説明

変位検出装置

【課題】 誤作動なく正確に一点において基準点検出できる変位検出装置を提供する。
【解決手段】 スケール200には回折格子が設けられ、第2トラック220は、格子ピッチが異なる第1回折格子領域221と第2回折格子領域222とから形成されている。第1回折格子領域221と第2回折格子領域222とは、一のトラック内において第1変化点223を挟んで連続して形成されている。受光手段320は、基板330上に配設され第2トラック220の回折格子からの回折光を受光して原点位置を検出する受光部350を備える。受光部350は、第1回折格子領域221からの1次(または−1次)回折光を受光する位置に配設された第1受光要素351と、第2回折格子領域222からの−1次(または1次)回折光を受光する位置に配設された第2受光要素352と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変位検出装置に関し、例えば、光電式リニアエンコーダ等の変位検出装置において原点等の基準点検出をするものに関する。
【背景技術】
【0002】
光電式リニアエンコーダやロータリーエンコーダ等に代表される変位検出装置が知られており、さらに、原点位置を検出することにより絶対移動量を測定することができる変位検出装置が知られている。
このような変位検出装置600は、例えば図16に示されるように、光透過性の部材からなるスケール610と、このスケール610に相対変位可能に設けられスケール610に対する相対変位量を検出する検出ヘッド部620と、検出ヘッド部620からの信号を演算処理する信号処理部630と、を備える。
スケール610には所定ピッチの回折格子611が設けられているとともに、原点検出用の遮光部612が前記回折格子611に隣接して設けられている。
検出ヘッド部620の移動範囲における所定の位置に原点が設定され、この原点に対応した位置に遮光部612が配置されている。
【0003】
検出ヘッド部620は、スケール610に向けて光を発射する光源621と、光源621からの光を平行光にするコリメートレンズ623と、スケール610を透過した光を受光する受光手段624と、を備えている。
受光手段624は、回折格子にて回折された回折光を受光する受光素子アレイ625と、原点検出用の遮光部612に対応して設けられた原点検出用の受光部626と、を備えている。
【0004】
このような構成において、スイッチをONにすると、まず原点検出が行われる。光源621から光がスケール610に向けて発射される。光がスケール610を透過すると、光が原点検出用の受光部626で受光されるが、スケール610と検出ヘッド部620とが相対的に移動し、光源621と遮光部612とが重なったときには、遮光部612により光が遮光される。
このとき、原点検出用の受光部626に光が入射しなくなるので、受光部626から出力される信号が図17のように変化する。すなわち、遮光部612に対応する位置において信号レベルが低下する。そして、信号レベルが低下するところで検出ヘッド部620と原点検出用の遮光部612とがちょうど重なっているとみなされ、信号レベルが所定のしきい値を通過したところで原点の検出が行われる。
【0005】
原点検出の後、実際に被測定物の測長や移動テーブルの位置決め等が行われる。このとき、光源621から発射された光が光学格子で回折され、この回折光が受光素子アレイで受光される。受光素子アレイからの信号が信号処理部で処理されることによりスケールと検出ヘッド部との相対移動距離が検出される。そして、すでに原点の検出が行われているところ原点からの変位量がわかるので、スケール610に対する検出ヘッド部620の絶対位置が検出される。
【0006】
また、原点検出のための他の構成として例えば図18に示される構成が知られている(特許文献1)。
図18において、スケール610の回折格子611に隣接して遮光部612が設けられている。受光手段721は、原点検出用の受光部722を備えるところ、この受光部722は、遮光部712に対応して設けられているとともに遮光部712の幅を超えない領域において配設された三つの受光素子722A、722B、722Cから構成されている。
なお、受光素子722A〜Cの互いの間隔は同じdであり、両端に配設された受光素子722A、722Cの幅W2に対して中央の受光素子722Bの幅W1は2倍である。この構成において、スケール610と検出ヘッド部620とが相対移動する際に、両端の受光素子722A、722Cの出力和と中央の受光素子722Bの出力との差動出力をとる。すると、図19に示されるようにS字信号が得られる。具体的には、遮光部712のエッジが中央の受光素子722Bの中央位置に対応するところで原点位置を示す零クロス信号が得られる。
なお、遮光部712における左右のエッジ712A、712Bのいずれにおいても零クロス信号が得られるが、どちらを原点とするかは任意に選択される。
【0007】
【特許文献1】特開平9−304112号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、図16に示した構成では、スケール610と検出ヘッド部620との相対移動方向が違う場合、すなわち、右から左へ遮光部612を横切る場合と、左からの右へ遮光部612を横切る場合とでは遮光部612の幅の分だけしきい値を通過する位置が異なってくる。すると、遮光部612の幅の分だけ原点が異なってくるという問題が生じる。
一方、図18に示した構成では、零クロス信号が一定の位置で得られるので、スケール710と検出ヘッド部720との相対移動方向の違いによって原点がずれることはない。
しかしながら、例えばスケール710上に汚れ等があった場合、その汚れのエッジに反応して誤って原点信号(零クロス信号)を発してしまうという問題がある。
【0009】
本発明の目的は、誤作動なく正確に一点において基準点検出できる変位検出装置を提供することにある。
【課題を解決するための手段】
【0010】
本発明の変位検出装置は、回折格子を有するスケールと、前記スケールに向けて光を照射する光照明手段および前記回折格子からの回折光を受光する受光手段を有する検出ヘッド部と、前記受光手段から出力される信号を処理する信号処理部と、を備え、前記スケールと前記検出ヘッド部との相対変位量を検出する変位検出装置において、前記回折格子は、一のトラック内において第1の格子ピッチで形成された第1回折格子領域と、前記第1回折格子領域とは第1変化点を境に連続して形成されているとともに前記前記第1の格子ピッチとは異なる第2の格子ピッチで形成された第2回折格子領域と、を有し、前記受光手段は、前記第1回折格子領域にて回折される回折光を受光する位置に配設された第1受光要素と、前記第2回折格子領域にて回折される回折光を受光する位置に配設された第2受光要素と、を有し、前記信号処理部は、前記第1変化点に照射された光が前記第1回折格子領域と前記第2回折格子領域とにて回折されて生じた回折光を前記第1受光要素と前記第2受光要素とで受光した際に前記第1受光要素と前記第2受光要素とから出力される信号レベルが一致したことを検出することを特徴とする。
【0011】
この構成において、光照明手段からスケールに向けて光が照射される。すると、スケールの回折格子で光が回折される。このとき、回折格子には互いに格子ピッチが異なる第1回折格子領域と第2回折格子領域とが形成されているので、第1回折格子領域による回折光の回折角と第2格子領域による回折光の回折角とは異なってくる。そして、受光手段に配設される第1受光要素は、第1回折格子領域による回折光の回折角に合わせて第1回折格子領域からの回折光を受光できる位置に設けられている。
