説明

プラズマ処理方法、エッチング方法、プラズマ処理装置およびエッチング装置

【課題】電子シェーディングによるチャージングダメージの発生を防止し,所望の高アスペクト比のコンタクトホールを形成可能なプラズマ処理方法を提供する。
【解決手段】エッチング装置100の処理室102内に配置された第2電極106上にウェハWを載置した後,C48とCOとArから成る処理ガスを処理室102内に導入する。第2電極106に2つの高周波電力を印加する。第2電極106に印加される一方の高周波電力は、所定周期でオン・オフを繰り返すパルス状電力であり、他方の高周波電力は、一方の高周波電力の周波数よりも低い。処理ガスにはO2が間欠的に添加される。O2の無添加時間は、O2の添加時間よりも長い。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は,プラズマ処理方法に関する。
【背景技術】
【0002】
従来,被処理体,例えば半導体ウェハ(以下,「ウェハ」と称する。)に対して高密度プラズマによりエッチング処理を施し,超微細なコンタクトホールを形成するエッチング方法が提案されている。しかし,かかるエッチング方法により,高アスペクト比のコンタクトホールを形成すると,電子シェーディングによるチャージングダメージが生じ,所望のコンタクトホールを形成することができない。
【0003】
ここで,図9を参照しながら,電子シェーディング現象およびそれに伴うチャージングダメージについて説明する。なお,図9は,半導体基板10上にSiO2(酸化シリコン)膜層12とフォトレジスト膜層14が積層され,フォトレジスト膜層14に形成されたパターン16に基づいてSiO2膜層12にコンタクトホール18を形成している途中のウェハWを示す概略的な断面図である。
【0004】
図示のように,電子(e-)は,コンタクトホール18のエッチングが進行し,アスペクト比が高くなるにつれてパターン16側壁に衝突するのに対して,正イオン(I+)は,コンタクトホール18の底部に対してほぼ垂直に入射するので,パターン16側壁とコンタクトホール18の上部内壁は負電荷にチャージアップ(帯電)する。この負電荷は,電子にとって障壁として働く電場を形成する。従って,コンタクトホール18の底部に対して垂直方向に小さい速度成分しか有していないような電子は,上記電場によって減速され,されに跳ね返されて,パターン16内部に入り込めなくなる。これが,電子シェーディング現象である。
【0005】
そして,上記電子シェーディングが生じると,上述の如くコンタクトホール18底部には,電子に比べて正イオンが多く入射するので,コンタクトホール18下部壁部(側壁)が正電荷にチャージアップする。その結果,例えば上記チャージアップによってエッチング種となるイオンの入射方向がコンタクトホール18の側面方向に曲げられ,ノッチなどの形状異常を引き起こすなどの問題が生じる。これが,チャージングダメージである。
【0006】
そこで,プラズマを生成する高周波電力を間欠的に印加することにより,プラズマの電子温度を下げてラジカルを所定の状態にコントロールすると共に,上記高周波電力のオフ時にイオンシースが消滅した際に,ウェハWに印加されている連続波(Continuous Wave)のバイアス電力によってコンタクトホール18下部に負イオンおよび電子を引き込むことにより正電荷のチャージングを解消し,チャージングダメージを防止している。なお,電子温度とは,プラズマ中の電子の平均的熱運動エネルギーを表す尺度であり,シースとは,プラズマ存在中にウェハWの周囲に形成される空間電荷層をいう。
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら,例えば内径が略0.18μm以下の超微細なコンタクトホールを形成する場合には,上述したエッチング方法によっても,チャージングダメージを防止することができない。つまり,コンタクトホールのアスペクト比が大きくなるにつれて,電子シェーディング効果が一層顕著なものとなり,コンタクトホール下部壁部の正電荷のチャージ量も増えるので,処理ガスが解離して生じた負イオンによっては,上記正電荷を電気的に中和することができない。また,電子は,等方的に入射するために,コンタクトホール下部にも到達するが,上記正電荷のチャージングを解消するまでには至らない。
