説明

有機性廃水の処理装置

【課題】 有機性固形物を多く含む廃水であっても、高度に処理することのできる処理装置を提供する。
【解決手段】 有機性廃水の処理装置100は、酸生成槽14、嫌気性処理槽16、酸生成槽18、嫌気性処理槽20、可溶化処理槽22が直列に連結されている。嫌気性処理槽20は、廃水導入部42と、嫌気性汚泥を収容する空間を画成する側壁を有し、導入された有機性廃水を嫌気性汚泥を通して上向きに流動させ嫌気性処理を行う上向流部44と、上向流部44で処理され上向流部44の上端を越流した処理水から固形物を分離する固液分離部48と、固液分離部48と上向流部44の有機性廃水が導入された部位よりも上方の部位とを繋ぎ、固液分離部48で分離された固形物を上向流部44へ案内する流動体循環経路50とを有する。固液分離部48により、処理水からSSを効果的に分離できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固形物を多く含有するビール製造工場等の有機性廃水を高度に処理できる有機性廃水の処理装置に関する。
【背景技術】
【0002】
下水、し尿、ビール製造、食品及び畜産等の分野で廃棄される有機性廃水の処理においては、近年、省エネルギー型である嫌気性処理方法が多く利用されている。中でも嫌気性微生物からなるグラニュール(例えばグラニュールメタン菌)を利用するUASB式(Upflow Anaerobic Sludge Blanket:上向流嫌気性汚泥床式)、あるいはEGSB式(Expanded Granular Sludge Blanket:膨張粒状スラッジブランケット式、EGSBは汚泥床内の液の上昇流速がUASBに比べて速いというだけの違いなので、以下は上向流式嫌気性汚泥床に統一して記述する)と標準活性汚泥法を代表とする好気性処理とを組み合わせ、河川放流が可能な性状まで廃水を処理する廃水処理方法が普及している。
【0003】
しかし、この方法では、好気性処理での空気の曝気動力費が大きいこと、また余剰汚泥も多くなるという問題がある。
【0004】
この問題を改善するための方法としては、UASB式嫌気性処理をシリーズ(直列)で連結して処理する方法が提案されている(例えば、特許文献1参照)。この方法では、2つのUASB式処理槽を連結し、第1段目の処理槽で処理した後、再度、第2段目の処理槽で処理するという嫌気2段処理のため、処理性能が嫌気1段処理に比べて良好であり、また第2段目を好気処理する方法に比べて汚泥発生量が少ないという利点を有している。
【特許文献1】特開2001−9494号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、上述したような嫌気性処理槽を2段に配した従来の処理手段でも、処理されるべき廃水中に有機性の固形物が多く含まれる場合は、固形物が消化されず、要求される処理性状を得ることはできないという問題点があった。すなわち、有機性固形物に対する嫌気性処理が不十分或いは全く処理されず、処理が完了した処理水中に比較的多くの有機物固形物が残存してしまうことがある。そのため、廃水規制物質である化学的酸素要求量(COD)の多い物質、いわゆるCOD物質が多く残存してしまい、河川等への直接放流のための規制値を満たすことができない事態も考えられる。
【0006】
本発明は、かかる事情に鑑みてなされたものであり、その目的は、有機性固形物を多く含む廃水であっても、高度に処理することのできる処理装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明は、有機性固形物を含有する有機性廃水を嫌気性処理する有機性廃水の処理装置であって、酸生成槽と、酸生成槽から流出された有機性廃水を嫌気性汚泥を用いて嫌気性処理する嫌気性処理槽と、を含む嫌気性処理部が直列に複数段連結されてなり、複数段の嫌気性処理部の各嫌気性処理槽の少なくとも1つは、酸生成槽から流出された有機性廃水を導入するための廃水導入部と、嫌気性汚泥を収容する空間を画成する側壁を有し、導入された有機性廃水を嫌気性汚泥を通して上向きに流動させ嫌気性処理を行う上向流部と、上向流部で処理され上向流部の上端を越流した処理水から固形物を分離する固液分離部と、固液分離部と、固液分離部で分離された固形物を上向流部へ案内する流動体循環経路と、を有することを特徴とする。