したがって、第1回折格子領域からの回折光は的確に第1受光要素に入射して受光される。その一方、第2回折格子領域にて回折される回折光は第1回折格子領域からの回折光とは回折角が違うから第1受光要素に入射せず第1受光要素では受光されないことになる。
同様に、第2受光要素は、第2回折格子領域にて回折される回折光を受光できる位置に配設されているので、第2回折格子領域からの回折光が第2受光要素に入射して受光されるが、第1回折格子領域からの回折光は第2受光要素では受光されない。
すなわち、検出ヘッド部が第1回折格子領域に対応する位置にあるときは、第1回折格子領域からの回折光のみが生じるので第1受光要素のみが光を受光し、検出ヘッド部が第2回折格子領域に対応する位置にあるときには、第2回折格子領域からの回折光のみが生じるので第2受光要素のみが光を受光する。
【0012】
これに対し、検出ヘッド部が、第1回折格子領域と第2回折格子領域の境目である第1変化点に対応する位置にあるときには、第1回折格子領域からの回折光と第2回折格子領域からの回折光が生じるので、第1受光要素と第2受光要素とがともに光を受光することになる。よって、第1受光要素と第2受光要素とに光が入射した際の信号が信号処理部により検出されると、第1回折格子領域と第2回折格子領域とが切り替わる第1変化点が検出されることになる。このように、第1変化点に対応する位置でのみ第1受光要素と第2受光要素との両方で光が受光されるので、第1変化点である一点のみが正確に検出される。
【0013】
このような構成によれば、第1回折格子領域と第2回折格子領域との境目である第1変化点を正確に検出することができる。よって、例えば、この第1変化点に対応する位置を原点等の基準点として利用することにより絶対位置を検出する変位検出装置とすることができる。
または、第1回折格子領域の第1格子ピッチは粗めにし、第2回折格子領域の第2格子ピッチは細かく高精度にするなどにより途中までは粗い検出分解能であって途中からは高分解能の変位検出をしてもよく、このような場合に、粗い分解能の領域から高分解能の領域に移行したことを示すマーカーとしても利用できる。
【0014】
従来は、スケールに遮光部を設けておいて遮光部による光の遮光によって原点等の基準点検出を行っていたので、原点検出がブロードであったり、スケールに付着したゴミで光が遮光される場合には原点を誤検出したりするなどの問題があった。
この点、本発明では、受光手段に第1受光要素と第2受光要素とを所定位置に配置して第1回折格子領域と第2回折格子領域との双方からのそれぞれの回折光を受光したときに第1変化点を検出する構成としたので、第1変化点の一点のみを正確に検出でき、かつ、スケールにゴミ等が付着した場合であってもこのゴミを第1変化点として誤検出するおそれは全くない。すなわち、誤作動なく正確に一点において基準点検出することができる。
【0015】
ここで、第1受光要素は、第1ピッチの回折格子からの1次回折光を受光する受光素子から構成され、第2受光要素は、第2ピッチの回折格子からの1次回折光を受光する受光素子から構成されることが例として挙げられる。
なお、一定のピッチで形成された変位検出用の回折格子に加えて、異なる格子ピッチの回折格子領域を有する回折格子を別途備えていてもよく、あるいは、異なる格子ピッチの回折格子領域を有する回折格子のみを備えていてもよい。
【0016】
本発明では、前記回折格子は、さらに、前記第2回折格子領域とは第2変化点を境にして連続して形成されているとともに前記第1の格子ピッチおよび前記第2の格子ピッチとは異なる第3の格子ピッチで形成された第3回折格子領域を有し、前記受光手段は、さらに、前記第3回折格子領域にて回折される回折光を受光する第3受光要素を有し、前記信号処理部は、さらに、前記第2変化点に照射された光が前記第2回折格子領域と前記第3回折格子領域とにて回折されて生じた回折光を前記第2受光要素と前記第3受光要素とで受光した際に前記第2受光要素と前記第3受光要素とから出力される信号レベルが一致したことを検出することが好ましい。
【0017】
このような構成において、第2回折格子領域と第3回折格子領域との境目である第2変化点に対応する位置に検出ヘッド部が位置している際には、受光手段の第2受光要素と第3受光要素との双方に光が入射して受光される。そして、このように第2受光要素と第3受光要素との両方にて光を受光するときの信号が検出されることにより第2変化点が検出される。
このような構成によれば、第1変化点に加えて第2変化点を検出することができる。そして、第1変化点では第1受光要素および第2受光要素での受光であるのに対して、第2変化点では第2受光要素および第3受光要素での受光であり、光を受ける受光要素が異なるので、第1変化点と第2変化点とを区別することができる。したがって、これら二つ変化点を二つの基準点として利用できる。例えば、基準点検出にあたって、検出ヘッド部の位置からみて近い方の変化点(第1変化点または第2変化点)へ移動するようにすれば、速やかに基準点の検出を行うことができる。
【0018】
なお、回折格子に格子ピッチが異なる複数の領域を設ける場合、格子ピッチが異なる領域の数は特に限定されず、2つ、3つの場合のみならず、4つ、5つ、それ以上であってもよいことはもちろんである。この場合、受光手段には、各回折格子領域にあわせて受光部を所定位置に配置しなければならないことはもちろんである。
【0019】
本発明では、前記第1受光要素は、前記第1回折格子領域からの1次回折光を受光する第1受光素子と、前記第1回折格子領域からの−1次回折光を受光する第2受光素子と、を備え、前記第2受光要素は、前記第2回折格子領域からの1次回折光を受光する第3受光素子と、前記第2回折格子領域からの−1次回折光を受光する第4受光素子と、を備え、前記信号処理部は、前記第1受光素子および前記第2受光素子のいずれか一方と前記第4受光素子との差動出力を得る第1差動増幅器と、前記第1受光素子および前記第2受光素子のいずれか他方と前記第3受光素子との差動出力を得る第2差動増幅器と、を有し、前記第1差動増幅器と前記第2差動増幅器とからの信号レベルが一致したことを検出することが好ましい。
【0020】
このような構成において、第1回折格子領域と第2回折格子領域との境目である第1変化点に対応する位置に検出ヘッド部があるとき、第1回折格子領域からの1次回折光、−1次回折光がそれぞれ第1受光素子、第2受光素子で受光される。また、第2回折格子領域からの1次回折光、−1次回折光がそれぞれ第3受光素子、第4受光素子で受光される。このように、総ての受光素子で光が受光されたときに、第1差動増幅器からの出力と第2差動増幅器から出力される信号レベルが一致し、第1変化点の位置が検出される。
そして、信号処理部において、例えば第1差動増幅器で第1受光素子と第4受光素子との差動出力を得、第2差動増幅器で第3受光素子と第2受光素子との差動出力を得ると、電源ノイズ等の静電ノイズがキャンセルされるので、外乱ノイズの影響が低減される。その結果、信号が安定化されるので、常に正確に第1変化点が検出される。
【0021】
本発明では、前記スケールの端部には、光を遮光する遮光部が設けられていることが好ましい。
【0022】
このような構成において、検出ヘッド部がスケールの端部まで移動したときに、スケールの端部に設けられた遮光部により光が遮光されて受光手段の総ての受光要素に光が入射しなくなる。このように、受光要素の総てに光が入射しなくなったところで、検出ヘッド部がスケールの端部まで移動したことが検出される。すなわり、検出ヘッド部とスケールとの相対移動の移動限界(リミット位置)が検出される。
