1の基板の内面に設けられた透明第1電極(共通電極とも呼ばれ、例えば、ITOから成る)と、第1の基板の外面に設けられた偏光フィルムとから構成されている。更には、透明第1電極上には配向膜が形成されている。一方、リア・パネルは、より具体的には、例えば、ガラス基板やシリコン基板から成る第2の基板と、第2の基板の内面に形成されたスイッチング素子と、スイッチング素子によって導通/非導通が制御される透明第2電極(画素電極とも呼ばれ、例えば、ITOから成る)と、第2の基板の外面に設けられた偏光フィルムとから構成されている。透明第2電極を含む全面には配向膜が形成されている。これらの透過型の液晶表示装置を構成する各種の部材や液晶材料は、周知の部材、材料から構成することができる。尚、スイッチング素子として、単結晶シリコン半導体基板に形成されたMOS型FETや薄膜トランジスタ(TFT)といった3端子素子や、MIM素子、バリスタ素子、ダイオード等の2端子素子を例示することができる。あるいは又、複数の走査電極が第1の方向に延び、複数のデータ電極が第2の方向に延びる、所謂マトリックス電極構成を有する液晶表示装置とすることもできる。透過型の液晶表示装置にあっては、光源からの光は、第2の基板から入射し、第1の基板から射出される。一方、反射型の液晶表示装置にあっては、光源からの光は、第1の基板から入射し、例えば、第2の基板の内面に形成された第2電極(画素電極)によって反射され、再び、第1の基板から射出される。開口は、例えば、透明第2電極と配向膜との間に、光源からの光に不透明な絶縁材料層を形成し、係る絶縁材料層に開口を形成することで得ることができる。尚、反射型の液晶表示装置として、その他、LCoS(Liquid Crystal on Silicon)タイプを用いることもできる。
【0028】
また、1次元画像形成装置として、より具体的には、回折格子−光変調素子(GLV:Grating Light Valve)が一次元的にアレイ状に配列されて成る装置(以下、回折格子−光変調装置と呼ぶ場合がある)を挙げることができる。
【0029】
本発明の3次元像表示装置にあっては、共役像形成手段によって形成された共役像を投射する光学的手段を備えていてもよいし、あるいは第3のレンズの後方に、第3のレンズによって形成された像を投射する光学的手段を備えていてもよい。
【0030】
本発明の3次元像表示装置において、2次元画像の画素(ピクセル)の数P0×Q0を(P0,Q0)で表記したとき、(P0,Q0)の値として、具体的には、VGA(640,480)、S−VGA(800,600)、XGA(1024,768)、APRC(1152,900)、S−XGA(1280,1024)、U−XGA(1600,1200)、HD−TV(1920,1080)、Q−XGA(2048,1536)の他、(1920,1035)、(720,480)、(1280,960)等、画像表示用解像度の幾つかを例示することができるが、これらの値に限定するものではない。
【発明の効果】
【0031】
本発明の第1の態様あるいは第2の態様に係る3次元像表示装置においては、2次元画像形成装置によって2次元画像が生成され、生成された2次元画像における空間周波数が、屈折型の格子状素子から成る光学素子の集合体である光学装置によって複数の回折次数に対応した回折角に沿って射出され、フーリエ変換像形成手段あるいは第1のレンズによって空間周波数をフーリエ変換して、複数の回折次数に対応する数のフーリエ変換像が生成され、フーリエ変換像選択手段あるいは空間フィルタによって、複数の回折次数に対応する数だけ生成されたフーリエ変換像の内の所望の回折次数に対応するフーリエ変換像が2次元画像の形成タイミングと同期して選択され、共役像形成手段(第2のレンズ及び第3のレンズ)によって、フーリエ変換像選択手段あるいは空間フィルタに基づき選択されたフーリエ変換像の共役像が形成され、最終的に観察者に到達するといった操作が、順次、時系列的に繰り返されることで、複数の回折次数に相当する光線群を、空間的に高い密度で、しかも、複数の方向に分布した状態で、生成・散布することができる結果、係る光線群により、従来には無い、光の回折現象を効率的に利用した光線再生法に基づき、3次元像表示装置全体を大型化することなく、実世界の物体に近い質感の立体画像を得ることができる。
【0032】
2次元画像形成装置によって生成された2次元画像における空間周波数を、矩形の開口を有し、係る矩形の開口に基づきフラウンホーファー回折を発生させる振幅格子によって複数の回折次数に対応した回折角に沿って射出させることも可能であるが、このような構成にあっては、高い開口率を有する振幅格子の作製が困難である。そして、光利用効率は開口の開口率に依存するが故に、高い光利用効率を達成することは困難である。一方、2次元画像における空間周波数をフーリエ変換してフーリエ変換像を生成するとき、複数の回折次数に対応したフーリエ変換像間のユニフォーミティ(回折次数間の光強度の均一性)は、開口が小さい程、向上する。本発明の第1の態様あるいは第2の態様に係る3次元像表示装置においては、振幅格子ではなく、屈折型の格子状素子から成る光学素子の集合体である光学装置を採用することで、光学素子それ自体に高い開口率を与えることができ、光利用効率の向上を実現することができるだけでなく、光学素子に入射した光は略一点に集光されるので、小さな開口を得たと等価となり、複数の回折次数に対応したフーリエ変換像間において高いユニフォーミティを達成することができる。しかも、光学装置の最適化を図ることで、高い次数の回折に対しても多くのエネルギーを分配することが可能となる。
【0033】
尚、例えばガラス平板に多数の凹部を形成した位相格子を採用すれば、光利用効率を高めることは可能である。しかしながら、位相変調によるパターン生成の場合、特定の面内において任意のパターン生成は可能であるが、任意の面内において光線による画像を生成するシステムにあっては、任意の面内において特定のパターンを生成することは極めて困難である。本発明の第1の態様あるいは第2の態様に係る3次元像表示装置においては、位相格子の代わりに、屈折型の格子状素子から成る光学素子の集合体である光学装置を採用することで、このような位相格子における問題を解消することができる。
【発明を実施するための最良の形態】
【0034】
以下、図面を参照して、実施例に基づき本発明を説明する。
【実施例1】
【0035】
実施例1は、本発明の第1の態様及び第2の態様に係る3次元像表示装置に関する。図1、図2、図3及び図4に、単色表示の実施例1の3次元像表示装置の概念図を示す。尚、図1において、光軸をz軸とし、z軸に直交する平面内での直交座標をx軸、y軸とし、x軸と平行な方向をX方向、y軸と平行な方向をY方向とする。X方向を、例えば3次元像表示装置における水平方向とし、Y方向を、例えば3次元像表示装置における垂直方向とする。ここで、図1は、yz平面における実施例1の3次元像表示装置の概念図である。xz平面における実施例1の3次元像表示装置の概念図も、実質的には図1と同様である。また、図3は、実施例1の3次元像表示装置を斜めから見たときの概念図であり、図4は、実施例1の3次元像表示装置の構成要素の配置状態を模式的に示す図である。
【0036】
従来の光線再生法による立体画像の表示では、任意の位置に存在する仮想物体表面を仮想的な原点とした複数の光線を出射することを目的として、予め、様々な角度で出射する光線を提供できる装置を備えておく必要がある。即ち、例えば、図24に示した装置にあっては、多数(例えば、M×N個)のプロジェクタ・ユニット301を水平方向及び垂直方向に並列的に配置しなければならない。
【0037】
一方、実施例1の3次元像表示装置1にあっては、図1、図2、図3及び図4に示した構成要素を備える3次元像表示装置単体で、従来の技術と比較して、空間的に密度が高く、且つ、大量の光線群を生成・形成することが可能である。実施例1の3次元像表示装置1は、1つの3次元像表示装置で、図24に示した多数(M×N個)のプロジェクタ・ユニット301を水平方向及び垂直方向に並列的に配置した装置と等価の機能を有する。尚、例えばマルチユニット方式を採用する場合には、図23に示すように、分割された3次元画像の数だけ、実施例1の3次元像表示装置1を備えればよい。図23においては、実施例1の3次元像表示装置1を、4×4=16、備えた装置を例示している。