【0008】
この構成によれば、嫌気性処理部が複数段連結されているので、1段のみの嫌気性処理に比べて処理性能が良好となる。また、各嫌気性処理部は酸生成槽を備えるため、有機性成分を有機酸等に分解することが可能であり、嫌気性処理槽における嫌気性処理を効率良く行うことができる。そして、複数段の嫌気性処理部の各嫌気性処理槽の少なくとも1つにおいて、固液分離部を有するので、有機性固形物を多く含む廃水であっても固形物が効果的に処理水から取り除かれ、廃水規制されるCODなどを効果的に削減することができる。また、嫌気性処理槽と一体として固液分離部を備えているので別途固液分離槽を設ける必要がなく、設置スペースを小さくすることができる。さらに固液分離部は、上向流部の上端を越流した処理水から固形物を分離する。このため、固形物が上向流部の上端まで達したとしても、その後に処理水から分離されるので、上向流部の鉛直方向の高さに関わりなく分離性能を確保することができる。従って、上向流部の鉛直方向の高さを抑えることができ、嫌気性処理槽全体を低背化することができる。なお、本発明において、上向流部の上端とは、上向流部の空間を仕切る部材の鉛直方向の端部であって、最も高い位置にある端部をいう。
【0009】
また、嫌気性処理槽は、流動体循環経路を設けているので、固液分離部で分離された固形物が、上昇してくる固形物とは別の経路で上向流部に戻される。よって分離された固形物中に嫌気性汚泥が含まれていたとしても、下方へ向かう固形物中の嫌気性汚泥と上昇中の固形物中の嫌気性汚泥とが混在しにくくなり、上向流部に収容された嫌気性汚泥が上下で入れ替わることにより、嫌気性汚泥の活性が均一化される。また、固形物は上向流部に戻されるため、上向流部に収容された嫌気性汚泥が槽外へ流出することを防ぐことができる。また、流動体循環経路は、上向流部とは別の経路であり、固液分離部と廃水導入部の上方を繋いでいるので、上向流部での上向流の影響を受けて流動体循環経路では下降流が発生することとなる。よって、流動体循環経路を沈降する固形物は重力及び下降流によって円滑に下方へ案内される。
【0010】
この場合、複数段の嫌気性処理部の少なくとも最後段の嫌気性処理部の嫌気性処理槽は、廃水導入部と、上向流部と、固液分離部と、流動体循環経路とを有することが好適である。この構成によれば、最後段の嫌気性処理部の嫌気性処理槽が固液分離部を有するため、最終的な処理水は、固体分(汚泥)が十分に分離された良好な処理水となる。
【0011】
この場合、例えば、嫌気性処理部を2段備えることが好適である。嫌気性処理部を2段とすることで、比較的簡便な構造で、高い処理能力を備えた処理装置とできる。
【0012】
この場合、流動体循環経路は、固液分離部と、上向流部の有機性廃水が導入された部位よりも上方の部位とを繋ぐようになっていることが好適である。この構成によれば、流動体循環経路が、上向流部における廃水導入部位より上方の部位に固形物を戻すので、廃水の流れが乱れず、廃水が槽内をスムーズに流れるようになる。
【0013】
この場合、嫌気性処理部の嫌気性処理槽の固液分離部で分離された固形物を可溶化処理するための可溶化処理槽を備え、可溶化処理槽で可溶化処理された固形物を複数段の嫌気性処理部の少なくともいずれか1つに戻すラインを備えることが好適である。
【0014】
固形物を可溶化処理槽により可溶化処理することにより、固形物を減量化することができる。さらに、可溶化処理された固形物をラインにより嫌気性処理部に戻すことにより、固形物中に含まれる嫌気性微生物を、再び嫌気性処理部に戻して再利用することができる。
【0015】
この場合、複数の嫌気性処理部それぞれの少なくとも2つの嫌気性処理槽同士を繋ぎ、嫌気性処理槽内の嫌気性汚泥を交換するラインを備えることが好適である。この構成によれば、嫌気性処理槽同士の汚泥を交換することにより、各嫌気性処理槽内の汚泥量を調節したり、菌体を高活性に保つことができるので、装置を安定して稼動させることができ、良好な処理性能を保つことができる。