【0008】
本発明は,従来の技術が有する上記のような問題点に鑑みて成されたものであり,本発明の目的は,プラズマにより高アスペクト比のコンタクトホールを形成してもチャージングダメージが起こらず,所望のコンタクトホールを形成することが可能な,新規かつ改良されたプラズマ処理方法を提供することである。
【課題を解決するための手段】
【0009】
上記課題を解決するために,本発明の第1の観点によれば,処理室内に少なくともフルオロカーボンを含む処理ガスを導入し,処理室内に対向配置された第1電極と第2電極とにそれぞれ高周波電力を印加して処理ガスをプラズマ化し,第2電極に載置された被処理体に形成された酸化シリコン膜層に対してプラズマ処理を施すプラズマ処理方法において,第2電極に印加する高周波電力の周波数は,第1電極に印加する高周波電力の周波数よりも低く,第1電極には,高周波電力を間欠的に印加し,処理ガスには,酸素が間欠的に添加されることを特徴とする,プラズマ処理方法が提供される。
【0010】
かかる構成によれば,第1電極に間欠的に印加した高周波電力がオン時に,処理ガスが解離して電子や酸素の負イオンが生じ,これら電子および負イオンを高周波電力のオフ時で,かつ第2電極に印加した高周波電力が正のサイクルの時に,SiO2膜層に形成されるコンタクトホール下部に引き込むことができる。その結果,電子および負イオンによりコンタクトホール下部壁部に生じた正電荷が電気的に中和されるので,正電荷のチャージングを解消することができ,チャージングダメージを防止することができる。なお,本明細書中において,正のサイクルとは,第2電極に印加した高周波電力の全サイクルのうち,処理室(処理容器)内の電子や負イオンが存在する部分の電位よりも,第2電極の電位の方が高いサイクルをいう。また,アスペクト比とは,コンタクトホールやフォトレジスト膜層に形成されたパターンの内径(幅)aと深さ(高さ)bとの比(b/a)をいう。
【0011】
また,処理ガスにO2を添加すると,フォトレジスト膜層やそのパターン肩部が削られて損傷することが知られているが,本発明では処理ガスにO2を間欠的に添加するので,上記損傷が生じ難く,所定のパターンに基づいてコンタクトホールを形成できる。さらに,処理ガスには,フルオロカーボン(CF)系ガスが含まれるので,所定のエッチングを行いながら,第1電極に間欠的に印加した高周波電力がオフ時にフォトレジスト膜層およびパターン肩部に保護膜を形成することができ,O2添加による上記損傷をさらに軽減できる。
【0012】
また,酸素を,周期的に処理ガスに添加すれば,上記酸素の負イオンの生成と保護膜の形成とをより確実に行うことができると共に,O2の添加制御を容易に行うことができる。
【0013】
また,酸化シリコン膜にコンタクトホールを形成する場合に,酸素の添加量をコンタクトホールのアスペクト比の増加に応じて増加させても良い。上述したチャージングダメージは,エッチングが進行してアスペクト比が増加すると共に起こりやすくなるので,そのアスペクト比の増加に応じてO2の添加量を増加させれば,エッチングが進行してもチャージングダメージを確実に防止できる。また,処理の初期には,O2の添加量が少ないので,フォトレジスト膜層およびパターン肩部の損傷を軽減できる。
【0014】
また,本発明の第2の観点によれば,処理室内に少なくともフルオロカーボンと酸素とを含む処理ガスを導入し,処理室内に対向配置された第1電極と第2電極とにそれぞれ高周波電力を印加して処理ガスをプラズマ化し,第2電極に載置された被処理体に形成された酸化シリコン膜層に対してプラズマ処理を施すプラズマ処理方法において,第2電極に印加する高周波電力の周波数は,第1電極に印加する高周波電力の周波数よりも低く,第1電極には,高周波電力を間欠的に印加し,処理ガスへの酸素の添加量を増減させながら,プラズマ処理を行うことを特徴とする,プラズマ処理方法が提供される。