【0038】
本発明の第1の態様に係る3次元像表示装置の構成要素に沿って説明すると、実施例1の3次元像表示装置1は、
(A)光源10、
(B)複数の画素31を有し、光源10からの光に基づき2次元画像を生成する2次元画像形成装置30、
(C)入射する光を屈折させて略一点に集光する光学パワーを有する光学素子36が2次元マトリクス状に配列されて成り、透過する光の位相を変調する位相格子としての機能を有し、2次元画像形成装置30から入射した2次元画像における空間周波数を、複数の回折次数(総計M×N)に対応した回折角に沿って射出する光学装置35、
(D)光学装置35から射出された2次元画像における空間周波数をフーリエ変換して、前記複数の回折次数(総計M×N)に対応する数のフーリエ変換像を生成するフーリエ変換像形成手段40、
(E)前記複数の回折次数(総計M×N)に対応する数だけ生成されたフーリエ変換像の内、所望の回折次数に対応するフーリエ変換像を選択するフーリエ変換像選択手段50、並びに、
(F)フーリエ変換像選択手段50によって選択されたフーリエ変換像の共役像を形成する共役像形成手段60、
を備えている。
【0039】
更には、共役像形成手段60には、フーリエ変換像選択手段50によって選択されたフーリエ変換像を逆フーリエ変換することにより、2次元画像形成装置30によって生成された2次元画像の実像を形成する逆フーリエ変換手段(具体的には、後述する第2のレンズL2)が備えられている。また、フーリエ変換像形成手段40はレンズから成り、このレンズの前側焦点面に光学装置35を構成する光学素子36の焦点(実施例1にあっては、後側焦点)が位置しており、このレンズの後側焦点面にフーリエ変換像選択手段50が配置されている。フーリエ変換像選択手段50は、複数の回折次数(総計M×N)に対応する数の開閉制御可能な開口部51を有する。
【0040】
ここで、2次元画像における空間周波数は、2次元画像形成装置30における画素構造の空間周波数をキャリア周波数とした画像情報に相当する。
【0041】
また、本発明の第2の態様に係る3次元像表示装置の構成要素に沿って説明すると、実施例1の3次元像表示装置1は、
(A)光源10、
(B)複数(P0×Q0個)の画素31を有し、光源10からの光に基づき2次元画像を生成する2次元画像形成装置30、
(C)入射する光を屈折させて略一点に集光する光学パワーを有する光学素子36が、X方向及びY方向に沿って2次元マトリクス状にP×Q個(但し、P及びQは任意の正の整数)配列されて成り、透過する光の位相を変調する位相格子としての機能を有し、入射した2次元画像における空間周波数を、複数の回折次数(総計M×N)に対応した回折角に沿って射出する光学装置35、
(D)その前側焦点面に光学装置35を構成する光学素子36の焦点(実施例1にあっては、後側焦点)が位置している(より具体的には、実施例1にあっては凸レンズ)L1
(E)第1のレンズL1の後側焦点面に配置され、X方向に沿ってM個、Y方向に沿ってN個の、合計、M×N個の開閉制御可能な開口部51を有する空間フィルタSF、
(F)その前側焦点面に空間フィルタSFが配置されている第2のレンズ(より具体的には、実施例1にあっては凸レンズ)L2、並びに、
(G)第2のレンズL2の後側焦点に、その前側焦点が位置している第3のレンズ(より具体的には、実施例1にあっては凸レンズ)L3
を備えている。
【0042】
ここで、実施例1あるいは後述する実施例2〜実施例3にあっては、光学装置35において、X方向に沿って第m次から第m’次までのM組の(但し、m及びm’は整数であり、Mは正の整数)、Y方向に沿って第n次から第n’次までのN組の(但し、n及びn’は整数であり、Nは正の整数)の、合計、M×N組の回折光が生成される。ここで、P=P0=1024、Q=Q0=768であり、m=−5、m’=5、M=m’−m+1=11、n=−5、n’=5、N=n’−n+1=11である。但し、これらの値に限定するものではない。また、z軸(光軸に相当する)は、実施例1あるいは後述する実施例2〜実施例3の3次元像表示装置1を構成する各構成要素の中心を通り、しかも、3次元像表示装置1を構成する各構成要素と直交する。本発明の第1の態様に係る3次元像表示装置の構成要素と本発明の第2の態様に係る3次元像表示装置の構成要素とを対比すると、フーリエ変換像形成手段40は第1のレンズL1に対応し、フーリエ変換像選択手段50は空間フィルタSFに対応し、逆フーリエ変換手段は第2のレンズL1に対応し、共役像形成手段60は第2のレンズL2及び第3のレンズL3に対応している。それ故、便宜上、2次元画像形成装置30、第1のレンズL1、空間フィルタSF、第2のレンズL1、及び、第3のレンズL3という用語に基づき、以下、説明を行う。
【0043】
光源10と2次元画像形成装置30との間には、光源10から射出された光を整形するための照明光学系20が配置されている。そして、光源10から射出され、照明光学系20を通過した光(照明光)によって、2次元画像形成装置30が照明される。照明光として、例えば、空間コヒーレンスの高い光源10からの光を照明光学系20によって平行光に整形された光を用いる。尚、照明光の特性、及び、係る照明光を得るための具体的な構成例に関しては、後述する。
【0044】
2次元画像形成装置30は、2次元的に配列された複数の画素31を有しており、各画素31は開口を備えている。具体的には、2次元画像形成装置30は、2次元的に配列された、即ち、X方向及びY方向に沿って2次元マトリクス状に配列された、P0×Q0個の画素31を有する透過型の液晶表示装置から成り、各画素31には開口が備えられている。
【0045】
1つの画素31は、透明第1電極と透明第2電極の重複領域であって液晶セルを含む領域から構成されている。そして、液晶セルを一種の光シャッター(ライト・バルブ)として動作させることによって、即ち、各画素31の光透過率を制御することによって、光源10から射出された光の光透過率を制御し、全体として、2次元画像を得ることができる。透明第1電極と透明第2電極の重複領域には、矩形の開口が設けられており、係る開口を光源10から射出された光が通過することで2次元画像が生成される。
【0046】
2次元画像形成装置30の後方に隣接して(例えば、2次元画像形成装置30と密着して、あるいは、若干の隙間を介して)光学装置35が配置されている。尚、光学装置35を2次元画像形成装置30に隣接して配置することで、2次元画像形成装置30を構成する画素31の開口を通過する光に起因した回折現象の影響を無視することができる。ここで、実施例1において、光学装置35を構成する光学素子36の平面形状は、対応する画素31の開口の平面形状と相似形の矩形形状であり、各光学素子36は正の光学パワーを有する屈折型の格子状素子、具体的には、凸レンズ(焦点距離f0)から構成されている。そして、光学装置35は、一種のマイクロレンズアレイから構成されており、マイクロレンズアレイを製造する周知の方法に基づき、ガラスから作製されている。
【0047】
光学装置35は位相格子として機能する。即ち、2次元画像形成装置30において生成された2次元画像にあっては、各画素31から射出された光(この光は平行光と見做すことができる)は、2次元画像形成装置30に隣接して配置された光学装置35における対応する光学素子36に入射する。そして、光学素子36に入射した光は、屈折して、焦点距離f0の所で略一点に集光され、更には、その点から後方に向かって進行していく。このような状態を別の観点から眺めると、図2に概念図を示すように、光学装置35の後方の距離f0の所に、恰も、光学素子36に対応した矩形の開口領域(一種のピンホール)37が存在し、光学素子36から射出された光は、係る仮想の開口領域37を通過すると見做すことができる。その結果、フラウンホーファー回折が生じたと等価の現象が生じ、各画素31に対応する光学素子36において(より具体的には、光学素子36に対応する仮想の開口領域37において)、M×N組=121組の回折光が生成される。云い換えれば、画素31及び光学素子36の数はP0×Q0=P×Qであるが故に、総計、(P×Q×M×N)本の回折光が光学装置35において生じると考えることもできる。そして、2次元画像における空間周波数が、各光学素子36から生じる複数の回折次数(総計M×N)に対応した回折角に沿って光学装置35から射出される。尚、2次元画像における空間周波数によっても回折角は異なる。焦点距離f0の値は、本質的に任意の値とすることができるが、光学装置35を構成する多数の光学素子36は同一の焦点距離f0を有する。光学素子36から射出される光は、図2に示すように、光学素子36の開口数で決まる角度で伝播するが、伝播する光は広がり、しかも、光量の損失がほぼ無い状況を得ることができる。ここで、光学素子36の配列ピッチあるいは大きさをd0とすると、波長λの平行光が、大きさd0、焦点距離f0の光学素子36によって集光される光の幅Dは、