【0023】
本発明では、前記第1受光要素は、前記第1回折格子領域にて回折される回折光の明暗パターンに対応して配設された受光素子アレイから構成され、前記第2受光要素は、前記第2回折格子領域にて回折される回折光を受光する受光素子を有し、前記信号処理部は、前記受光素子アレイからの出力信号を処理して前記スケールと前記検出ヘッド部との相対変位を検出する第1信号処理回路と、前記第1変化点に照射された光が前記第1回折格子領域と前記第2回折格子領域とにて回折されて生じた回折光を前記第1受光要素と前記第2受光要素とで受光した際に前記第1受光要素と前記第2受光要素とから出力される信号レベルが一致したことを検出する第2信号処理回路と、を備えることが好ましい。
【0024】
このような構成において、検出ヘッド部が第1回折格子領域に対応する範囲において相対移動するとき、第1回折格子領域にて回折された回折光が第1受光要素にて受光される。このとき、第1受光要素は、受光素子アレイであるので、このアレイを構成する各受光素子からの信号が第1信号処理回路で処理されることにより、検出ヘッド部とスケールとの相対変位量が検出される。
そして、第1回折格子領域と第2回折格子領域との境目である第1変化点に対応する位置に検出ヘッド部が位置するとき、第1回折格子領域からの回折光は第1受光要素にて受光され、さらに、第2回折格子領域からの回折光は第2受光要素の受光素子により受光される。第1受光要素(受光素子アレイ)と第2受光要素(受光素子)との両方で光が受光されたことが第2信号処理回路で検出され、第1変化点が検出される。
【0025】
このような構成によれば、第1回折格子領域からの回折光が第1受光要素の受光素子アレイで受光されることにより、検出ヘッド部とスケールとの相対変位量が検出される。さらに、第1受光要素と第2受光要素との両方で光が受光されたときに第1変化点が検出される。
例えば、第1回折格子領域により測長が行われ、さらに、この第1回折格子領域と同じトラックに連続して第2回折格子領域が形成されていることにより、基準点となる第1変化点の検出が行われる。
このように、一つのトラック内において第1回折格子領域と第2回折格子領域とを備え、一方(第1回折格子領域)を測長に用い、さらに格子ピッチの変化点を基準点として用いるので、測長用の回折格子と基準点検出用の手段(例えば遮光部や回折格子)とを別個に備える場合に比べて、経済的でありかつコンパクトな構成とすることができる。
【0026】
ここで、例えば、測長用に一定ピッチで形成された回折格子が設けられたスケールの両端部において、測長用の回折格子の端に格子ピッチが異なる回折格子領域を付加的に設けておくとともに、受光手段にこの格子ピッチが異なる回折格子領域からの回折光を受光する受光素子を配設しておいてもよい。この構成によれば、スケールの端部を検出して、スケールと検出ヘッド部との相対移動限界を検出することができる。
【発明を実施するための最良の形態】
【0027】
以下、本発明の実施の形態を図示するとともに図中の各要素に付した符号を参照して説明する。
(第1実施形態)
本発明の変位検出装置に係る第1実施形態について説明する。
図1は、第1実施形態の全体構成を示す図である。図2〜図4は、第1実施形態の動作を説明する図であり、図5は、受光手段からの受光信号を示す図である。
変位検出装置100は、スケール200と、このスケール200に対して相対変位可能に設けられた検出ヘッド部300と、検出ヘッド部300からの出力信号を処理する信号処理部400と、を備える。
スケール200には回折格子が設けられているところ、二つのトラック210、220の回折格子が設けられている。
一つは、測長用の回折格子である第1トラック210であり、一つは原点検出用の回折格子である第2トラック220である。
第1トラック210は、一定の格子ピッチでスケール200の端から端まで形成されている。
第2トラック220は、互いの格子ピッチが異なる第1回折格子領域221と第2回折格子領域222とから形成されている。
例えば、第1回折格子領域221の格子ピッチ(第1の格子ピッチ)Pは4μmとし、第2回折格子領域222の格子ピッチ(第2の格子ピッチ)Pは2μmとすることが例として挙げられる。
第1回折格子領域221と第2回折格子領域222とは、一のトラック内において第1変化点223を挟んで連続して形成されている。
ここで、第1変化点223は、検出ヘッド部300の移動範囲において原点として設定された位置に対応している。
【0028】
検出ヘッド部300は、スケール200に向けて光を照射する光照明手段310と、スケール200の回折格子を透過回折した光を受光する受光手段320と、を備えている。
光照明手段310と受光手段320とは、スケール200を間にして反対側に配設されている。
なお、特に図示しないが、検出ヘッド部300は、光照明手段310および受光手段320を収納する筐体を有している。そして、光照明手段310と受光手段320とは一体的にスケール200に対して相対移動する。
【0029】
光照明手段310は、スケール200に向けて光を発射する光源311と、光源311からの光を平行光にするコリメートレンズ312と、光を絞るピンホール315を有するピンホール板313と、を備える。ピンホール315は、第2トラック220に対応してピンホール板313に穿設されている。
ピンホール315により、光源311からの光は、1mm程度の径に絞られて第2トラック220の回折格子にスポット照射される。
【0030】
受光手段320は、基板330と、基板330上に配設され第1トラック210の回折格子からの回折光を受光してスケール200と検出ヘッド部300との相対変位量を検出する受光素子アレイ340と、基板330上に配設され第2トラック220の回折格子からの回折光を受光して原点位置を検出する受光部350と、を備える。
受光素子アレイ340は、第1トラック210の格子ピッチに対応する所定ピッチで配設された受光素子により構成されている。詳細は割愛するが、受光素子アレイ340を構成する受光素子は、第1トラック210の回折格子からの回折光にて形成される明暗縞の90°ずつ位相が異なる光を受光するように配設されている。なお、受光素子アレイ340の構成としては、特に限定されず、例えば、120°ずつ位相が異なる3相の信号を出力できるようにしてもよい。
【0031】
受光部350は、第1回折格子領域221からの1次(または−1次)回折光を受光する位置に配設された第1受光要素351と、第2回折格子領域222からの−1次(または1次)回折光を受光する位置に配設された第2受光要素352と、を備えて構成されている。
第1受光要素351および第2受光要素352は、所定幅の受光素子であり、受光した光を光電変換することにより光量に応じた受光信号S、Sを出力する。
【0032】
ここで、第1受光要素351と第2受光要素352との配設位置について説明する。
スケール200と受光手段320とのギャップgが5mmであり、光源311からの波長λが0.9μm、光源311からスケール200への入射角θが0°(垂直入射)、前述のように第1回折格子領域221の格子ピッチpが4μm、第2回折格子領域222の格子ピッチpが2μmである場合を例にして説明する。
この場合、第1回折格子領域221からの1次(または−1次)回折光の回折角θは、13.0°となり、第2回折格子領域222からの−1次(または1次)回折光の回折角θは、26.7°となる。
よって、5×tan(13.0°)=1.15であることから、第1回折格子領域221からの1次(又は−1次)回折光を受光する第1受光要素351は、入射光の延長線が受光手段320と交わる点から、1.15mm離間した位置に配設されることになる。