【0015】
かかる構成によれば,処理ガス中にO2を添加するので,上記請求項1に記載の発明と同様に,アスペクト比の増加に伴うチャージングダメージを防止できる。さらに,O2の添加量の増加時には,酸素の負イオンの生成量を増やすことができると共に,O2の添加量の減少時には,CF系ガスに基づく保護膜によりフォトレジスト膜層およびパターン肩部を保護できるので,チャージングダメージを解消しながら,所定パターニングを行うことができる。
【0016】
また,本発明の第3の観点によれば,処理室内に少なくともフルオロカーボンと酸素とを含む処理ガスを導入し,処理室内に対向配置された第1電極と第2電極とにそれぞれ高周波電力を印加して処理ガスをプラズマ化し,第2電極に載置された被処理体に形成された酸化シリコン膜層に対してプラズマ処理を施すプラズマ処理方法において,第2電極に印加する高周波電力の周波数は,第1電極に印加する高周波電力の周波数よりも低く,第1電極には,高周波電力を間欠的に印加し,処理ガスへの酸素の添加量を増加させながら,プラズマ処理を行うことを特徴とする,プラズマ処理方法が提供される。
【0017】
かかる構成によれば,O2の添加量を増加させながら処理を行うので,処理初期にはO2の添加量が少なく,さらにO2の全導入量(投入量)を連続導入の場合の全導入量以下に抑えることができるので,フォトレジスト膜およびその肩部が損傷し難くなる。また,処理に伴ってO2の添加量が増加され,さらに処理初期にO2の添加量を少なくした分をその後に添加できるので,チャージングダメージを確実に防止できる。
【0018】
また,酸化シリコン膜層にホールを形成する場合に,酸素の添加量をホールのアスペクト比の増加に応じて増加させれば,アスペクト比の増加に伴って酸素の負イオンをより多く生じさせることができるので,チャージングダメージをより確実に防止できる。
【発明の効果】
【0019】
本発明によれば,コンタクトホールの底部に酸素の負イオンを導入することができるので,高密度プラズマにより高アスペクト比のコンタクトホールを形成する場合でも,コンタクトホール下部壁部の正電荷のチャージングの発生を防止することができ,所望のコンタクトホールを形成できる。
【発明を実施するための最良の形態】
【0020】
以下に,添付図面を参照しながら,本発明にかかるプラズマ処理方法をプラズマエッチング方法に適用した好適な実施の形態について説明する。
【0021】
(第1の実施の形態)
(1)エッチング装置の構成まず,図1を参照しながら,エッチング装置100の構成について説明する。エッチング装置100の処理室102は,導電性の気密な処理容器104内に形成されている。処理室102内には,ウェハWの載置台を兼ねた導電性の第2電極106と,導電性の第1電極108とが対向配置され,この第1電極108と処理容器104との間には,絶縁部材110が介装されている。第1電極108には,整合器112を介してプラズマ生成用の例えば27MHzの高周波電力を出力する高周波電源114が接続されている。また,第2電極106には,整合器116を介して第1電極108に印加する高周波電力の周波数よりも周波数が低く,かつプラズマが生成されない程度の周波数,例えば800kHzを有するバイアス用の高周波電力を出力する高周波電源118が接続されている。
【0022】
また,第1電極108には,多数のガス吐出孔108aが形成されており,これらガス吐出孔108aには,ガス拡散室108bを介して第1および第2ガス供給管120,140が接続されている。第1ガス供給管120には,開閉バルブ122,124,126と,第1〜第3流量調整バルブ(マスフローコントローラ)128,130,132を介して,第1〜第3ガス供給源134,136,138が接続されている。また,第2ガス供給管140には,開閉バルブ142と,第4流量調整バルブ144を介して,第4ガス供給源146が接続されている。さらに,第1〜第4流量調整バルブ128,130,132,144には,ガス流量を制御する制御器148が接続されている。また,処理室102下方には,不図示の真空ポンプと連通する排気管150が接続されている。