D=2.44λ/sin(arctan(d0/2f0))
で表すことができる。このことから、光学素子36を用いることによって光学的な開口率は(D2/d02)で表すことができるが、開口率の低下に伴う光量損失は生じない。
【0048】
更には、焦点距離f1を有する第1のレンズL1の前側焦点面(光源側の焦点面)には光学装置35を構成する光学素子36の後側焦点(焦点距離f0)が位置しており、第1のレンズL1の後側焦点面(観察者側の焦点面)には空間フィルタSFが配置されている。第1のレンズL1によって、複数の回折次数に対応する数であるM×N=121個のフーリエ変換像が生成され、これらのフーリエ変換像は、空間フィルタSF上に結像する。尚、図3においては、便宜上、64個のフーリエ変換像を点状にて図示した。
【0049】
空間フィルタSFは、具体的には、フーリエ変換像を、空間的、且つ、時間的にフィルタリングするための時間的な開閉制御が可能な空間フィルタである。より具体的には、空間フィルタSFは、複数の回折次数に対応する数(具体的には、M×N=121)の開閉制御可能な開口部51を有する。そして、空間フィルタSFにおいては、2次元画像形成装置30による2次元画像の生成タイミングと同期して所望の1つの開口部51を開状態とすることによって、所望の回折次数に対応する1つのフーリエ変換像を選択する。より具体的には、空間フィルタSFを、例えば、M×N個の画素を有する強誘電性液晶を用いた透過型の液晶表示装置又は反射型の液晶表示装置、あるいは、可動ミラーが2次元マトリクス状に配列された装置を含む2次元型のMEMSから構成することができる。尚、液晶表示装置から成る空間フィルタSFの模式的な正面図を図5に示す。図5中、数字(m0,n0)は、開口部51の番号を示し、且つ、回折次数を示す。即ち、例えば、第(3,2)番目の開口部51には、m0=3,n0=2の回折次数を有するフーリエ変換像が入射する。
【0050】
前述したとおり、共役像形成手段60は、具体的には、第2のレンズL2及び第3のレンズL3から構成されている。そして、焦点距離f2を有する第2のレンズL2は、空間フィルタSFによってフィルタリングされたフーリエ変換像を逆フーリエ変換することにより、2次元画像形成装置30によって形成された2次元画像の実像RIを形成する。また、焦点距離f3を有する第3のレンズL3は、空間フィルタSFによってフィルタリングされたフーリエ変換像の共役像CIを形成する。
【0051】
第2のレンズL2は、その前側焦点面上に、空間フィルタSFが位置するように配置され、その後側焦点面に、2次元画像形成装置30によって形成された2次元画像の実像RIが形成されるように配置されている。ここで得られる実像RIの2次元画像形成装置30に対する倍率は、第2のレンズL2の焦点距離f2を任意に選択することによって変化させることができる。
【0052】
一方、第3のレンズL3は、その前側焦点面が第2のレンズL2の後側焦点面に一致するように配置され、その後側焦点面にフーリエ変換像の共役像CIが形成されるように配置されている。ここで、第3のレンズL3の後側焦点面は空間フィルタSFの共役面であることから、空間フィルタSF上の1つの開口部51に相当する部分から、2次元画像形成装置30によって生成された2次元画像が出力されていることと等価となる。そして、最終的に生成・出力される光線の量は、画素数分(P0×Q0)の光線に、光学系を透過した複数の回折次数(具体的にはM×N)を乗じた量で定義することができる。また、第3のレンズL3の後側焦点面にはフーリエ変換像の共役像CIが形成されるが、第3のレンズL3の後側焦点面においては、光線群が2次元的に整然と配置されているとみなせる。即ち、全体としては、第3のレンズL3の後側焦点面に、図24に示したプロジェクタ・ユニットが複数の回折次数分(具体的にはM×N個)、配置されている状態と等価である。
【0053】
図3及び図6に模式的に示すように、光学装置35における1つの光学素子36によって(より具体的には、光学素子36の後側焦点に位置する仮想の開口領域37において)、X方向に沿って第−5次から第+5次までの11組の、Y方向に沿って第−5次から第+5’次までの11組の、合計、M×N組=121組の回折光が生成される。尚、図6では、0次光(n0=0)、±1次光(n0=±1)、及び、±2次光(n0=±2)の回折光のみを代表して図示しているが、実際には、更に高次の回折光が生成され、これらの回折光に基づき、最終的に立体画像が形成される。ここで、各回折次数の回折光(光束)には、2次元画像形成装置30によって形成された2次元画像の全画像情報(全ての画素の情報)が集約されている。2次元画像形成装置30上の同一画素から回折によって生成される複数の光線群(11×11=121の光線群)は、同時刻において、全て、同一の画像情報を有する。云い換えれば、P0×Q0個の画素31を有する透過型の液晶表示装置から成る2次元画像形成装置30においては、光源10からの光に基づき2次元画像が生成され、且つ、生成された2次元画像における空間周波数は、各光学素子36から生じる複数の回折次数(総計M×N)に対応した回折角に沿って光学装置35から射出される。即ち、2次元画像のM×N個の一種のコピーが2次元画像形成装置30から、複数の回折次数(総計M×N)に対応した回折角に沿って射出される。
【0054】
そして、2次元画像形成装置30によって形成された2次元画像の全画像情報が集約された2次元画像における空間周波数は、第1のレンズL1によってフーリエ変換され、複数の回折次数(総計M×N)に対応する数のフーリエ変換像が生成され、係るフーリエ変換像は空間フィルタSF上に結像される。第1のレンズL1において、複数の回折次数に対応した回折角に沿って射出された2次元画像における空間周波数のフーリエ変換像が生成されるので、空間的に高い密度にてフーリエ変換像を得ることができる。
【0055】
ここで、光源10から射出された光(照明光)の波長をλ(mm)、2次元画像形成装置30によって形成された2次元画像における空間周波数をν(lp/mm)、第1のレンズL1の焦点距離をf1(mm)とすると、第1のレンズL1の後側焦点面では、光軸から距離Y1(mm)の位置に、空間周波数νを有する光(フーリエ変換像)が現れる。
【0056】
1=f1・λ・ν (1)
【0057】
第1のレンズL1における集光状態を、図7に模式的に示す。尚、図7中、「Y0」は、2次元画像形成装置30によって形成された2次元画像のy軸方向の長さを示し、「Y1」は、2次元画像形成装置30によって形成された2次元画像に基づく空間フィルタSF上でのフーリエ変換像のy軸方向の間隔を示す。また、0次の回折光を実線で示し、第1次の回折光を点線で示し、第2次の回折光を一点鎖線で示す。各回折次数の回折光が、云い換えれば、回折次数に対応する数だけ生成されたフーリエ変換像が、第1のレンズL1によって空間フィルタSF上の異なる開口部51に集光される(図3も参照)。開口部51の数は、先に説明したとおりM×N個=121個である。空間フィルタSFへの集光角(空間フィルタSFから射出された後の発散角)θは、回折次数が同じフーリエ変換像(あるいは回折光)にあっては、P0×Q0個の画素31において同一である。空間フィルタSF上において、隣接する回折次数のフーリエ変換像の間の間隔は、式(1)から求めることができる。式(1)から、第1のレンズL1の焦点距離f1を任意に選択することによって、フーリエ変換像の位置(空間フィルタSF上の結像位置)を変化させることが可能である。
【0058】