【0016】
この場合、流動体循環経路は、固液分離部から上向流部の廃水導入部よりも上方の箇所まで伸びた管状部材を含むことが好適である。この構成によれば、従来型の嫌気性処理槽の外側に管状部材を取り付けるだけで、流動体循環経路を構成することができ、既存の装置を本発明の装置に改造することが容易となる。
【発明の効果】
【0017】
本発明による有機性廃水の処理装置によれば、有機性固形物を多く含む廃水であっても固形物が効果的に処理水から取り除かれ、廃水規制されるCODなどを効果的に削減することができる。
【発明を実施するための最良の形態】
【0018】
以下、本発明の実施の形態について添付図面を参照して説明する。なお、同一要素には同一符号を用い、重複する説明は省略する。
【0019】
図1は、本発明の第1実施形態に係る有機性廃水の処理装置を示す図である。図1に示すように、本実施形態における有機性廃水の処理装置100は、酸生成槽14、嫌気性処理槽16、酸生成槽18、嫌気性処理槽20、可溶化処理槽22を備えている。酸生成槽14と嫌気性処理槽16は第1段目の嫌気性処理部10を構成し、酸生成槽18と嫌気性処理槽20は第2段目の嫌気性処理部12を構成する。第1段目の嫌気性処理部10と第2段目の嫌気性処理部12は直列に2段に連結されている。
【0020】
酸生成槽14は、酸発酵反応を行う通性嫌気性微生物を液相内に浮遊状態で保持しており、有機性成分を有機酸(低級脂肪酸)等に分解することが可能となっている。この酸生成槽14には、固形物を含有する有機性廃水が供給されるが、廃水中に大きな夾雑物が含まれる場合には、あらかじめ粗めのスクリーン等で夾雑物を除去した後、有機性廃水が酸生成槽14に供給される。酸生成槽14では、有機物の分解によって有機物などが生成して酸性化あるいはアルカリ化するので、有機性廃水のpHに応じて酸やアルカリ等の中和剤が添加される。
【0021】
酸生成槽14内で処理された廃水は、配管(ライン)24から廃水導入部26を介して嫌気性グラニュール汚泥(以下、単にグラニュール汚泥と記す)が保持された嫌気性処理槽16に供給される。この嫌気性処理槽16は、いわゆるUASB式や、EGSB式といった上向流式の嫌気性処理槽である。廃水中の有機物は嫌気性処理槽16内に形成されたグラニュール汚泥層28において、メタン菌などの働きによってメタンガス等に変換される。生成されたメタン等のガスは配管(ライン)38を介して取り出される。
【0022】
嫌気性処理槽16は、気(メタンガス等)−固(グラニュール汚泥)−液(処理水)の三相分離を行う三相分離部30が備えられている。しかし、廃水中のSS(懸濁物質:Suspended Solid)は密度が小さく、沈降性の悪い固形物なので処理水と共に嫌気性処理槽16から流出する。
【0023】
嫌気性処理槽16の処理水の一部は配管(ライン)32を介して酸生成槽14に返送され、残部は配管(ライン)34を介して第2段目の嫌気性処理部12の酸生成槽(貯留槽の機能も兼ねる)18に供給される。
【0024】
なお、本実施形態において、嫌気性処理槽16内の液の上昇流速は速いので、スラッジベッド層とスラッジブランケット層の区別がほとんどなく、主にスラッジブランケット層のみの流動化したグラニュール汚泥層28となっており、廃水中のSSは嫌気性処理槽16内のグラニュール汚泥層28に保持されることなく嫌気性処理槽16から流出する。
【0025】
嫌気性処理槽16の流出水は配管(ライン)34を介して第2段目の嫌気性処理部12の酸生成槽18に供給され、残存する有機物等が有機酸等に変換される。酸生成槽18も、第1段目の嫌気性処理部10の酸生成槽14と同様に、酸生成や後段のメタン発酵に適したpHに調整するため、必要に応じて酸あるいはアルカリが添加される。
【0026】
酸生成槽18の流出水は配管(ライン)40を介して上部に固液分離部48を有する第2の嫌気性処理槽20の底部へ導入され、再度、嫌気性処理が施される。嫌気性処理槽20で発生するメタン等のガスは配管(ライン)54を介して取り出される。