【0023】
(2)エッチング工程
次に,図1および図2を参照しながら,本実施の形態にかかるエッチング工程について説明する。まず,上述したウェハWを,例えば20℃に設定された第2電極106に載置する。この際,処理室102の内壁面および第1電極108の温度は,例えば60℃に設定されている。次いで,制御器148により第1〜第3流量調整バルブ128,130,132を適宜調整し,第1〜第3ガス供給源134,136,138から処理ガス,例えばC48とCOとArから成る混合ガスをそれぞれ11sccmと50sccmと200sccmの流量で処理室102内に導入する。また,処理室102内を真空引きして,処理室102内の圧力を,例えば45mTorrに設定する。この際,第4流量調整バルブ144は閉じられており,O2の供給は停止されている。
【0024】
そして,第1電極108に対して所定周期でオン・オフを繰り返す例えば27MHzの高周波電力(以下,「パルス電力」という。)を印加すると共に,第2電極106に対して例えば800kHzの連続波の高周波電力(以下,「バイアス電力」という。)を印加する。これにより,上記処理ガスが解離して生じたプラズマ中の電子,イオンおよびラジカルがウェハWに引き込まれ,該ウェハWのSiO2膜層12にコンタクトホール18が形成される。
【0025】
また,上記プラズマの生成状態は,例えばプラズマの発光スペクトルを検出するセンサによって監視されており,このセンサからの情報が制御器148に伝達されている。そして,制御器148は,プラズマが安定化し,SiO2膜層12に安定したエッチング処理が施されていると判断すると,所定のパルス電圧を第4流量調整バルブ144に印加する。第4流量調整バルブ144は,上記パルス電圧のオンの時にはバルブを開放して,第4ガス供給源146からO2をガス拡散室108b内に供給し,上記パルス電圧のオフの時には,バルブを閉じてO2の供給を停止する。その結果,O2は,上記パルス電圧のオン・オフに同期してガス拡散室108b内の処理ガスに添加され,該処理ガスがガス吐出孔108aを介して処理室102内に供給される。
【0026】
また,O2添加時の添加量(流量)は,図2に示すように,処理時間,すなわちエッチングの進行によるコンタクトホール18のアスペクト比の増加に応じて増加される。このアスペクト比の変化は,エッチング時間とアスペクト比の増加との対応関係を予め求めておき,制御器148において上記関係に基づいてエッチング時間から判断される。かかる構成により,アスペクト比が小さい処理の初期段階では,O2の添加量が少ないので,フォトレジスト膜層14およびパターン16肩部が削られ難く,所定のパターン16に基づいてSiO2膜層12にエッチングを施すことができる。さらに,O2の全導入量(投入量)は,O2を連続導入した場合の全導入量以下にできるので,フォトレジスト膜層14の肩部の削れを確実に防止できる。また,アスペクト比が大きくなるにつれてO2の添加量が増加されるので,チャージングダメージを確実に解消できる。
【0027】
また,1周期当たりのO2の添加時間は,数m秒〜数10m秒,例えば5m秒〜10m秒に設定され,O2の無添加時間は,そのO2の添加時間よりも長く設定されている。従って,O2の添加時間が,無添加時間に比べて非常に少ないので,常時O2を添加したならばフォトレジスト膜層14等を損傷する量のO2を処理ガスに添加しても,それらフォトレジスト膜層14およびパターン16肩部が実質的に損傷することがない。
【0028】
(3)チャージングダメージの解消理由
