説明

Fターム[4K058FA06]の内容

Fターム[4K058FA06]に分類される特許

1 - 8 / 8


【課題】デンドライト化が抑制された球状でかつ粒子径がナノメータサイズの銅−亜鉛合金微粒子の製造方法を提供する。
【解決手段】電解還元反応による、銅−亜鉛からなる銅合金微粒子の製造方法であって、
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液1)、(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液3)、又は(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液4)、でpHが4.5〜13である還元反応水溶液から、電解還元反応により銅−亜鉛からなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。 (もっと読む)


【課題】液相で還元反応を行うことにより、デンドライト化が抑制されたCu−P合金微粒子、及びCu−Sn−P合金微粒子を製造する方法を提供する。
【解決手段】(i)少なくともシアン化第一銅、水溶性リン酸塩、アルカリ金属シアン化物及び/もしくはアルカリ土類金属シアン化物、並びに分散媒、又は
(ii)少なくともリン酸第二銅、アルカリ金属シアン化物及び/もしくはアルカリ土類金属シアン化物、並びに分散媒、
を含有する、pHが9〜14の還元反応溶液において、還元反応により銅−リンからなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。 (もっと読む)


【課題】Ca濃度の異なる溶融塩間で、含有する金属粒子等の移動を伴わず、Ca濃度の高い溶融塩からCa濃度の低い溶融塩へCaを移動させる方法を提供する。
【解決手段】主槽31と主槽31の内部に配置された副槽33を有するCa調整槽30において、副槽33の底面を多孔質板34で形成する。副槽33の注入口33aと排出口33bは下方において通過可能に配置された隔壁35によって隔離されている。注入口33aから副槽33に注入された第1の溶融塩41は、底面の多孔質板34に接しながら隔壁35の下方を通過して排出口33bから排出される。主槽31の注入口31aから注入された第2の溶融塩42は、副槽33の底面の多孔質板34に接しながら副槽33の下方を通過し、排出口31bから排出される。第1の溶融塩41よりもCa濃度の高い第2の溶融塩42から第1の溶融塩41へ多孔質板34を介してCaのみが移動する。 (もっと読む)


【課題】アノードとして粗銅を用いる銅電解精製において、電解中にカソードに付着し、産出される電気銅を汚染する五酸化二アンチモン(Sb)を主成分として含む浮遊スライムの生成を防止する方法を提供する。
【解決手段】アノードとして粗銅を用いる銅電解精製において、アンチモンを主成分として含む浮遊スライムの生成を防止する方法であって、アンチモンを含有する電解液を、カソードの電流密度を2.8〜5.0A/dmに上昇させて高電流密度電解処理に付し、処理後の電解液中の溶存酸素濃度を0.2mg/L以下にまで低下させることを特徴とする。 (もっと読む)


【課題】使用済金属核燃料及び金属に還元された廃燃料から純粋な金属ウラニウムのみを簡便かつ経済的に分離回収することのできる金属ウラニウム生産方法とその電解精錬装置を提供する。
【解決手段】金属ウラニウムの電解精錬装置10は、三塩化ウラニウムを含有する溶融塩16中において、プルトニウム及びマイナーアクチニドが含有された金属ウラニウム片を装荷した陽極バスケット16を具備し、その陽極バスケット16の内部に内装された陽極電極15及び炭素材による陰極電極15に所定の電流を印加し、印加された電流により開始された反応に従って前記陰極電極15に金属ウラニウムを電着させ、電着された金属ウラニウムをそれ自体の重量により分離回収するものである。 (もっと読む)


【課題】 金属カルシウムおよび金属チタンを効率良く製造する金属の製造方法および製造装置を提供する。
【解決手段】 陽極3および陰極4を備えた電解槽1に塩化カルシウム溶融塩2を満たして行う溶融塩電解による金属の製造方法であって、陰極または陽極の一方の電極は、他方の電極を取り囲むように設けられ、陰極は、陰極が取り囲む内部領域と外部領域に連通する流通口を少なくとも一つ備え、内部領域または外部領域のうち、陽極が設けられた側の領域から、他方の領域に対して流通口を経由して溶融塩を流通させることを特徴とするものである。 (もっと読む)


【課題】 原料である金属塩化物中に含まれる不純物を効果的に除去することができる金属マグネシウムまたは金属カルシウムの製造方法および製造装置を提供する。
【解決手段】 原料の金属塩化物中に含まれる不純物を分離除去し、該溶融金属塩化物を電解槽に供給し、電解槽に備えられた陽極および陰極に通電して溶融塩電解する。また、一部が開口した隔壁によって電解槽本体を少なくとも電解室およびメタル回収室に区画し、電解室には陽極と陰極を配置し、電解槽本体に電解浴を装入して溶融塩電解を行ない、メタル回収室に溶融金属マグネシウムを回収する金属マグネシウム製造用溶融塩電解装置において、メタル回収室の上部には、ろ過または吸着によって不純物を分離する不純物分離器が設けられ、電解浴は、不純物分離器を経由して電解槽に供給される。 (もっと読む)


本発明は、貫流式電解採取用電解槽において、従来の電解採取かまたは代替アノード反応化学を使用し、金属粉末生成物を生成するための装置に関連する。貫流式アノードおよび貫流式カソードの両方を使用する貫流式電解採取用電解槽の新規の設計を記載する。本発明は、従来の電解採取プロセス、直接電解採取、または代替アノード反応化学を使用した、金属含有溶液からの高品質の金属粉末(銅粉末を含む)の生成を可能とする。電解採取により金属粉末を生成するための装置であって:少なくとも1つの貫流式アノード、少なくとも1つの貫流式カソード、および電解質流動システムを含む少なくとも1つの電解採取用電解槽を含む、装置。
(もっと読む)


1 - 8 / 8