同様に、5×tan(26.7°)=2.51であることから、第2回折格子領域222からの−1次(又は1次)回折光を受光する第2受光要素352は、入射光の延長線が受光手段320と交わる点から、2.51mm離間した位置に配設されることになる。
なお、本実施形態では、第1受光要素351は、第1回折格子領域221が設けられている側に配置され、第2受光要素352は、第2回折格子領域222が設けられている側に配置されている。
【0033】
信号処理部400は、受光素子アレイ340からの出力信号を処理してスケール200と検出ヘッド部300との相対変位を検出する第1信号処理回路410と、受光部350からの出力信号を処理して原点を検出する第2信号処理回路420と、を備える。
第1信号処理回路410については、詳細は割愛するが、例えば、各受光素子から出力されるA相(0°)、B相(90°)、C相(180°)、D相(270°)の正弦波信号からA−Cの差動出力およびB−Dの差動出力を得て、これら差動出力からリサージュ図形を合成し、第1トラック210の回折格子と受光素子アレイ340との相対変位量を検出する。
第2信号処理回路420は、第1受光要素351からの受光信号Sを増幅する第1アンプ421と、第2受光要素352からの受光信号Sを増幅する第2アンプ422と、第1アンプ421と第2アンプ422との出力を比較するコンパレータ423と、を備える。
コンパレータ423は、第1アンプ421と第2アンプ422との出力を比較して両出力の一致、不一致を検知し、第1受光要素351と第2受光要素352とで受光される光量が一致したことを検知する。
【0034】
次に、第1実施形態の動作について説明する。
まず、スケール200と検出ヘッド部300との相対変位量を検出する動作について説明する。
検出ヘッド部300がスケール200に対して相対変位するとき、第1トラック210に照射された光が第1トラック210の回折格子により回折される。すると、干渉縞が生じ、この干渉縞は受光素子アレイ340で受光される。そして、第1信号処理回路410により信号処理された結果からスケール200と検出ヘッド部300との相対変位量が検出される。
【0035】
次に、原点に対応する第1変化点223を検出する動作について説明する。
図2から図4は、図中の左側から右側へ向けて検出ヘッド部300がスケール200に対して相対的に移動していく様子を示す図である。
なお、図2から図4の側面図においては、第1トラック210の回折格子および受光素子アレイ340については省略している。
【0036】
まず、図2に示されるように、検出ヘッド部300が第1回折格子領域221に対応する位置にある場合について説明する。
このとき、光源311からの光は第1回折格子領域221に入射し、第1回折格子領域221により回折された1次回折光(および−1次回折光)などが生じる。
第1受光要素351は、第1回折格子領域221にて回折された1次(または−1次)回折光の射出方向に応じて配設されているところ、第1回折格子領域221からの回折光は、第1受光要素351に入射して受光され、第1受光要素351から受光信号Sが出力される。
一方、第2受光要素352は、第1回折格子領域221からの回折光の射出方向からずれた位置に配置されているので、第1回折格子領域221からの回折光は第2受光要素352に入射しない。
すなわち、検出ヘッド部300が第1回折格子領域221に対応する位置にあるときは、図5中の領域Aで示すように、第1受光要素351の出力は最大であるが、第2受光要素352の出力は最小である。
【0037】
次に、図3に示されるように、第1回折格子領域221と第2回折格子領域222とが切り替わる第1変化点223に対応する位置(原点)に検出ヘッド部300がある場合について説明する。
このとき、光源311からの光のスポットが第1変化点223に照射されるので、光の半分が第1回折格子領域221に照射され、残りの半分が第2回折格子領域222に照射されることになる。
すると、第1回折格子領域221から回折光が生じ、かつ、第2回折格子領域222からも回折光が生じる。第1回折格子領域221からの回折光は第1受光要素351に入射して受光され、第2回折格子領域222からの回折光は第2受光要素352に入射して受光される。
このとき、第1受光要素351と第2受光要素352とにて同じ光量が受光されるので、図5中のBで示されるように、第1受光要素351と第2受光要素352とからの受光信号S、Sが一致することになる。第1受光要素351と第2受光要素352とからの受光信号レベルが一致したことがコンパレータ423によって検出されることにより、検出ヘッド部300が原点位置(第1変化点に対応する位置)にあることが検出される。
なお、光源311からの光のうち半分が第1回折格子領域221で回折されて第1受光要素351に入射し、光源311からの光のうち残り半分が第2回折格子領域222で回折されて第2受光要素352に入射することになるので、クロスポイント(図5中のB)では、第1受光要素351および第2受光要素352からの受光信号S、Sが最大値の半分になっている。
【0038】
次に、図4に示されるように、検出ヘッド部300が、第2回折格子領域222に対応する位置にある場合について説明する。
このとき、光源311からの光は第2回折格子領域222に入射し、第2回折格子領域222で回折されて生じる1次回折光(および−1次回折光)は第2受光要素352に入射して受光される。その一方、第1受光要素351には光が入射しない。すなわち、検出ヘッド部300が第2回折格子領域222に対応する位置にあるときは、図5中の領域Cで示すように、第2受光要素352の出力Sは最大であるが、第1受光要素351の出力Sは最小である。
【0039】
このように、検出ヘッド部300が第1変化点223に対応する位置にある場合にのみ第1受光要素351と第2受光要素352との両方に光が入射して受光され、検出ヘッド部300がその他の位置にあるときには、第1受光要素351と第2受光要素352とのどちらか一方でのみ光が受光される。
すなわち、第1受光要素351と第2受光要素352の両方にて光が受光され、コンパレータ423により両受光素子351、352からの受光信号S、Sの一致が検出されたときに、検出ヘッド部300が原点(第1変化点に対応する位置)にあることが判断される。
【0040】
このような構成を備える第1実施形態によれば、次の効果を奏することができる。
(1)光源311からの入射光のスポットの中心が第1変化点223に当たって光が半分に分割されるときにのみ、第1受光要素351と第2受光要素352との受光光量が等しくなり、このときにのみコンパレータ423により一致検出の信号が出力される。従って、第1回折格子領域221と第2回折格子領域222との境目である第1変化点223に対応して設けられた原点を極めて正確に検出することができる。
【0041】
(2)第2トラック220からの回折光が第1受光要素351と第2受光要素352とに受光されたときに第1変化点223を検出する構成としており、例えばスケール200に設けられた遮光部による遮光を検出するものではないので、スケール200の汚れ等で光が遮光された場合であっても原点位置を誤検出するようなことはない。すなわち、誤作動なく、正確に一点において原点検出を行うことができる。
【0042】