次に,図3および図4を参照しながら,O2添加によるチャージングダメージの解消理由について説明する。処理時の第1電極108と第2電極106には,図3に示すようにパルス電力とバイアス電力がそれぞれ印加されている。処理ガスに添加されたO2は,パルス電力のオン時にC48などと共に解離し,正イオンと負イオンとラジカルと電子が生成される。このうち,コンタクトホール18下部にチャージアップした正電荷を解消する酸素の負イオンまたは電子は,パルス電力のオフ時で,かつバイアス電力が正のサイクルの時(図3中の斜線部分)に,コンタクトホール18内に引き込まれる。
【0029】
すなわち,酸素の負イオンは,バイアス電力が正のサイクルであっても,パルス電力がオンの時にウェハWとプラズマとの間に形成されるシースを通過することができず,コンタクトホール18内に到達することができない。これに対して,パルス電力がオフの時には,図4に示すように,シースが消滅するために,バイアス電力が正のサイクルの時には,酸素の負イオン(I-)および電子がコンタクトホール18内に引き込まれ,該底部にまで到達する。
【0030】
その結果,コンタクトホール18下部壁部に帯電していた正電荷が,酸素の負イオンおよび電子によって電気的に中和され,上記チャージングが解消される。これにより,アスペクト比が大きくなったコンタクトホール18でも,C48から解離した正イオン(エッチング種)がコンタクトホール18底面に対して垂直方向に入射するようになり,所定形状のコンタクトホール18が形成される。
【0031】
本実施の形態は,以上のように構成されており,処理ガスに添加するO2の添加および無添加を所定周期で切り替え,かつO2添加時の添加量をアスペクト比に応じて増加させるので,パターン16を初期の状態に維持しながら,コンタクトホール18下部壁部のチャージングを解消することができ,所望の高アスペクト比のコンタクトホール18を形成できる。
【0032】
(第2の実施の形態)
次に,本発明の第2の実施の形態について説明する。なお,本実施の形態は,O2の添加量を相対的に増減させながらO2を処理ガスに添加する点が,上記第1の実施の形態と異なる。
【0033】
すなわち,本実施の形態では,処理開始前から,例えば流量が5sccmのO2を添加した上記処理ガスを処理室102内に供給し,所定の処理条件が整った後に,第1電極108と第2電極106に対して上述した電力を印加して,ウェハWにエッチング処理を施す。制御器148は,プラズマが安定化したことを確認すると,第4流量調整バルブ144の開度を処理経過時間,すなわちコンタクトホール18のアスペクト比の増加に応じて調整して,ガス拡散室108b内に導入されるO2の流量を周期的に増減させる。これにより,図5に示すように,アスペクト比の増加に応じてO2の添加量が段階的に増加される。なお,本実施の形態においては,ガス拡散室108b内に高い流量でO2を供給する時間は,数m秒〜数10m秒,例えば5m秒〜10m秒に設定されている。これに対して,ガス拡散室108b内に低い流量でO2を供給する時間は,高い流量でO2を供給する時間よりも長く設定されている。なお,その他の構成は,上述した第1の実施の形態と同様である。
【0034】
本実施の形態は,以上のように構成されており,処理中にO2が処理ガスに常時添加されるので,より多くの酸素の負イオンを生成させることができ,チャージングの発生をより確実に防止できる。また,O2の添加量を増減させると共に,アスペクト比の増加に応じて増加させるので,O2の添加によるフォトレジスト膜層14およびパターン16肩部の損傷を最小限に止めることができる。
【0035】
(第3の実施の形態)
次に,本発明の第3の実施の形態について説明する。なお,本実施の形態は,O2の添加量を連続的に増加させながらO2を処理ガスに添加する点が,上記第1および第2の実施の形態と異なる。
【0036】
すなわち,本実施の形態では,まず処理室102内にO2が添加されていない処理ガスを導入すると共に,上述した諸条件が整った後にプラズマを生成し,ウェハWにエッチング処理を施す。次いで,制御器148は,プラズマが安定したことを確認すると,コンタクトホール18のアスペクト比の増加に応じて第4流量調整バルブ144に印加する電圧を増加させる。これにより,図6に示すように,アスペクト比の増加に応じて処理ガスに添加されるO2の添加量が連続的に増加される。なお,その他の構成は,上述した第1の実施の形態と同様である。