第1のレンズL1において、複数の回折次数に対応した回折角に沿って射出された2次元画像における空間周波数を透過させるためには、利用する回折次数に応じて第1のレンズL1の開口率NAを選択する必要があり、焦点距離に拘わらず、第1のレンズL1以降の全てのレンズの開口率は、第1のレンズL1の開口率NA以上であることが要求される。
【0059】
開口部51の大きさは、式(1)におけるY1の値と同じ値とすればよい。一例として、照明光の波長λを532nm、第1のレンズL1の焦点距離f1を50mm、2次元画像形成装置30における画素31の大きさを13μm〜14μm程度とすると、Y1の値は約2mmとなる。これは、空間フィルタSF上において、約2mm間隔という高い密度で各回折次数に対応したフーリエ変換像を得ることができることを意味する。云い換えれば、空間フィルタSF上において、X方向、Y方向のいずれの方向においても、約2mm間隔で、11×11=121個のフーリエ変換像を得ることができる。
【0060】
ここで、2次元画像形成装置30によって形成された2次元画像における空間周波数νは、2次元画像がP0×Q0個の画素31から構成される2次元画像形成装置30によって形成されているので、最高でも、2次元画像形成装置30を構成する連続した2つの画素31から成る周期を有する周波数である。
【0061】
図8の(A)に、2次元画像形成装置30によって形成された2次元画像における空間周波数が最も低い状態にある2次元画像形成装置30の模式的な正面図を示す。ここで、最も空間周波数が低い状態とは、全ての画素を、黒表示、又は、白表示にした場合であり、この場合の2次元画像における空間周波数は、平面波成分のみ(DC成分)を有する。尚、図8の(A)では白表示とした場合を示す。この場合における、第1のレンズL1によって結像されたフーリエ変換像の光強度の周波数特性を模式的に図9の(A)に示すが、フーリエ変換像の光強度のピークは周波数ν1の間隔で現れる。
【0062】
一方、図8の(B)に、2次元画像形成装置30によって形成された2次元画像における空間周波数が最も高い状態にある2次元画像形成装置30の模式的な正面図を示す。ここで、最も空間周波数が高い状態とは、全ての画素が、黒表示と白表示とを交互に表示する場合である。この場合における、第1のレンズL1によって結像されたフーリエ変換像の光強度の周波数特性を模式的に図9の(B)に示すが、フーリエ変換像の光強度のピークは周波数ν2(=ν1/2)の間隔で現れる。図10の(A)に、空間フィルタSF上(xy平面上)におけるフーリエ変換像の分布を模式的に示し、図10の(B)及び(C)に、図10の(A)のx軸(点線で表す)上におけるフーリエ変換像の光強度分布を模式的に示す。尚、図10の(B)は最低空間周波数成分(平面波成分)を示し、図10の(C)は最高空間周波数成分を示す。
【0063】
空間フィルタSFにおける開口部51の平面形状は、フーリエ変換像の形状に基づき決定すればよい。更には、フーリエ変換像の平面波成分のピーク位置が中心となるように、各々の回折次数に対して開口部51を設ければよい。これによって、各開口部51の中心位置52に、フーリエ変換像の光強度のピークが位置する。即ち、2次元画像における空間周波数が最低空間周波数成分(平面波成分)の場合におけるフーリエ変換像の周期的なパターンを中心として、2次元画像における正負の最高空間周波数を全て通過させ得るような開口部51とすればよい。
【0064】
ところで、最も空間周波数が高い状態とは、図8の(B)に示したように、全ての画素が、黒表示と白表示とを交互に表示する場合である。また、2次元画像形成装置30における画素構造の空間周波数と、2次元画像における空間周波数との関係は、以下のとおりである。即ち、開口が画素の全てを占めている(即ち、開口率100%)と仮定したとき、2次元画像における最高空間周波数は、画素構造の空間周波数の(1/2)である。また、開口が画素の或る割合(100%未満)を占めている場合には、2次元画像における最高空間周波数は、画素構造の空間周波数の(1/2)を下回る。それ故、空間フィルタSFにおいて現れる画素構造に起因した周期的なパターンの間隔の半分の位置までに、2次元画像における空間周波数は全て出現する。このことから、全ての開口部51を、空間的に相互に干渉することなく配置することができる。即ち、例えば、第(3,2)番目の開口部51には、m0=3,n0=2の回折次数を有するフーリエ変換像が入射する一方、m0=3,n0=2の回折次数を有するフーリエ変換像は、他の開口部51には入射しない。これにより、フーリエ変換像毎に独立した開口部51を有する空間フィルタSF上において、1つの開口部51に位置するフーリエ変換像内に、2次元画像形成装置30によって形成された2次元画像における空間周波数が存在する一方、開口部51の空間的な制限によって2次元画像形成装置30によって形成された2次元画像における空間周波数が欠落することはない。尚、画素構造の空間周波数をキャリア周波数と見做すことができ、2次元画像における空間周波数は、画素構造の空間周波数をキャリア周波数とした画像情報に相当する。
【0065】
そして、空間フィルタSFにおいては、M×N個のフーリエ変換像のそれぞれの通過/不通過を制御するために、開口部51の開閉制御が行われる。空間フィルタSFを、例えば液晶表示装置から構成すれば、液晶セルを一種の光シャッター(ライト・バルブ)として動作させることによって開口部51の開閉制御を行うことができる。
【0066】
以下、空間フィルタSFにおける開口部51の開閉制御のタイミングについて説明する。
【0067】
空間フィルタSFにおいては、所望の回折次数に対応するフーリエ変換像を選択するために、2次元画像形成装置30の画像出力と同期して、開口部51の開閉制御を行う。この操作を、図11、図12、及び、図13を参照して説明する。尚、図11の最上段は、2次元画像形成装置30における画像出力のタイミングを示しており、図11の中段は、空間フィルタSFにおける第(3,2)番目の開口部51の開閉タイミングを示し、図11の下段は、第(3,3)番目の開口部51の開閉タイミングを示す。
【0068】
図11に示すように、2次元画像形成装置30において、例えば時間t1S〜t1Eの間(期間T1)に画像「A」が表示され、時間t2S〜t2Eの間(期間T2)に画像「B」が表示されるとする。このとき、空間フィルタSFにおいては、図11に示すように、期間T1にあっては第(3,2)番目の開口部51を、期間T2にあっては第(3,3)番目の開口部51を開状態とする。こうして、光学装置35を構成する同じ光学素子36において異なる回折次数として生成され、第1のレンズL1によって生成されるフーリエ変換像に、異なる画像情報を付加することができる。云い換えれば、期間T1にあっては、光学装置35を構成する或る光学素子36において得られるm0=3,n0=2の回折次数を有するフーリエ変換像には、画像「A」に関する画像情報が含まれている。一方、期間T2にあっては、光学装置35を構成する同じ或る光学素子36において得られるm0=3,n0=3の回折次数を有するフーリエ変換像には、画像「B」に関する画像情報が含まれている。
【0069】
図12に、2次元画像形成装置30における画像形成のタイミングと開口部51の制御のタイミングとを模式的に示す。期間T1にあっては、2次元画像形成装置30において画像「A」が表示され、M×N個のフーリエ変換像が空間フィルタSFの対応する開口部51にフーリエ変換像「α」として集光される。期間T1では、第(3,2)番目の開口部51のみを開くので、m0=3,n0=2の回折次数を有するフーリエ変換像「α」のみが空間フィルタSFを通過する。次の期間T2にあっては、2次元画像形成装置30において画像「B」が表示され、同様にM×N個のフーリエ変換像が空間フィルタSFの対応する開口部51にフーリエ変換像「β」として集光される。期間T2では、第(3,3)番目の開口部51のみを開くので、m0=3,n0=3の回折次数を有するフーリエ変換像「β」のみが空間フィルタSFを通過する。以下、順次、2次元画像形成装置30の画像形成タイミングに同期して、空間フィルタSFにおける開口部51の開閉制御を行う。尚、図12において、開状態の開口部51を実線で囲み、閉状態の開口部51を点線で囲んだ。
【0070】