【0027】
図2は、本発明の第1実施形態に係る固液分離部を有することを特徴とする嫌気性処理槽を示す図である。この嫌気性処理槽20は、いわゆるUASB式や、EGSB式といった上向流式の嫌気性処理槽である。嫌気性処理槽20は四角柱状の形状をなしており、底壁64、側壁66、および上壁68を有している。側壁66は、底壁64の縁部から上に伸びて設けられている。側壁66の上端70は上壁68と接触せず開口されている。側壁66は、グラニュール汚泥を収容する空間を画成し、有機性廃水をグラニュール汚泥を通して上向きに流動させ嫌気性処理を行う上向流部を構成する。以下、側壁66で囲まれた内側の空間を流路R1とする。
【0028】
廃水導入部42が、上向流部44の下部において、側壁66を挿通するように設けられている。廃水導入部42は、外部から供給される廃水を流路R1へ導入する。廃水導入部42には多数の出水口43が設けられており、これら出水口43からは廃水が噴出されるようになっている。
【0029】
流路R1の下部には、グラニュール汚泥層46となるグラニュール汚泥が充填されており、その中にメタン生成菌が存在する。グラニュール汚泥層46の汚泥中のメタン生成菌は、廃水導入部42から導入された廃水を嫌気性処理し、廃水中の有機物を分解し、メタンガス、炭酸ガス等のガスを発生する。なお、処理後の廃水(以下「処理水」と称する)は排水口78を通じて嫌気性処理槽20の外部へ排出される。また、有機物の分解によって生じたメタンガス、炭酸ガス等のガスは、上壁68に設けられたガス排出口80を通じて嫌気性処理槽20の外部へ排出される。
【0030】
中間壁72が、側壁66の上部を囲繞するように配置され、上壁68から下方に伸びている。また外側壁74が、側壁66の上部から冠状に張り出し、中間壁72を囲繞するように配置され、上方に伸びている。外側壁74の上端は上壁68と接触せず開口されている。中間壁72の下端は、側壁66の上端70及び外側壁74の上端よりも低い位置にある。また、外側壁74の上端は側壁66の上端70よりもやや高い位置にある。外側壁74の外壁にはトラフ部76が設けられている。トラフ部76の上端は上壁68の縁部に連なっている。トラフ部76の側壁には排水口78が貫通して形成されている。以下、側壁66と中間壁72に囲まれた空間を流路R2とし、中間壁72と外側壁74に囲まれた空間を流路R3とし、外側壁76とトラフ部76に囲まれた空間を流路R4とする。これらの流路R2,R3,およびR4により、固液分離部48が構成される。
【0031】
管状部材(流動体循環経路)50が、流路R2および流路R3の下端から側壁66の下部まで伸びている。管状部材50は、側壁66の外側に露出して設けられている。管状部材50は、固液分離部48で分離された固形物を上向流部44に案内する。以下、管状部材50の中空部分の空間を流路R5とする。流路R5の一端は、管状部材50の管入口49を介して流路R2および流路R3と繋がっている。また、流路R5の他端は、管状部材50の管出口51を介して流路R1の下部と繋がっている。管出口51は、廃水導入部42よりも上方に設けられている。
【0032】
流路R5の下部には、引抜口(引抜き経路)82が設けられている。引抜口82はバルブ58に接続されており、バルブ58を開くことによって流路R5を沈降してきたSSが引抜口82を通過して嫌気性処理槽20の外部へ排出される。
【0033】
以下、嫌気性処理槽20の運転時の動作について説明する。嫌気性処理槽20の運転時においては、廃水導入部42から流路R1へ常に廃水が導入されている。廃水が継続的に導入されているので、嫌気性処理槽20内は外側壁74の上端の高さまで廃水が満たされ、液面Hが形成される。
【0034】