(3)原点検出用の回折格子である第2トラック220を形成するにあたっては、例えば従来の遮光部を設ける場合と違って測長用の第1トラック210と同じ回折格子であるので、第1トラック210の回折格子を形成するときに同時に第2トラック220の回折格子を形成できる。さらに、受光手段320においても、受光素子アレイ340を形成する際に同時に受光部350の受光要素(第1受光要素351、第2受光要素352)を設けることができる。よって、製造工程を増やすことなしに原点検出できる変位検出装置100とすることができる。したがって、製造効率を向上させることができるとともに、製造コストを安価にすることができる。
【0043】
(第2実施形態)
次に、本発明の第2実施形態について図6〜図8を参照して説明する。
第2実施形態の基本的構成は、第1実施形態と同様であるが、第2トラック220が格子ピッチの異なる三つの回折格子から構成されている点に特徴を有する。
図6および図7は、図中の左側から右側へ向けて検出ヘッド部300がスケール200に対して相対的に移動して、その途中で検出ヘッド部300が格子ピッチの変化点に対応する位置にある様子を示す図である。
なお、図6および図7の側面図において、第1トラック210の回折格子および受光素子アレイ340については省略している。
【0044】
図6および図7において、スケール200には変位検出用の回折格子である第1トラック(不図示)と、基準点検出用の回折格子である第2トラック230と、が形成されている。
第2トラック230は、格子ピッチが異なる第1回折格子領域231と第2回折格子領域232と第3回折格子領域233とから形成されている。
例えば、第1回折格子領域231の格子ピッチ(第1格子ピッチ)Pは4μmとし、第2回折格子領域232の格子ピッチ(第2格子ピッチ)Pは2μmとし、第3回折格子領域233の格子ピッチPは1μmとすることが例として挙げられる。
第1回折格子領域231と第2回折格子領域232とは、第1変化点234を挟んで連続しており、第2回折格子領域232と第3回折格子領域233とは第2変化点235を挟んで連続している。
ここで、第1変化点234は、検出ヘッド部300の移動範囲において第1基準点として設定された位置に対応して設けられ、第2変化点235は、検出ヘッド部300移動範囲において第2基準点として設定された位置に対応して設けられている。
【0045】
検出ヘッド部300は、受光手段320において第2トラック230からの回折光を受光する受光部360を備え、受光部360は、第1受光要素361と、第2受光要素362と、第3受光要素363と、を備えている。
第1受光要素361は、第1回折格子領域231からの1次(または−1次)回折光を受光する位置に配置されている。
第2受光要素362は、第2回折格子領域232からの−1次(または1次)回折光を受光する位置に配置されている。
第3受光要素363は、第3回折格子領域233からの1次(または−1次)回折光を受光する位置に配置されている。
【0046】
信号処理部400は、受光部360からの信号を処理する第2信号処理回路430を備えている。
第2信号処理回路430は、第1受光要素361からの受光信号Sと第2受光要素362からの受光信号Sとを比較して両出力信号の一致、不一致を検知する第1コンパレータ431と、第2受光要素362からの受光信号Sと第3受光要素363からの受光信号Sとを比較して両信号の一致、不一致を検知する第2コンパレータ432と、を備える。
【0047】
第2実施形態の動作について説明する。
検出ヘッド部300が、第1回折格子領域231に対応する位置にあるときには、第1回折格子領域231からの回折光が第1受光要素361のみに入射して受光されるので、図8中の領域Dで示されるように、第1受光要素361からの出力Sは最大であるが、第2受光要素362および第3受光要素363からの出力信号S、Sは最小である。
検出ヘッド部300が、第2回折格子領域232に対応する位置にあるときには、第2回折格子領域232からの回折光が第2受光要素362にのみ入射して受光されるので、図8中の領域Fで示されるように、第2受光要素362からの出力Sは最大であるが、第1受光要素361および第3受光要素363からの出力信号S、Sは最小である。
検出ヘッド部300が、第3回折格子領域233に対応する位置にあるときには、第3回折格子領域233からの回折光が第3受光要素363にのみ入射して受光されるので、図8中の領域Hで示されるように、第3受光要素363からの受光信号Sは最大であるが、第1受光要素361および第2受光要素362からの受光信号S、Sは最小である。
【0048】
次に、図6に示されるように、第1回折格子領域231と第2回折格子領域232とが切り替わる第1変化点234に対応する位置に検出ヘッド部300がある場合について説明する。
このとき、光源311からの光は、第1変化点234に照射されるので、第1回折格子領域231からの回折光と第2回折格子領域232からの回折光とが生じる。そして、第1回折格子領域231からの回折光は、第1受光要素361にて受光され、第2回折格子領域232からの回折光は第2受光要素362にて受光される。このとき、第1受光要素361と第2受光要素362とにて同じ光量が受光されるので、図8中のEで示されるように、第1受光要素361と第2受光要素362との出力信号が一致することになり、第1コンパレータ431で検出される。この第1コンパレータ431における一致検出により、検出ヘッド部300が第1変化点に対応する第1基準点に位置することが検出される。
また、第2回折格子領域232と第3回折格子領域233とが切り替わる第2変化点235に対応する位置(第2基準点)に検出ヘッド部300がある場合、光源311からの光は第2変化点235に照射されるので、第2回折格子領域232からの回折光と第3回折格子領域233からの回折光とが生じる。そして、第2回折格子領域232からの回折光は、第2受光要素362にて受光され、第3回折格子領域233からの回折光は第3受光要素363にて受光されるので、図8中のGで示されるように、第2受光要素362と第3受光要素363との信号出力S、Sが一致し、第2コンパレータ432で検出される。すると、検出ヘッド部300が第2変化点235に対応する第2基準点に位置することが検出される。
【0049】
このような構成を備える第2実施形態によれば、上記実施形態の効果に加えて次の効果を奏することができる。
(4)第2トラック230が第1回折格子領域231、第2回折格子領域232および第3回折格子領域233の三つの格子ピッチが異なる領域から構成され、第1変化点234および第2変化点235を有するので、第1変化点234に対応する第1基準点に加えて、第2変化点235に対応する第2基準点を検出することができる。そして、第1変化点234では第1受光要素361および第2受光要素362での受光であるのに対して、第2変化点235では第2受光要素362および第3受光要素363での受光であり、光を受ける受光要素が異なるので、第1変化点234と第2変化点235とが区別される。したがって、これら二つ変化点(第1変化点、第2変化点)を二つの基準点として利用できる。例えば、基準点検出にあたって、検出ヘッド部300の位置からみて近い方の変化点(第1変化点または第2変化点)へ移動するようにすれば、速やかに基準点の検出を行うことができる。
【0050】
(5)実際に被測定物の測長や移動テーブルの位置決めにあたっては、基準点からの変位量をインクリメントして絶対位置を求めるところ、第1変化点234に対応する第1基準点と第2変化点235に対応する第2基準点との二つの基準点のうち近い方を基準にしてインクリメントすることにより、インクリメントの長さを短くできるのでインクリメントミスによる測定誤差を小さくすることができる。