【0037】
本実施の形態は,以上のように構成されており,O2の添加量をアスペクト比の増加に応じて連続的に増加させるので,チャージングダメージをより確実に解消できると共に,処理ガスへのO2の全投入量がチャージングダメージの発生を防止するために必要な量よりも多くならないので,フォトレジスト膜層14の肩部の削れをより確実に防止することができる。
【0038】
以上,本発明の好適な実施の形態について,添付図面を参照しながら説明したが,本発明はかかる構成に限定されるものではない。特許請求の範囲に記載された技術的思想の範疇において,当業者であれば,各種の変更例および修正例に想到し得るものであり,それら変更例および修正例についても本発明の技術的範囲に属するものと了解される。
【0039】
例えば,上記実施の形態において,コンタクトホールのアスペクト比の増加をエッチング時間から判断する構成を例に挙げて説明したが,本発明はかかる構成に限定されるものではない。例えば,処理室内のプラズマの成分変化とアスペクト比の増加との関係を予め求めておき,処理時には測定されたプラズマの成分変化からアスペクト比の増加を判断する構成を採用しても本発明を実施することができる。
【0040】
また,上記実施の形態において,アスペクト比の増加に応じて所定の周期ごとに一定量のO2を間欠的に,あるは増減させながら処理ガスに添加する構成を例に挙げて説明したが,本発明はかかる構成に限定されるものではない。例えば,アスペクト比の増加に応じて処理ガスに添加するO2の添加量を増加させる際に,図7に示すように曲線的に増減させたり,あるいは図8に示すように段階的(多段階的)に増加させても,上記実施の形態と同様の効果を奏することができる。
【0041】
さらに,上記実施の形態において,プラズマの安定化後にO2の添加,無添加の切り替えを行ったり,O2の添加量を増減させる構成を例に挙げて説明したが,本発明はかかる構成に限定されるものではなく,例えばチャージングダメージが起こる直前から上記O2の添加,無添加の切り替えを行ったり,O2の添加量を増減または増加させても本発明を実施することができる。
【0042】
また,上記実施の形態において,処理ガスとしてC48とCOとArの混合ガスにO2を添加する構成を例に挙げ説明したが,本発明はかかる構成に限定されるものではなく,少なくともフルオロカーボンを含む処理ガスであれば,他の処理ガスにO2を添加しても本発明を実施することができる。
【0043】
さらに,上記実施の形態において,ガス拡散室において処理ガスにO2を添加する構成を例に挙げて説明したが,本発明はかかる構成に限定されるものではなく,O2を処理室内に直接供給しても本発明を実施することができる。
【0044】
また,上記実施の形態において,O2の流量(添加量)を,電圧で開度を調整する流量調整バルブで行う構成を例に挙げて説明したが,本発明はかかる構成に限定されるのもではなく,O2の流量を調整できれば他の供給量調整手段を用いても本発明を実施することができる。
【0045】
さらに,上記実施の形態において,プラズマの状態を光学センサで検出する構成を例に挙げて説明したが,本発明はかかる構成に限定されるものではなく,例えば予めプラズマが安定する時間を求めておき,実際の処理時にはその時間に基づいてO2の供給量制御を行っても本発明を実施することができる。
【0046】
また,上記実施の形態において,第1電極に高周波電力を間欠的に印加し,第2電極に連続波の高周波電力を印加する構成を例に挙げて説明したが,本発明はかかる構成に限定されるものではなく,例えば被処理体を載置する第2電極に,上記各高周波電力の両方を印加しても本発明を実施することができる。また,本発明は,処理室内に磁界が形成されるプラズマ処理装置にも適用することができる。
【図面の簡単な説明】
【0047】
【図1】本発明を適用可能なエッチング装置を示す概略的な断面図である。