廃水導入部42から導入された廃水は、出水口43から上向きに噴出され、グラニュール汚泥層46の汚泥と混合され、汚泥によって嫌気性処理がされる。嫌気性処理によって発生したガスは気泡となって流路R1を上昇する。出水口43からの噴出および、上記気泡の上昇によって流路R1内には上向流が生じ、廃水は上向きに流動する。このようにして、流路R1は上向流部を構成し、側壁66は上向流部の側壁を構成する。また、側壁66の上端70は上向流部の上端を構成する。廃水は流路R1を上向きに流動しながら、グラニュール汚泥層46の汚泥によって有機物が分解され、液面Hに近づくに従って有機物濃度が小さくなってゆく。よって、液面H付近の液体はほとんどが有機物含有量が少ない処理水となっている。
【0035】
汚泥(固形物)の一部は、上記ガスの気泡が付着することによって持ち上げられ、液面Hに達する。汚泥が液面Hに浮いている間に、汚泥からガスの気泡が分離される。また、汚泥は液面Hに浮いている間に互いに集結し、粒子が大きくなりグラニュール状となる。汚泥から離れたガスは液面Hと上壁68との間の空間に溜まり、ガス排出管80を通じて外部へ排出される。
【0036】
液面Hを浮遊し側壁66の上端70を越流した汚泥は、処理水と共に中間壁72に案内され、処理水と共に中間壁72と側壁66とに挟まれた流路R2を流路R5へ向けて沈降する。このように、中間壁72は、案内板として機能する。
【0037】
流路R2を下降する汚泥はガスの気泡が離れた状態であるので、そのまま管入口49を介して流路R5へ向けて重力によって容易に沈降していく。また、側壁66を乗り越えた処理水の一部が流路R5へ流れていくので、流路R5を沈降する汚泥は、処理水に押し流され、円滑に流路R5を沈降する。残りの処理水は中間壁72と外側壁74とに挟まれた流路R3を通じて、外側壁74の上端を乗り越え、トラフ部76に囲まれた流路R4へと溢れ出す。流路R4へ溢れた処理水は排水口78を介して嫌気性処理槽20の外部へと排出される。排出された処理水の一部は、図1に示す配管(ライン)52を介して酸生成槽18に戻される。また、排出された処理水は、図1に示す配管(ライン)56を通じて処理装置100外に排出され、直接系外に放流したり、あるいは必要に応じて更に、生物処理、物理化学的処理等によって有機物や窒素成分、リン成分を取り除いた後放流される。
【0038】
このように、上端70の外周部に設けられた流路R2、流路R3、及び中間壁72は、汚泥と処理水とを分離する固液分離部48を構成する。
【0039】
流路R5を沈降した汚泥は、管出口51へ達し、流路R1の廃水導入部42よりも上方へ戻される。流路R1へ戻された汚泥は再び上向流により上昇しながら廃水導入部42から導入された廃水の嫌気性処理に寄与する。このように、流路R1の外側に設けられた流路R5は、汚泥を下方へ案内する流動体循環経路を構成する。
【0040】
この嫌気性処理槽20では、処理槽の一部に一体として固液分離部48を備えているので別途固液分離槽を設ける必要がなく、設置スペースを小さくすることができる。また、嫌気性処理槽20の固液分離部48は、流路R1の上端70を越流した処理水から汚泥を分離する。このため、汚泥が流路R1の最上部まで達したとしても、その後に処理水から分離されるので、流路R1の鉛直方向の高さに関わりなく分離性能を確保することができる。従って、流路R1の鉛直方向の高さを抑えることができ、装置全体を低背化することができる。また、上記嫌気性処理槽20は、流動体循環経路としての流路R5を設けているので、下方へ戻される汚泥S、上昇してくる汚泥とは別の経路で、流路R1に戻される。よって分離された汚泥と上昇中の汚泥とが混在しにくくなり、流路R1に収容された汚泥が上下で常に入れ替わり、汚泥の活性が均一化される。また固形物は、上向流部44に戻されるため、上向流部に収容された嫌気性汚泥が槽外へ流出することを防ぐことができる。さらに、固形物は上向流部44の廃水導入部42より上方に戻されるため、嫌気性処理槽20内の水流が乱れず、廃水がスムーズに流れるようになる。
【0041】
また、流動体循環経路としての流路R5では、流路R1で発生する上向流の影響を受けるので、下降流が発生することとなる。よって、流路R5を沈降する汚泥は重力及び下降流によってスムースに下方に案内されるので、例えば汚泥を返送するためのポンプ等も不要となり、液面Hでグラニュール状となった汚泥Sがポンプ等によって粉砕されるという問題も起こらない。