【0051】
(第3実施形態)
次に、本発明の変位検出装置に係る第3実施形態について図9〜図11を参照して説明する。
第3実施形態の基本的構成は、第1実施形態と同様であるが、受光部350において1次回折光を受光する受光要素とともに−1次回折光を受光する受光要素を備えている点に特徴を有する。
図9は、図中の左側から右側へ向けて検出ヘッド部300がスケール200に対して相対的に移動して、その途中で検出ヘッド部300が第1変化点223に対応する位置にある様子を示す図である。
なお、図9の側面図において、第1トラック210の回折格子および受光素子アレイ340については省略している。
【0052】
検出ヘッド部300は、受光手段320において第2トラック220からの回折光を受光する受光部370を備え、受光部370は、第1回折格子領域221からの回折光を受光する第1受光要素380と、第2回折格子領域222からの回折光を受光する第2受光要素390と、を備える。
ここで、第1受光要素380は、第1回折格子領域221からの1次回折光を受光する第1受光素子381と、−1次回折光を受光する第2受光素子382と、を備えて構成されている。
第2受光要素390は、第2回折格子領域222からの1次回折光を受光する第3受光素子391と、−1次回折光を受光する第4受光素子392とを備えている。
【0053】
信号処理部400は、受光部370からの信号を処理する第2信号処理回路440を備えている。
第2信号処理回路440は、第1受光素子381の出力Sから第3受光素子391の出力Sを減算して増幅する第1差動増幅器441と、第4受光素子392の出力Sから第2受光素子382の出力Sを減算して増幅する第2差動増幅器442と、第1差動増幅器441の出力と第2差動増幅器442の出力とを比較して両信号の一致、不一致を検知するコンパレータ443と、を備える。
【0054】
第3実施形態の動作について説明する。
検出ヘッド部300が第1回折格子領域221に対応する位置にあるときには、光源からの光が第1回折格子領域221に入射するので、第1回折格子領域221から1次回折光と−1次回折光とが生じる。すると、第1回折格子領域221からの回折光(1次回折光、−1次回折光)は、第1受光要素380を構成する第1受光素子381と第2受光素子382とに入射して受光される。一方、第2受光要素390を構成する第3受光素子391と第4受光素子392とには光が入射しない。
したがって、検出ヘッド部300が第1回折格子領域221に対応する位置にあるときには、図10中、領域Iで示されるように、第1受光素子381および第2受光素子382の信号出力S、Sは最大であるが、第3受光素子391および第4受光素子392の信号出力S、Sは最小となる。
このとき、図11中の領域Lで示されるように、第1差動増幅器441からの出力(S−S)は最大となり、第2差動増幅器442からの出力(S−S)は最小となる。
【0055】
また、検出ヘッド部300が第2回折格子領域222に対応する位置にあるときには、第2回折格子領域222からの1次回折光と−1次回折光とが第2受光要素390で受光される。すなわち、第2回折格子領域222からの1次回折光は第3受光素子391で受光され、第2回折格子領域222からの−1次回折光は、第4受光素子392で受光される。一方、第1受光要素380を構成する第1受光素子381と第2受光素子382とには光が入射しない。
したがって、検出ヘッド部300が第2回折格子領域222に対応する位置にあるときは、図10中の領域Kで示されるように第3受光素子391および第4受光素子392の信号出力S、Sは最大であるが、第1受光素子381および第2受光素子382の信号出力S、Sは最小である。
このとき、図11中の領域Nで示されるように、第2差動増幅器442からの出力(S−S)は最大であるが、第1差動増幅器441からの出力(S−S)は最小となる。
【0056】
次に、図9に示されるように、第1変化点223に対応する原点位置に検出ヘッド部300がある場合について説明する。
このとき、光源311からの光は第1変化点223に照射されるので、第1回折格子領域221からの回折光と第2回折格子領域222からの回折光とが生じる。そして、第1回折格子領域221での回折で生じる1次回折光および−1次回折光はそれぞれ第1受光素子381と第2受光素子382とにて受光される。
また、第2回折格子領域222での回折で生じる1次回折光および−1次回折光はそれぞれ第3受光素子391と第4受光素子392とにて受光される。
すなわち、第1受光素子381、第2受光素子382、第3受光素子391および第4受光素子392のすべてにおいて光が入射して受光されるので、図10中のJで示されるように、第1から第4受光素子381、382、391、392の信号出力S、S、S、Sが総て等しくなる。
すると、図11中のMで示されるように、第1差動増幅器441からの出力(S−S)と第2差動増幅器442からの出力(S−S)とが一致し、コンパレータ443により検出される。すると、検出ヘッド部300が第1変化点223に対応する原点にあることが検出される。
【0057】
このような構成によれば、上記実施形態の効果(1)〜(4)に加えて次の効果を奏することができる。
(6)1次回折光を受光する第1受光素子381および第3受光素子391に加えて、−1次回折光を受光する第2受光素子382および第4受光素子392を備え、第1差動増幅器441と第2差動増幅器442により第1から第4受光素子381、382、391、392の出力に対して差動処理を行う。すると、電源ノイズ等の外乱ノイズの影響が低減される。例えば、差動増幅器441、442のマイナス端子に入力される信号が反転されるので、プラス端子に入力される信号との間でノイズがキャンセルされる。このように外乱の影響が低減されるので、第1変化点223に対応する原点位置をより高精度に検出することができる。
【0058】
(第4実施形態)
次に、本発明の変位検出装置に係る第4実施形態について図12、図13を参照して説明する。
第4実施形態の基本的構成は、第1実施形態と同様であるが、スケールの端部を検出する構成を備える点に特徴を有する。
図12において、スケール200の端部には、光源311からの光を遮光する遮光部240が設けられている。本実施形態では、第2回折格子領域222が形成されている側の端部に遮光部240が設けられている。
この構成において、検出ヘッド部300が第1回折格子領域221に対応する位置にあれば、第1回折格子領域221からの回折光が第1受光要素351により受光される(図13中の領域O参照)。
また、検出ヘッド部300が第1変化点223に対応する位置にあるときには、第1回折格子領域221と第2回折格子領域222とからの回折光がそれぞれ第1受光要素351および第2受光要素352にて受光される(図13中のP参照)。このとき、検出ヘッド部300が第1変化点に対応する原点位置にあるとこが検出される。
検出ヘッド部300が第2回折格子領域222に対応する位置にあるときには、第2回折格子領域222からの回折光が第2受光要素352にて受光される(図13中のQ参照)。
【0059】
検出ヘッド部300がスケール200の端部まで移動すると、光源311からの光が遮光部240で遮光される。すると、遮光部240の手前では第2回折格子領域222からの回折光が第2受光要素352に入射して受光されていたのに対し、遮光部240によって光が遮られると第2受光要素352にも光が入射しなくなる(図13中のR参照)。
このように、光が遮光されて第1受光要素351および第2受光要素352の両方に光が入射しなくなったとき、検出ヘッド部300がスケール200の端部に達したことが検出される。