このようなタイミングで2次元画像形成装置30における画像形成と開口部51の開閉制御とを行った場合に、この3次元像表示装置の最終出力として得られる画像を、図13に模式的に示す。図13において、画像「A’」は、第(3,2)番目の開口部51のみを開くので、m0=3,n0=2の回折次数を有するフーリエ変換像「α」のみが空間フィルタSFを通過する結果得られる画像であり、画像「B’」は、第(3,3)番目の開口部51のみを開くので、m0=3,n0=3の回折次数を有するフーリエ変換像「β」のみが空間フィルタSFを通過する結果得られる画像であり、画像「C’」は、第(4,2)番目の開口部51のみを開くので、m0=4,n0=2の回折次数を有するフーリエ変換像「γ」のみが空間フィルタSFを通過する結果得られる画像である。尚、図13に示す画像は、観察者が眺める画像である。図13においては、便宜上、画像と画像とを実線で区分したが、係る実線は仮想の実線である。また、正確には、同時刻に、図13に示した画像が得られるわけではないが、画像の切り替え期間は非常に短時間なので、観察者の目には同時に表示されているように観察される。例えば、1フレームの表示期間内に、2次元画像形成装置30における全ての次数分(M×N)の画像形成と、空間フィルタSFにおける1つの画像の選択が行われる。また、図13では平面的に図示しているが、観察者に実際に観察されるのは立体画像である。
【0071】
即ち、前述したように、第3のレンズL3の後側焦点面からは、2次元画像形成装置30によって生成された2次元画像(例えば、時系列的に、画像「A’」、画像「B’」・・・画像「C’」)が出力される。即ち、全体としては、第3のレンズL3の後側焦点面に、図24に示したプロジェクタ・ユニットが複数の回折次数分(具体的にはM×N個)、配置されており、時系列的に、或るプロジェクタ・ユニットから画像「A’」が出力され、別のプロジェクタ・ユニットから画像「B’」が出力され、更に別のプロジェクタ・ユニットから画像「C’」が出力されると等価となる。そして、例えば、或る物体を種々の位置(角度)から撮影した多数の画像(あるいは、コンピュータによって作成した画像)のデータに基づき、2次元画像形成装置30において画像を時系列的に再生すれば、これらの画像に基づき立体画像を得ることができる。
【0072】
尚、回折次数に依存して、得られる画像の明るさが相違する場合には、最も暗い画像を基準として、明るい画像を減光する減光フィルタを第3のレンズL3の後側焦点面に配置すればよい。後述する実施例2〜実施例3においても同様である。
【0073】
また、空間フィルタSFに設けられた開口部51の開閉制御を、全ての開口部51に対して行わなくともよい。即ち、例えば、1つおきに開口部51の開閉制御を行ってもよいし、所望の位置に位置する開口部51だけの開閉制御を行ってもよい。後述する実施例2〜実施例3においても同様である。
【0074】
光源及び照明光学系の構成例を、図14の(A)〜(C)、図15の(A)〜(B)に示す。ここで、光源によって射出され、照明光学系によって整形され、2次元画像形成装置30を照明する光(照明光)の特性を、以下、空間コヒーレンスを用いて説明する。
【0075】
空間コヒーレンスは、任意の空間における断面で生じる光の干渉性を示し、その度合いは、生成される干渉縞のコントラストで示すことができる。干渉縞の生成過程において、最もコントラストの高い干渉縞は、平面波若しくは平面波と光学的に交換可能な球面波の干渉によって生成される。このことから、空間コヒーレンスの最も高い光は、平面波(若しくは球面波)であることが分かる。1つの進行方向の成分のみを有する例えば平面波は空間コヒーレンスが最も高く、空間コヒーレンスの度合いが低くなるに従い、進行方向の成分が複数存在するようになる。また、光の進行方向成分の分布は、発光原点若しくは2次発光点の空間的な大きさを議論することと等価である。以上のことから、空間コヒーレンスは、発光原点若しくは2次発光点の空間的な大きさに基づき議論することができる。空間コヒーレンス、即ち、光源の空間的な大きさは、3次元像表示装置における画像の空間周波数特性を決定する要因となる。完全な空間コヒーレンスを有する光以外を照明光に用いると、高周波成分から順番にコントラストの低下が生じる。得られる画像の空間周波数特性は、具体的なアプリケーションによって異なる要求があることから、ここでは、具体的数値に言及せず、異なる要求に柔軟に対応するための様々な構成方法について述べる。
【0076】
実施例1の3次元像表示装置1においては、照明光として空間コヒーレンスの高い光を用いる場合と、そうでない場合において、光源及び照明光学系の構成方法が異なる。また、光源の特性により照明光学系の構成が異なる。以下では、光源及び照明光学系における構成方法の組み合わせについて説明する。尚、光源は全ての場合において、単色若しくは単色に近い光源であることを前提としている。
【0077】
図14の(A)は、第1構成例として、空間コヒーレンスの高い光源10Aにより、全体として空間コヒーレンスの高い照明光学系20Aを構成した例を示している。光源10Aは、例えばレーザから構成されている。照明光学系20Aは、光源側から順に、レンズ21A、円形開口板22A、及び、レンズ24Aから構成されている。円形開口板22Aには、中央に円形のアパーチャ23Aが設けられている。レンズ24Aにおける集光位置にアパーチャ23Aが配置されている。レンズ24Aは、コリメータレンズとして機能する。
【0078】
図14の(B)は、第2構成例として、空間コヒーレンスの高い光源10Bを用いて、全体として空間コヒーレンスの高くない照明光学系20Bを構成した例を示している。光源10Bは、例えばレーザから構成されている。照明光学系20Bは、光源側から順に、レンズ21B、拡散板22B、及び、レンズ24Bから構成されている。拡散板22Bは、可動拡散板であってもよい。
【0079】
図14の(C)及び図15の(A)は、第3構成例及び第4構成例として、空間コヒーレンスの高くない光源10C,10Dを用いて、全体として空間コヒーレンスの高い照明光学系20C,20Dを構成した例を示している。光源10C,10Dとしては、例えば発光ダイオード(LED)や白色光源を用いる。図14の(C)の照明光学系20Cは、光源側から順に、レンズ21C、円形開口板22C、及び、レンズ24Cから構成されている。円形開口板22Cには、中央に円形のアパーチャ23Cが設けられている。レンズ24Cにおける集光位置に、アパーチャ23Cが配置されている。レンズ24Cは、コリメータレンズとして機能する。一方、図15の(A)の照明光学系20Dは、図14の(C)の照明光学系20Cに比べてレンズ21Cが省略され、光源側から順に、円形開口板22D、アパーチャ23D、及び、レンズ24Dから構成されている。
【0080】
図15の(B)は、第5構成例として、空間コヒーレンスの高くない光源10Eを用いて、全体として空間コヒーレンスの高くない照明光学系20Eを構成した例を示している。光源10Eの他は、レンズ24Eのみで構成されている。
【0081】
各構成例において、全体として空間コヒーレンスの高い照明光学系を構築する場合には、光源に依存することなく2次発光点を小さくしている。また、全体として空間コヒーレンスの高くない照明光学系を構築する場合には、光源に依存すること無く、2次発光点を大きくしている。以上に説明した光源及び照明光学系の各構成例は、以下の実施例2〜実施例3にも適用することができる。
【0082】
以上に説明したように、実施例1の3次元像表示装置1によれば、2次元画像形成装置30によって生成された2次元画像における空間周波数が、複数の回折次数に対応した回折角に沿って射出され、フーリエ変換像形成手段40(第1のレンズL1)によってフーリエ変換されることで得られたフーリエ変換像は、フーリエ変換像選択手段50(空間フィルタSF)によって、空間的、且つ、時間的にフィルタリングされ、そのフィルタリングされたフーリエ変換像の共役像CIが形成される構成を有するので、3次元像表示装置全体を大型化することなく、空間的に高い密度で、しかも、複数の方向に分布した状態で、光線群を生成・散布することができる。また、光線群の構成要素である個々の光線を、独立して、時間的及び空間的に制御することができる。これにより、実世界の物体と同質に近い光線による立体画像を得ることができる。
【0083】