【図2】図1に示すエッチング装置に適用されるO2の供給構成を説明するための概略的な説明図である。
【図3】チャージングダメージの解消理由を説明するための概略的な断面図である。
【図4】チャージングダメージの解消理由を説明するための概略的な断面図である。
【図5】他のO2の供給構成を説明するための概略的な説明図である。
【図6】他のO2の供給構成を説明するための概略的な説明図である。
【図7】他のO2の供給構成を説明するための概略的な説明図である。
【図8】他のO2の供給構成を説明するための概略的な説明図である。
【図9】従来のエッチング方法で発生する電子シェーディングによるチャージングダメージを説明するための概略的な説明図である。
【符号の説明】
【0048】
100 エッチング装置
102 処理室
106 第2電極
108 第1電極
114,118 高周波電源
128 第1流量調整バルブ
130 第2流量調整バルブ
132 第3流量調整バルブ
134 第1ガス供給源
136 第2ガス供給源
138 第3ガス供給源
144 第4流量調整バルブ
146 第4ガス供給源
148 制御器
W ウェハ

【特許請求の範囲】
【請求項1】
処理室内に少なくともフルオロカーボンを含む処理ガスを導入し、前記処理室内に対向配置された第1電極と第2電極のうち、被処理体を載置する第2電極に2つの高周波電力を印加して前記処理ガスをプラズマ化し、前記第2電極に載置された被処理体に形成された酸化シリコン膜層に対してプラズマ処理を施すプラズマ処理方法において:
前記第2電極に印加される一方の高周波電力は、パルス状電力であり;
前記第2電極に印加される他方の高周波電力は、前記一方の高周波電力の周波数よりも低く;
前記処理ガスには、酸素が間欠的に添加され、
前記酸素の無添加時間は前記酸素の添加時間よりも長いことを特徴とする、プラズマ処理方法。
【請求項2】
前記酸素は、周期的に前記処理ガスに添加されることを特徴とする、請求項1に記載のプラズマ処理方法。
【請求項3】
処理室内に少なくともフルオロカーボンを含む処理ガスを導入し、前記処理室内に対向配置された第1電極と第2電極のうち、被処理体を載置する第2電極に2つの高周波電力を印加して前記処理ガスをプラズマ化し、前記第2電極に載置された被処理体に形成された酸化シリコン膜層に対してエッチング処理を施すエッチング方法において:
前記第2電極に印加される一方の高周波電力は、パルス状電力であり;
前記第2電極に印加される他方の高周波電力は、前記一方の高周波電力の周波数よりも低く;
前記処理ガスには、酸素が間欠的に添加され、
前記酸素の無添加時間は前記酸素の添加時間よりも長いことを特徴とするエッチング方法。
【請求項4】
前記酸素は、周期的に前記処理ガスに添加されることを特徴とする,請求項3に記載のエッチング方法。
【請求項5】
前記酸化シリコン膜層には,コンタクトホールが形成され,前記酸素の添加量は,前記コンタクトホールのアスペクト比の増加に応じて増加されることを特徴とする,請求項3または4のいずれかに記載のエッチング方法。
【請求項6】
処理室内に少なくともフルオロカーボンと酸素とを含む処理ガスを導入し、前記処理室内に対向配置された第1電極と第2電極のうち、被処理体を載置する第2電極に2つの高周波電力を印加して前記処理ガスをプラズマ化し、前記第2電極に載置された被処理体に形成された酸化シリコン膜層に対してエッチング処理を施すエッチング方法において:
前記第2電極に印加される一方の高周波電力は、パルス状電力であり;
前記第2電極に印加される他方の高周波電力は、前記一方の高周波電力の周波数よりも低く;
前記処理ガスには、酸素が添加されると共に、前記酸化シリコン膜層に形成されたホールのアスペクト比のエッチング処理中での増加に応じて前記酸素の添加量をエッチング処理中に相対的に増減させ、
前記酸素の添加量の増減を段階的に繰り返しながら前記酸素の添加量のピークを段階的に増加させることを特徴とするエッチング方法。
【請求項7】