【0060】
このような構成によれば、検出ヘッド300がスケール200の端部に達したことがわかることから検出ヘッド部300とスケール200との相対移動限界を設定でき、検出ヘッド部300がこの限界を超えて移動しないようにできる。すると、変位検出装置100の故障等を防止することができる。
【0061】
(第5実施形態)
次に、本発明の第5実施形態について図14を参照して説明する。
第5実施形態は、スケール200と、検出ヘッド部300と、信号処理部400と、を備える。
スケール200には回折格子が形成されているところ、一つのトラックのみが形成されている。この回折格子250は、互いに格子ピッチが異なる第1回折格子領域251と第2回折格子領域252とから構成されている。
そして、回折格子250のうち大部分は第1回折格子領域251であり、一部分であるスケール端部に第2回折格子領域252が形成されている。
【0062】
検出ヘッド部300は、スケール200に向けて光を照射する光照明手段(図14中不図示)と、回折格子250からの回折光を受光する受光手段320を備えている。
受光手段320は、基板330と、第1回折格子領域251からの回折光を受光する第1受光要素341と、第2回折格子領域252からの回折光を受光する第2受光要素352と、を備える。第1受光要素341と第2受光要素352とは、一列に設けられている。
第1受光要素341は、第1回折格子領域251からの回折光により形成される干渉縞の光を受光してスケール200と受光手段320との相対変位量を検出する受光素子アレイにより構成されている。第1受光要素341である受光素子アレイは、第1回折格子領域251の格子ピッチに対応する所定ピッチで配設された受光素子により構成されている。詳細は割愛するが、受光素子アレイを構成する受光素子は、第1回折格子領域251からの回折光にて形成される明暗縞の90°ずつ位相が異なる光を受光するように配設されている。なお、受光素子アレイの構成としては、特に限定されず、例えば、120°ずつ位相が異なる3相の信号を出力できるようにしてもよい。
【0063】
第2受光要素352は、第2回折格子領域252からの回折光を受光する位置に配設された受光素子である。
【0064】
信号処理部400は、第1受光要素(受光素子アレイ)341からの出力信号を処理してスケール200と検出ヘッド部300との相対変位量を検出する第1信号処理回路450と、第1受光要素341と第2受光要素352とからの出力信号を処理して原点を検出する第2信号処理回路460と、を備える。
第1信号処理回路450は、第1受光要素341の各受光素子から出力されるA相(0°)、B相(90°)、C相(180°)、D相(270°)の正弦波信号からA−Cの差動出力を得る第1差動増幅器451と、B−Dの差動出力を得る第2差動増幅器452と、を備え、第1差動増幅器451および第2差動増幅器452からの差動出力からリサージュ図形を合成し、回折格子の第1回折格子領域251と第1受光要素(受光素子アレイ)360との相対変位量を検出する。
【0065】
第2信号処理回路460は、第1受光要素341の各受光素子からの出力が統合された信号を増幅する第1アンプ461と、第2受光要素352からの出力信号を増幅する第2アンプ462と、第1アンプ461の出力と第2アンプ462の出力とを比較するコンパレータ463と、を備える。
【0066】
このような構成を備える第5実施形態の動作について説明する。
検出ヘッド部300が第1回折格子領域251に対応する位置にあるとき、光源からの光は第1回折格子領域251に照射されて第1回折格子領域251からの回折光が生じる。そして、検出ヘッド部300とスケール200との相対変位によって第1回折格子領域251からの回折光による干渉縞の明暗が変化し、この明暗縞の変化は第1受光要素341の受光素子アレイで受光される。受光素子アレイの各受光素子からの信号が第1信号処理回路450により信号処理された結果によりスケール200と検出ヘッド部300との相対変位量が検出される。
なお、第1回折格子領域251による回折光は第2受光要素352には入射しないので、第2受光要素352では受光されない。
【0067】
検出ヘッド部300が、第1変化点253に対応する位置にあるときには、第1回折格子領域251からの回折光と第2回折格子領域252からの回折光とが生じる。
第1回折格子領域251からの回折光は第1受光要素341の受光素子アレイで受光され、第2回折格子領域252からの回折光は第2受光要素352である受光素子により受光される。
すると、第1受光要素341の受光素子アレイを構成する各受光素子から受光信号が出力され、これら出力信号は一つに加算されて第1アンプ461で増幅される。また、第2受光要素352からの受光信号は第2アンプ462で増幅される。第1アンプ461からの出力と第2アンプ462からの出力とはコンパレータ463で比較される。第1受光要素341と第2受光要素352との両方に光が入射して受光されているところ、コンパレータ463により第1アンプ461からの出力と第2アンプ462からの出力との一致が検出される。このコンパレータ463による一致検出により検出ヘッド部300が第1変化点253に対応する原点に位置していることが検出される。
【0068】
このような第5実施形態によれば、上記実施形態の効果に加えて次の効果を奏することができる。
スケール200には一のトラックの回折格子250が形成され、一つのトラック内において第1回折格子領域251と第2回折格子領域252とが設けられており、第1回折格子領域251が変位検出に用いられるとともに、さらに、第1回折格子領域251と第2回折格子領域252との変化点が原点として検出されるようにするので、変位検出用の回折格子のトラックと基準点検出用のトラックとを別個に備える場合に比べて経済的であり、かつ、コンパクトな構成とすることができる。
【0069】
なお、第5実施形態において、受光手段には第1受光要素としての受光素子アレイのアラインメントに連続して第2受光要素の受光素子が配設されている例を示したが、図15に示されるように、第1回折格子領域からの回折光を受光してスケールと検出ヘッド部との相対変位量を検出する受光素子アレイ340と、検出ヘッド部300が第1変化点に対応する位置にあるときに第1回折格子領域251と第2回折格子領域252とからの回折光をそれぞれ受光する受光要素を有する受光部350と、を別個独立に備えていてもよい。
【0070】
なお、本発明は前述の実施形態に限定されず、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
上記実施形態においては、測長用の回折格子(第1トラック210の回折格子)からの回折光を受光する受光手段として受光素子アレイ340を例にして説明したが、インデックススケールを備えた構成であってもよい。
透過型の回折格子を用いる場合を例にして説明したが、反射型の回折格子を用いてもよいことはもちろんである。
【産業上の利用可能性】
【0071】
本発明は、光学式の変位測定装置に利用できる。
【図面の簡単な説明】
【0072】
【図1】本発明の変位検出装置に係る第1実施形態の全体構成を示す図。
【図2】第1実施形態において、検出ヘッド部が第1回折格子領域に対応する位置にある様子を示す図。
【図3】第1実施形態において、検出ヘッド部が第1変化点に対応する位置にある様子を示す図。
【図4】第1実施形態において、検出ヘッド部が第2回折格子領域に対応する位置にある様子を示す図。