【0042】
また、上記嫌気性処理槽20は、固液分離部48が流路R1の上端の外周部に設けられている。このため、気泡となって汚泥に付着したガスは流路R1の上部中央の液面Hにおいて汚泥から離される。このことによって汚泥は浮力を失い再び沈降し、下方へ戻される。また、ここで沈降せず上端70を越流した汚泥も、ガスの浮力の影響が少なく沈降しやすくなっているので、流動体循環経路である流路R5を円滑に沈降し、汚泥と処理水とが効率よく分離される。また、嫌気性処理槽20は、中間壁72を設けることにより、汚泥が効率よく流路R5へ導入され、効率よく下方へ案内される。
【0043】
続いて、特に、廃水が低濃度(例えばCODCr≦1500ppm)の場合の運転時について説明する。なお、上述した説明と重複する点については説明を省略する。
嫌気性処理槽20に低濃度の廃水Wを導入した場合には、上向流部44における嫌気性処理にて発生するガスが少ないので、ガスの気泡が付着し持ち上げられる汚泥は少ない。このため、汚泥は運転時にも上向流部44の中心よりも下方に分布し、液面Hに達する汚泥は少ない。上記のような状態で運転されるので、液面Hに達する汚泥は少なく、固液分離部48で分離される固形物は廃水中に含まれるSSがほとんどを占めることとなる。
【0044】
固液分離部48で分離されたSSは流路R5へ導入され、流路R5の下方付近に停留する。SSは廃水に含まれて嫌気性処理槽20内に供給されているので、流路R5下方付近のSSは徐々に増加し、密度が高くなる。そこで、所定の時間ごとにバルブ58を開き、流路R5下方付近に停留しているSSを引抜口82から嫌気性処理槽20の外部へ排出する。
【0045】
廃水に含まれるSSは、嫌気性処理に適しておらず、かつ、連続的に供給されるので、嫌気性処理槽20内に蓄積していく。本実施形態の嫌気性処理槽20によれば、引抜口82を備えているので、蓄積していく固形物を外部に排出することができ、嫌気性処理槽20内に過剰にSSが蓄積されることを防止することができる。
【0046】
また、上述のとおり、処理対象の廃水の有機物濃度が低い場合には発生するガスが少なくなるが、嫌気性処理槽20では、発生したガスを、上壁68に設けられたガス排出管80から排出することとしており、液面H以外ではガスを除去していない。よって、本実施形態の嫌気性処理槽20によれば、上向流部44の途中でガスが除去されることがないので、発生するガスが少ない場合であってもガスリフト効果による上向流が形成される。従って、本実施形態の嫌気性処理槽20は例えばCODCr≦1500ppmの、有機物濃度が低い廃水の処理についても好適に適用が可能である。
【0047】
また、本実施形態の嫌気性処理槽20においては、流動体循環経路となる管状部材31は外部に露出して設けられているが、例えば、上向流部としての流路R1内に管状部材31を内蔵するようにしても良い。あるいは、流動体循環経路を管状部材ではなく、嫌気性処理槽20内に内側壁を設けて、内側壁と外側壁との2重壁を有する構造とし、内側壁と外側壁との間の空間を流動体循環経路とするような構造としても良い。
【0048】
図1に戻り、嫌気性処理槽20の固液分離部48により分離されたSSは、バルブ58から配管(ライン)60を介して可溶化処理槽22へ供給される。可溶化処理槽22では、NaOHなどのアルカリ剤を可溶化剤とし、約pH10〜13のアルカリ条件下に保持されており、SSを可溶化処理する。可溶化処理液は必要に応じてHClなどで中和処理を施した後、配管(ライン)62を介して酸生成槽14、あるいは場合によっては酸生成槽18などの前段にもどされて処理される。なお、可溶化処理としてアルカリ処理の他に、酸処理、オゾン処理、酸発酵処理、過熱処理、超音波処理など、あるいは、それらの処理を適宜組み合わせて実施することが可能である。
【0049】