また、実施例1の3次元像表示装置1によれば、光線再生法を利用しているので、焦点調節、輻輳、運動視差などの視覚機能を満足した立体画像を提供することが可能である。更には、実施例1の3次元像表示装置1によれば、高次回折光を効率的に利用しているので、従来の画像出力手法と比較して、1つの画像出力デバイス(2次元画像形成装置30及び光学装置35)によって制御可能な光線(2次元画像の一種のコピー)を、複数の回折次数分だけ(即ち、M×N個)、得ることができる。しかも、実施例1の3次元像表示装置1によれば、空間的、且つ、時間的にフィルタリングを行うので、3次元像表示装置の時間的特性を、3次元像表示装置の空間的特性に変換することができる。また、拡散スクリーン等を用いること無く、立体画像を得ることができる。更には、どのような方向からの観察に対しても適切な立体画像を提供することができる。また、空間的に高い密度で光線群を生成・散布することができるので、視認限界に近い精細な空間画像を提供することができる。
【実施例2】
【0084】
実施例2は、実施例1の変形である。実施例2の3次元像表示装置の概念図を図16に示す。
【0085】
実施例2における2次元画像形成装置130は、実施例1における液晶表示装置とは異なり、P0個(例えば、1920個)に区画された1次元画像を形成する1次元画像形成装置(具体的には、回折格子−光変調装置201);及び、1次元画像形成装置(回折格子−光変調装置201)によって生成され、P0個に区画された1次元画像を2次元的に展開して(走査して)、P0×Q0個に区画された2次元画像を形成する走査光学系(具体的には、スキャンミラー205)を備えている。そして、走査光学系の後方に光学装置35が配置されている。光学装置35によって、2次元画像の生成面に配置され、生成した2次元画像における空間周波数は、複数の回折次数(具体的には、総数M0×N0)に対応した回折角に沿って射出される。
【0086】
ここで、1次元画像はX方向に延びているとする。また、走査方向はY方向であり、2次元画像はX方向及びY方向に沿って形成されているとする。但し、代替的に、X方向とY方向とを交換してもよい。尚、図16においては、照明光学系20の図示を省略している。
【0087】
1次元画像形成装置(回折格子−光変調装置201)は、光源10からの光を回折することによって1次元画像を生成する。より具体的には、回折格子−光変調装置201は、回折格子−光変調素子(GLV)210が一次元的にアレイ状に配列されて成る。回折格子−光変調素子210は、マイクロマシン製造技術を応用して製造され、反射型の回折格子から構成されており、光スイッチング作用を有し、光のオン/オフ制御を電気的に制御することで画像を表示する。そして、2次元画像形成装置130にあっては、回折格子−光変調素子210のそれぞれから射出された光を、ガルバノミラーやポリゴンミラーから成るスキャンミラー205で走査して2次元画像を得る。従って、P0×Q0(例えば1920×1080)の画素(ピクセル)から構成された2次元画像を表示するために、P0個(=1920個)の回折格子−光変調素子210から回折格子−光変調装置201を構成すればよい。
【0088】
スキャンミラー205で走査して得られた2次元画像に基づき、回折光を生成させる必要がある。そのために、光学装置35を2次元展開された面に配置することで、回折光を生成させる。具体的には、スキャンミラー205で走査して得られた2次元画像は、走査用レンズ系131を通過し、2次元画像の生成面に配置された光学装置35に入射し、光学装置35において、P0×Q0個に区画された2次元画像の区画毎に、M×N組の回折光が生成される。即ち、光学装置35からは、生成した2次元画像における空間周波数が、光学装置35の各光学素子36から生じる複数の回折次数に対応した回折角に沿って射出される。光学装置35の後側焦点は、焦点距離f1を有する第1のレンズL1の前側焦点面上に配置されている。
【0089】
1次元画像形成装置を用いる場合、形成される画像が1次元であることから、回折も1次元空間において起こる。従って、得られる回折光をY方向に拡散させることを目的とした光学系が必要となる。実施例2の3次元像表示装置にあっては、第3のレンズL3(共役像形成手段60)よりも下流(観察者側)に、1次元方向に生じている回折光を2次元方向に拡散させる異方性の光拡散を生じさせる部材(異方性拡散フィルタ、異方性拡散フィルムあるいは異方性拡散シートとも呼ばれる)133が配置されている。
【0090】
以上の点を除き、実施例2の3次元像表示装置の構成、構造は、実施例1において説明した3次元像表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。
【0091】
以下、回折格子−光変調素子210の構成、構造を説明する。
【0092】
回折格子−光変調素子210を構成する下部電極212、固定電極221、可動電極222等の配置を、図17に模式的に示す。尚、図17においては、下部電極212、固定電極221、可動電極222、支持部214,215,217,218を明示するために、これらに斜線を付した。
【0093】
この回折格子−光変調素子210は、下部電極212、帯状(リボン状)の固定電極221、並びに、帯状(リボン状)の可動電極222から成る。下部電極212は支持体211上に形成されている。また、固定電極221は、支持部214,215に支持され、下部電極212の上方に支持、張架されている。更には、可動電極222は、支持部217,218に支持され、下部電極212の上方に支持、張架されており、固定電極221に対して並置されている。図示した例において、1つの回折格子−光変調素子210は、3本の固定電極221と3本の可動電極222から構成されている。3本の可動電極222は纏めて制御電極に接続され、制御電極は、図示しない接続端子部に接続されている。一方、3本の固定電極221は纏めてバイアス電極に接続されている。バイアス電極は、複数の回折格子−光変調素子210において共通とされており、図示しないバイアス電極端子部を介して接地されている。下部電極212も、複数の回折格子−光変調素子210において共通とされており、図示しない下部電極端子部を介して接地されている。
【0094】
接続端子部、制御電極を介して可動電極222へ電圧を印加し、且つ、下部電極212へ電圧を印加すると(実際には、下部電極212は接地状態にある)、可動電極222と下部電極212との間に静電気力(クーロン力)が発生する。そして、この静電気力によって、下部電極212に向かって可動電極222が下方に変位する。尚、可動電極222の変位前の状態を図18の(A)及び図18の(C)の左側に示し、変位後の状態を図18の(B)及び図18の(C)の右側に示す。そして、このような可動電極222の変位に基づき、可動電極222と固定電極221とによって反射型の回折格子が形成される。ここで、図18の(A)は、図17の矢印B−Bに沿った固定電極等の模式的な断面図、及び、図17の矢印A−Aに沿った可動電極等の模式的な断面図(但し、回折格子−光変調素子が作動していない状態にある)であり、図18の(B)は、図17の矢印A−Aに沿った可動電極等の模式的な断面図であり(但し、回折格子−光変調素子が作動している状態にある)、図18の(C)は、図17の矢印C−Cに沿った固定電極、可動電極等の模式的な断面図である。
【0095】
隣接する固定電極221の間の距離をd(図18の(C)参照)、可動電極222及び固定電極221に入射する光(入射角:θi)の波長をλ、回折角をθmとすると、
d[sin(θi)−sin(θm)]=mDif・λ
で表すことができる。ここで、mDifは次数であり、0,±1,±2・・・の値をとる。
【0096】
そして、可動電極222の頂面と固定電極221の頂面の高さの差Δh1(図18の(C)参照)が(λ/4)のとき、回折光の光強度は最大の値となる。
【0097】
このような、回折格子−光変調装置を含む2次元画像形成装置130の概念図を図19に示す。即ち、実施例2の2次元画像形成装置130は、レーザを射出する光源10、この光源10から射出された光を集光する集光レンズ(図示せず)、集光レンズを通過した光が入射する回折格子−光変調装置201、回折格子−光変調装置201から射出された光が通過するレンズ203及び空間フィルタ204、空間フィルタ204を通過した1本の光束を結像させる結像レンズ(図示せず)、結像レンズを通過した1本の光束を走査するスキャンミラー205から構成されている。