【図5】第1実施形態において、受光部から出力される信号の一例を示す図。
【図6】本発明の変位検出装置に係る第2実施形態において、検出ヘッド部が第1変化点に対応する位置にある様子を示す図。
【図7】第2実施形態において、検出ヘッド部が第2変化点に対応する位置にある様子を示す図。
【図8】第2実施形態において、受光部から出力される信号の一例を示す図。
【図9】本発明の変位検出装置に係る第3実施形態において、検出ヘッド部が第1変化点に対応する位置にある様子を示す図。
【図10】第3実施形態において、受光部から出力される信号の一例を示す図。
【図11】第3実施形態において、受光部から出力される信号を差動処理した結果の一例を示す図。
【図12】本発明の変位検出装置に係る第4実施形態の構成を示す図。
【図13】第4実施形態において、受光部から出力される信号の一例を示す図。
【図14】本発明の変位検出装置に係る第5実施形態において、スケール、受光手段、信号処理部の構成を示す図。
【図15】第5実施形態において受光部の変形例を示す図。
【図16】従来の変位検出装置の構成を示す図。
【図17】従来の変位検出装置において、受光部から出力される信号レベル変化の一例を示す図。
【図18】従来の変位検出装置の構成を示す図。
【図19】従来の変位検出装置において、受光部から出力される信号を処理して得られるS字信号の一例を示す図。
【符号の説明】
【0073】
100…変位検出装置、200…スケール、210…第1トラック、220…第2トラック、221…第1回折格子領域、222…第2回折格子領域、223…第1変化点、230…第3トラック、231…第1回折格子領域、232…第2回折格子領域、233…第3回折格子領域、234…第1変化点、235…第2変化点、240…遮光部、250…回折格子、251…第1回折格子領域、252…第2回折格子領域、253…第1変化点、300…検出ヘッド部、310…光照明手段、311…光源、312…コリメートレンズ、313…ピンホール板、315…ピンホール、320…受光手段、330…基板、340…受光素子アレイ、341…第1受光要素、350…受光部、351…第1受光要素、352…第2受光要素、360…受光部、361…第1受光要素、362…第2受光要素、363…第3受光要素、370…受光部、380…第1受光要素、381…第1受光素子、382…第2受光素子、390…第2受光要素、391…第1受光素子、392…第2受光素子、400…信号処理部、410…第1信号処理回路、420…第2信号処理回路、421…第1アンプ、422…第2アンプ、423…コンパレータ、430…第2信号処理回路、431…第1コンパレータ、432…第2コンパレータ、440…第2信号処理回路、441…第1差動増幅器、442…第2差動増幅器、443…コンパレータ、450…第1信号処理回路、451…第1差動増幅器、452…第2差動増幅器、460…第2信号処理回路、461…第1アンプ、462…第2アンプ、463…コンパレータ、600…変位検出装置、610…スケール、611…回折格子、612…遮光部、620…検出ヘッド部、621…光源、623…コリメートレンズ、624…受光手段、625…受光素子アレイ、626…受光部、630…信号処理部、710…スケール、712A…エッジ、712B…エッジ、712…遮光部、720…検出ヘッド部、721…受光手段、722A…受光素子、722B…受光素子、722…受光部。

【特許請求の範囲】
【請求項1】
回折格子を有するスケールと、前記スケールに向けて光を照射する光照明手段および前記回折格子からの回折光を受光する受光手段を有する検出ヘッド部と、前記受光手段から出力される信号を処理する信号処理部と、を備え、前記スケールと前記検出ヘッド部との相対変位量を検出する変位検出装置において、
前記回折格子は、一のトラック内において第1の格子ピッチで形成された第1回折格子領域と、前記第1回折格子領域とは第1変化点を境に連続して形成されているとともに前記第1の格子ピッチとは異なる第2の格子ピッチで形成された第2回折格子領域と、を有し、
前記受光手段は、前記第1回折格子領域にて回折される回折光を受光する位置に配設された第1受光要素と、前記第2回折格子領域にて回折される回折光を受光する位置に配設された第2受光要素と、を有し、
前記信号処理部は、前記第1変化点に照射された光が前記第1回折格子領域と前記第2回折格子領域とにて回折されて生じた回折光を前記第1受光要素と前記第2受光要素とで受光した際に前記第1受光要素と前記第2受光要素とから出力される信号レベルが一致したことを検出する
ことを特徴とする変位検出装置。
【請求項2】
請求項1に記載の変位検出装置において、
前記回折格子は、さらに、前記第2回折格子領域とは第2変化点を境にして連続して形成されているとともに前記第1の格子ピッチおよび前記第2の格子ピッチとは異なる第3の格子ピッチで形成された第3回折格子領域を有し、
前記受光手段は、さらに、前記第3回折格子領域にて回折される回折光を受光する第3受光要素を有し、
前記信号処理部は、さらに、前記第2変化点に照射された光が前記第2回折格子領域と前記第3回折格子領域とにて回折されて生じた回折光を前記第2受光要素と前記第3受光要素とで受光した際に前記第2受光要素と前記第3受光要素とから出力される信号レベルが一致したことを検出する
ことを特徴とする変位検出装置。
【請求項3】
請求項1に記載の変位検出装置において、
前記第1受光要素は、前記第1回折格子領域からの1次回折光を受光する第1受光素子と、前記第1回折格子領域からの−1次回折光を受光する第2受光素子と、を備え、
前記第2受光要素は、前記第2回折格子領域からの1次回折光を受光する第3受光素子と、前記第2回折格子領域からの−1次回折光を受光する第4受光素子と、を備え、
前記信号処理部は、前記第1受光素子および前記第2受光素子のいずれか一方と前記第4受光素子との差動出力を得る第1差動増幅器と、前記第1受光素子および前記第2受光素子のいずれか他方と前記第3受光素子との差動出力を得る第2差動増幅器と、を有し、前記第1差動増幅器と前記第2差動増幅器とからの信号レベルが一致したことを検出する
ことを特徴とする変位検出装置。
【請求項4】
請求項1から請求項3のいずれかに記載の変位検出装置において、
前記スケールの端部には、光を遮光する遮光部が設けられている
ことを特徴とする変位検出装置。
【請求項5】
請求項1に記載の変位検出装置において、
前記第1受光要素は、前記第1回折格子領域にて回折される回折光の明暗パターンに対応して配設された受光素子アレイから構成され、
前記第2受光要素は、前記第2回折格子領域にて回折される回折光を受光する受光素子を有し、
前記信号処理部は、前記受光素子アレイからの出力信号を処理して前記スケールと前記検出ヘッド部との相対変位を検出する第1信号処理回路と、前記第1変化点に照射された光が前記第1回折格子領域と前記第2回折格子領域とにて回折されて生じた回折光を前記第1受光要素と前記第2受光要素とで受光した際に前記第1受光要素と前記第2受光要素とから出力される信号レベルが一致したことを検出する第2信号処理回路と、を備える
ことを特徴とする変位検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公開番号】特開2006−71535(P2006−71535A)
【公開日】平成18年3月16日(2006.3.16)
【国際特許分類】
【出願番号】特願2004−256903(P2004−256903)
【出願日】平成16年9月3日(2004.9.3)
【出願人】(000137694)株式会社ミツトヨ (979)
【Fターム(参考)】