処理室内に少なくともフルオロカーボンと酸素とを含む処理ガスを導入し、前記処理室内に対向配置された第1電極と第2電極のうち、被処理体を載置する第2電極に2つの高周波電力を印加して前記処理ガスをプラズマ化し、前記第2電極に載置された被処理体に形成された酸化シリコン膜層に対してエッチング処理を施すエッチング方法において:
前記第2電極に印加される一方の高周波電力は、パルス状電力であり;
前記第2電極に印加される他方の高周波電力は、前記一方の高周波電力の周波数よりも低く;
前記処理ガスには、酸素が添加されると共に、前記酸化シリコン膜層に形成されたホールのアスペクト比のエッチング処理中での増加に応じて前記酸素の添加量をエッチング処理中に相対的に増減させ、
前記酸素の添加量の増減を曲線的かつ周期的に繰り返しながら前記酸素の添加量のピークを増加させることを特徴とするエッチング方法。
【請求項8】
処理室内に少なくともフルオロカーボンと酸素とを含む処理ガスを導入し、前記処理室内に対向配置された第1電極と第2電極のうち、被処理体を載置する第2電極に2つの高周波電力を印加して前記処理ガスをプラズマ化し、前記第2電極に載置された被処理体に形成された酸化シリコン膜層に対してエッチング処理を施すエッチング方法において:
前記第2電極に印加される一方の高周波電力は、パルス状電力であり;
前記第2電極に印加される他方の高周波電力は、前記一方の高周波電力の周波数よりも低く;
前記処理ガスには、酸素が添加されると共に、前記酸化シリコン膜層に形成されたホールのアスペクト比のエッチング処理中での増加に応じて前記酸素の添加量がエッチング処理中に増加され、
前記酸素の添加量は、段階的に増加されることを特徴とするエッチング方法。
【請求項9】
処理室内に少なくともフルオロカーボンと酸素とを含む処理ガスを導入し、前記処理室内に対向配置された第1電極と第2電極のうち、被処理体を載置する第2電極に2つの高周波電力を印加して前記処理ガスをプラズマ化し、前記第2電極に載置された被処理体に形成された酸化シリコン膜層に対してエッチング処理を施すエッチング方法において:
前記第2電極に印加される一方の高周波電力は、パルス状電力であり;
前記第2電極に印加される他方の高周波電力は、前記一方の高周波電力の周波数よりも低く;
前記処理ガスには,酸素が添加されると共に,前記酸化シリコン膜層に形成されたホールのアスペクト比のエッチング処理中での増加に応じて、前記酸素の添加量が前記エッチング処理中に増加され、
前記酸素を間欠的に添加しながら前記酸素の添加量のピークを段階的に増加させることを特徴とする,エッチング方法。
【請求項10】
前記アスペクト比の変化と前記プラズマの成分変化との関係を予め求め,前記プラズマの成分変化に応じて前記酸素の添加量を調整することを特徴とする,請求項6〜9のいずれかに記載のエッチング方法。
【請求項11】
前記フルオロカーボンのガスは、エッチング処理中、継続的に前記処理室内に供給されることを特徴とする請求項3〜10のいずれかに記載のエッチング方法。
【請求項12】
前記酸素の添加は,前記プラズマの安定化後に行われることを特徴とする,請求項3〜10のいずれかに記載のエッチング方法。
【請求項13】
請求項1又は2のいずれかに記載されたプラズマ処理方法を用いて、被処理体にプラズマ処理を施すプラズマ処理装置。
【請求項14】
請求項3〜12のいずれかに記載されたエッチング方法を用いて、被処理体にエッチング処理を施すエッチング装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2009−283893(P2009−283893A)
【公開日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2008−315670(P2008−315670)
【出願日】平成20年12月11日(2008.12.11)
【分割の表示】特願平10−377509の分割
【原出願日】平成10年12月28日(1998.12.28)
【出願人】(000109565)東京エレクトロンAT株式会社 (4)
【Fターム(参考)】