【0098】
このような2次元画像形成装置130にあっては、可動電極222が図18の(A)及び図18の(C)の左側に示した状態である回折格子−光変調素子210の不作動時、可動電極222及び固定電極221の頂面で反射された光は空間フィルタ204で遮られる。一方、可動電極222が図18の(B)及び図18の(C)の右側に示した状態である回折格子−光変調素子210の作動時、可動電極222及び固定電極221で回折された±1次(mDif=±1)の回折光は空間フィルタ204を通過する。このような構成にすることで、光のオン/オフ制御を制御することができる。また、可動電極222に印加する電圧を変化させることで、可動電極222の頂面と固定電極221の頂面の高さの差Δh1を変化させることができ、その結果、回折光の強度を変化させて、階調制御を行うことができる。
【実施例3】
【0099】
実施例3は、実施例1の変形である。実施例3の3次元像表示装置の概念図を、図20に示す。実施例1の3次元像表示装置にあっては、光透過型の2次元画像形成装置30を用いた。一方、実施例3の3次元像表示装置にあっては、反射型の2次元画像形成装置30Aを用いる。反射型の2次元画像形成装置30Aとして、例えば、反射型の液晶表示装置を挙げることができる。
【0100】
実施例3の3次元像表示装置にあっては、z軸(光軸)上にビームスプリッタ70が備えられている。ビームスプリッタ70は、偏光成分の違いにより光を透過又は反射させる機能を有する。ビームスプリッタ70は、光源10から射出された光を反射型の2次元画像形成装置30Aに向けて反射する。また、2次元画像形成装置30Aからの反射光を透過する。この点を除き、実施例3の3次元像表示装置の構成、構造は、実施例1の3次元像表示装置の構成、構造と同様とすることができるので、詳細な説明は省略する。
【0101】
以上、本発明の3次元像表示装置を好ましい実施例に基づき説明したが、本発明はこれらの実施例に限定するものではない。
【0102】
2次元画像形成装置30と光学装置35との間に、例えば、2枚の凸レンズを配置し、一方の凸レンズの前側焦点面に2次元画像形成装置30を配置し、一方の凸レンズの後側焦点に他方の凸レンズの前側焦点を位置させ、他方の凸レンズの後側焦点面に光学装置35を配置する構成とすることもできる。また、光学装置35を構成する光学素子36を、代替的に凹レンズから構成することもできる。この場合には、仮想の開口領域37は、2次元画像形成装置30の前方(光源側)に位置する。更には、光学素子36を、通常のレンズに代えて、フレネルレンズから構成してもよい。
【0103】
また、実施例1〜実施例3においては、フーリエ変換像形成手段40を構成するレンズ(第1のレンズL1)の前側焦点面に光学装置35を構成する光学素子36の焦点が位置しており、後側焦点面にフーリエ変換像選択手段が配置されている構成としたが、場合によっては、2次元画像における空間周波数にクロストークが生じる結果、最終的に得られる立体画像に劣化が生じるものの、係る劣化が許容されるならば、フーリエ変換像形成手段40を構成するレンズ(第1のレンズL1)の前側焦点面からずれた位置に光学装置35を構成する光学素子36の焦点を位置させてもよいし、後側焦点面からずれた位置にフーリエ変換像選択手段を配置してもよい。また、第1のレンズL1、第2のレンズL2、第3のレンズL3は凸レンズに限定されず、適宜、適切なレンズを選択すればよい。
【0104】
実施例1〜実施例3においては、光源は全ての場合において単色若しくは単色に近い光源であることを前提としているが、光源は、このような構成に限定するものではない。光源10の波長帯域が複数の帯域に及んでもよい。但し、この場合には、例えば、実施例1における3次元像表示装置を例にとり説明すると、図21の(A)に示すように、照明光学系20と2次元画像形成装置30との間に、波長選択を行う狭帯域フィルタ71を配置することが好ましく、これによって、波長帯域を分別、選択し、単色光を抽出することができる。
【0105】
あるいは又、光源10の波長帯域が広帯域に及んでもよい。但し、この場合には、図21の(B)に示すように、照明光学系20と2次元画像形成装置30との間に、ダイクロイックプリズム72及び波長選択を行う狭帯域フィルタ71Gを配置することが好ましい。具体的には、ダイクロイックプリズム72は、例えば赤色光、青色光を別々の方向に反射すると共に、緑色光を含む光線を透過する。ダイクロイックプリズム72における緑色光を含む光線の出射側に、緑色光を分別・選択する狭帯域フィルタ71Gが配置されている。
【0106】
また、図22に示すように、ダイクロイックプリズム72における緑色光を含む光線の出射側に緑色光を分別・選択する狭帯域フィルタ71Gを配置し、赤色光を含む光線の出射側に赤色光を分別・選択する狭帯域フィルタ71Rを配置し、青色光を含む光線の出射側に、青色光を分別・選択する狭帯域フィルタ71Bを配置すれば、3原色を表示する3つの3次元像表示装置に対する光源を構成することができる。このような構成の3つの3次元像表示装置を用い、あるいは又、赤色光を射出する光源と3次元像表示装置、緑色光を射出する光源と3次元像表示装置、及び、青色光を射出する光源と3次元像表示装置の組合せを用い、各3次元像表示装置からの画像を、例えば光合成プリズムを用いて合成することで、カラー表示を行うことができる。尚、ダイクロイックプリズムの代わりに、ダイクロイックミラーを用いることもできる。尚、以上に説明したこれらの3次元像表示装置の変形例は実施例2〜実施例3に適用することができることは云うまでもない。
【図面の簡単な説明】
【0107】
【図1】図1は、実施例1の3次元像表示装置のyz平面における概念図である。
【図2】図2は、実施例1の3次元像表示装置における光学装置の動作、作用を説明するための概念図である。
【図3】図3は、実施例1の3次元像表示装置を斜めから見たときの概念図である。
【図4】図4は、実施例1の3次元像表示装置の構成要素の配置状態を模式的に示す図である。
【図5】図5は、フーリエ変換像選択手段(空間フィルタ)の1例の模式的な正面図である。
【図6】図6は、2次元画像形成装置によって、複数の回折次数の回折光が生成される状態を模式的に示す図である。
【図7】図7は、フーリエ変換像形成手段(第1のレンズL1)における集光状態、及び、フーリエ変換像選択手段(空間フィルタ)における結像状態を模式的に示す図である。
【図8】図8の(A)及び(B)は、それぞれ、2次元画像形成装置によって形成された2次元画像における空間周波数が最も低い状態、及び、最も高い状態を示す2次元画像形成装置の模式的な正面図である。
【図9】図9の(A)及び(B)は、それぞれ、2次元画像形成装置によって形成された2次元画像における空間周波数が最も低い状態、及び、最も高い状態におけるフーリエ変換像の光強度の周波数特性を模式的に示す図である。
【図10】図10の(A)は、フーリエ変換像選択手段(空間フィルタ)のxy平面上におけるフーリエ変換像の分布を示す模式図であり、図10の(B)及び(C)は、図10の(A)のx軸上でのフーリエ変換像の光強度分布を示す図である。
【図11】図11は、2次元画像形成装置における2次元画像の形成タイミングとフーリエ変換像選択手段(空間フィルタ)の開口部の開閉タイミングとを示す図であり、上段には、2次元画像形成装置における2次元画像の形成タイミングを示し、中段及び下段には、フーリエ変換像選択手段(空間フィルタ)の開口部の開閉タイミングを示す。
【図12】図12は、フーリエ変換像選択手段(空間フィルタ)による空間フィルタリングの概念を模式的に時系列で示す図である。
【図13】図13は、図12に示した空間フィルタリングの結果得られる画像を模式的に示す図である。
【図14】図14の(A)、(B)及び(C)は、それぞれ、実施例1の3次元像表示装置における光源及び照明光学系の第1構成例、第2構成例、及び、第3構成例を示す模式図である。
【図15】図15の(A)及び(B)は、それぞれ、実施例1の3次元像表示装置における光源及び照明光学系の第4構成例、及び、第5構成例を示す模式図である。
【図16】図16は、実施例2の3次元像表示装置の概念図である。
【図17】図17は、回折格子−光変調素子を構成する下部電極、固定電極、可動電極の配置を模式的に示す図である。
【図18】図18の(A)は、図17の矢印B−Bに沿った固定電極等の模式的な断面図、及び、図17の矢印A−Aに沿った可動電極等の模式的な断面図(但し、回折格子−光変調素子が作動していない状態にある)であり、図18の(B)は、図17の矢印A−Aに沿った可動電極等の模式的な断面図であり(但し、回折格子−光変調素子が作動している状態にある)、図18の(C)は、図17の矢印C−Cに沿った固定電極、可動電極等の模式的な断面図である。
【図19】図19は、実施例2の3次元像表示装置における2次元画像形成装置の一部分等の概念図である。
【図20】図20は、実施例3の3次元像表示装置の一部分のyz平面における概念図である。
【図21】図21の(A)及び(B)は、実施例1の3次元像表示装置の変形例の一部分のyz平面における概念図である。
【図22】図22は、実施例1の3次元像表示装置の変形例の別の変形例の一部分のyz平面における概念図である。
【図23】図23は、実施例1の3次元像表示装置を複数組み合わせたマルチユニット方式の3次元像表示装置を示す構成図である。
【図24】図24は、従来の3次元像表示装置の一構成例を示す図である。
【符号の説明】
【0108】
1・・・3次元像表示装置、10,10A,10B,10C,10D,10E・・・光源、20,20A,20B,20C,20D,20E・・・照明光学系、21A,21B,21C,24A,24B,24C,24D,24E・・・レンズ、22A,22C,22D・・・円形開口板、22B・・・拡散板、23A,23C,23D・・・アパーチャ、30,130・・・2次元画像形成装置、31・・・画素、35・・・光学装置、36・・・光学素子、37・・・仮想の開口領域、40・・・フーリエ変換像形成手段、50・・・フーリエ変換像選択手段、51・・・開口部、52・・・開口部中心位置、60・・・共役像形成手段、70・・・ビームスプリッタ、71,71R,71G,71B・・・狭帯域フィルタ、72・・・ダイクロイックプリズム、131・・・走査用レンズ系、133・・・異方性拡散フィルタ、201・・・回折格子−光変調装置、203・・・レンズ、204・・・空間フィルタ、205・・・スキャンミラー、210・・・回折格子−光変調素子、211・・・支持体、212・・・下部電極、214,215,217,218・・・支持部、221・・・固定電極、222・・・可動電極、L1・・・第1のレンズ、L2・・・第2のレンズ、L3・・・第3のレンズ、SF・・・空間フィルタ、RI・・・実像(逆フーリエ変換像)、CI・・・フーリエ変換像の共役像

【特許請求の範囲】
【請求項1】
(A)光源、
(B)複数の画素を有し、光源からの光に基づき2次元画像を生成する2次元画像形成装置、
(C)入射する光を屈折させて略一点に集光する光学パワーを有する光学素子が2次元マトリクス状に配列されて成り、透過する光の位相を変調する位相格子としての機能を有し、入射した2次元画像における空間周波数を、複数の回折次数に対応した回折角に沿って射出する光学装置、
(D)光学装置から射出された2次元画像における空間周波数をフーリエ変換して、前記複数の回折次数に対応する数のフーリエ変換像を生成するフーリエ変換像形成手段、
(E)前記複数の回折次数に対応する数だけ生成されたフーリエ変換像の内、所望の回折次数に対応するフーリエ変換像を選択するフーリエ変換像選択手段、並びに、
(F)フーリエ変換像選択手段によって選択されたフーリエ変換像の共役像を形成する共役像形成手段、
を備えていることを特徴とする3次元像表示装置。
【請求項2】
共役像形成手段には、フーリエ変換像選択手段によって選択されたフーリエ変換像を逆フーリエ変換することにより、2次元画像形成装置によって生成された2次元画像の実像を形成する逆フーリエ変換手段が含まれることを特徴とする請求項1に記載の3次元像表示装置。
【請求項3】
2次元画像形成装置は、液晶表示装置から成ることを特徴とする請求項1に記載の3次元像表示装置。
【請求項4】
2次元画像形成装置は、
(B−1)1次元画像を生成する1次元画像形成装置、及び、
(B−2)1次元画像形成装置によって生成された1次元画像を2次元的に展開して2次元画像を生成する走査光学系、
から成ることを特徴とする請求項1に記載の3次元像表示装置。
【請求項5】
フーリエ変換像形成手段はレンズから成り、
該レンズの前側焦点面に、光学装置を構成する光学素子の焦点が位置しており、
該レンズの後側焦点面にフーリエ変換像選択手段が配置されていることを特徴とする請求項1に記載の3次元像表示装置。
【請求項6】
フーリエ変換像選択手段は、前記複数の回折次数に対応する数の開閉制御可能な開口部を有することを特徴とする請求項1に記載の3次元像表示装置。
【請求項7】
フーリエ変換像選択手段は、液晶表示装置から成ることを特徴とする請求項1に記載の3次元像表示装置。
【請求項8】
フーリエ変換像選択手段においては、2次元画像形成装置による2次元画像の生成タイミングと同期して所望の開口部を開状態とすることによって、所望の回折次数に対応するフーリエ変換像を選択することを特徴とする請求項7に記載の3次元像表示装置。
【請求項9】
前記2次元画像における空間周波数は、2次元画像形成装置における画素構造の空間周波数をキャリア周波数とした画像情報に相当することを特徴とする請求項1に記載の3次元像表示装置。
【請求項10】
(A)光源、
(B)複数の画素を有し、光源からの光に基づき2次元画像を生成する2次元画像形成装置、
(C)入射する光を屈折させて略一点に集光する光学パワーを有する光学素子が、X方向及びY方向に沿って2次元マトリクス状にP×Q個(但し、P及びQは任意の正の整数)配列されて成り、透過する光の位相を変調する位相格子としての機能を有し、入射した2次元画像における空間周波数を、複数の回折次数に対応した回折角に沿って射出する光学装置、
(D)その前側焦点面に光学装置を構成する光学素子の焦点が位置している第1のレンズ、
(E)第1のレンズの後側焦点面に配置され、X方向に沿ってM個、Y方向に沿ってN個の、合計、M×N個の開閉制御可能な開口部を有する空間フィルタ、
(F)その前側焦点面に空間フィルタが配置されている第2のレンズ、並びに、
(G)第2のレンズの後側焦点に、その前側焦点が位置している第3のレンズ、
を備えていることを特徴とする3次元像表示装置。
【請求項11】
2次元画像形成装置は、2次元的に配列されたP0×Q0個(但し、P≧P0,Q≧Q0)の画素を有する液晶表示装置から成ることを特徴とする請求項10に記載の3次元像表示装置。
【請求項12】
2次元画像形成装置は、
(B−1)1次元画像を生成する1次元画像形成装置、及び、
(B−2)1次元画像形成装置によって生成された1次元画像を2次元的に展開して2次元画像を生成する走査光学系、
から成ることを特徴とする請求項10に記載の3次元像表示装置。
【請求項13】
1次元画像形成装置は、光源からの光を回折することによって1次元画像を生成することを特徴とする請求項12に記載の3次元像表示装置。
【請求項14】
第3のレンズの後方には、更に、異方性の光拡散を生じさせる部材が配置されていることを特徴とする請求項13に記載の3次元像表示装置。
【請求項15】
空間フィルタは、M×N個の画素を有する液晶表示装置から成ることを特徴とする請求項10に記載の3次元像表示装置。
【請求項16】
空間フィルタにおいては、2次元画像形成装置による2次元画像の生成タイミングと同期して所望の開口部を開状態とすることを特徴とする請求項10に記載の3次元像表示装置。

【図1】
image rotate

【図2】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図3】
image rotate


【公開番号】特開2007−212781(P2007−212781A)
【公開日】平成19年8月23日(2007.8.23)
【国際特許分類】
【出願番号】特願2006−32815(P2006−32815)
【出願日】平成18年2月9日(2006.2.9)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】