また、本実施形態の処理装置100では、嫌気性処理槽16と嫌気性処理槽20とを繋ぎ、各嫌気性処理槽の嫌気性汚泥を交換する配管(ライン)36が設けられている。本実施形態では、第1段目の嫌気性処理槽16と第2段目の嫌気性処理槽20とも廃水中のSSは槽外に流出するため、槽内に蓄積することがない。そのため、2つの嫌気性処理槽16,20内のグラニュール汚泥は良好な状態に保たれるので、嫌気性処理槽16,20間で、グラニュール汚泥を相互に供給し合うことが可能である。グラニュール汚泥の相互の供給は、通常、装置を停止した時点で行われるが、運転中に行うことも可能である。
【0050】
第2段目の上部に固液分離部48を有する嫌気性処理槽20は有機物の濃度が低いため、グラニュール汚泥の増加が少なく、場合によってはメタン菌等の自己消化によって菌体の減少が起こるので、配管36を介して第1段目の嫌気性処理槽16のグラニュール汚泥が供給される。
【0051】
また、逆に、有機物の負荷が低い(貧栄養の状態である)第2段目の嫌気性処理槽20のグラニュール汚泥を第1段目の嫌気性処理槽16へ供給することにより、汚泥の活性を高めることもできる。このように汚泥を相互に供給し合うことにより、二つの槽内の汚泥量の調節や、菌体を高活性に保つことができるので、装置を安定して稼動させることができ、良好な処理水を得ることができる。
【0052】
なお、上記実施形態においては、嫌気性2段処理を例に示したが、更に高度な処理をするために3段以上の嫌気性処理部をシリーズに接続し、最終段の嫌気性処理槽に上部に固液分離部を有する嫌気性処理槽を配設して実施することも可能である。
【0053】
以下、本実施形態の作用効果について説明する。メタン菌などを自己固定化して形成された沈降性の良いグラニュール汚泥を使用する上向流式嫌気性汚泥床法では、グラニュール汚泥が嫌気性処理槽内で、スラッジベッド層やスラッジブランケット層を形成した状態で保持されているので、処理水と共にグラニュール汚泥が流出しにくく、嫌気性処理槽内のメタン菌などの菌体濃度を高く維持できる。そのため高負荷、高速で廃水を処理することができるという利点を有している。しかしながら廃水中に含まれる有機性固形物のかなりの部分は一般的に消化されにくいため、2段以上の嫌気性処理槽を連結して処理してもそれらは未分解のまま残存する。
【0054】
上向流式嫌気性汚泥床においては、嫌気性処理槽内にグラニュールメタン菌の保持はできても嫌気性処理槽内の水の流れは通常速く、しかもメタンや炭酸ガス等の気泡発生もあるので、嫌気性処理槽内に流入する廃水中の固形物(主に有機性懸濁物質)は処理水とともに嫌気性処理槽の外部へ流出してしまう。
【0055】
そのため、廃水中の溶解性有機物は効果的に処理されても、処理されにくい有機性固形物が処理水に含まれることになり、廃水の規制物質であるCODなどがかなり残存するという問題がある。
【0056】
本実施形態では、最終段の嫌気性処理槽の上部に処理水とSSを分離できる固液分離部を有するコンパクトな嫌気性処理槽を配置して処理を行うものである。本実施形態では、複数段で処理するため、第1段目で大部分の有機物(主に可溶性有機物質)が分解されており、2段目での嫌気性処理槽ではガスの発生量が少ないので、気泡の上昇に伴う液の上昇流速の増加が抑えられると共に、SSに付着するガスが少ないので、2段目での処理水からのSSの分離が良好に行われ、良好な処理水が得られる。
【0057】
また、嫌気性処理槽の外部において、分離したSSを濃縮した汚泥として取り出すことができ、この濃縮汚泥を可溶化処理槽に供給して処理できるので、発生汚泥の減量化を効率的に行うことが可能である。
【0058】
また、本実施形態のもう一つの特徴は、第1段目と第2段目の嫌気性処理槽内のグラニュール汚泥を相互に供給し合うことにある。これにより、各槽のグラニュール汚泥の過不足を調整することができると共に、第1段目と第2段目の嫌気性処理槽のグラニュール汚泥の均一化を図ることができ、さらにグラニュール汚泥の活性を高く維持することができる。そのため、安定した装置の運転が可能であり、良好な処理を行うことが可能である。
【0059】
図3は、本発明の第2実施形態に係る有機性廃水の処理装置を示す図である。本実施形態の処理装置200では、第1段目の嫌気性処理部10においても、上部に固液分離部48を設けた嫌気性処理槽21を備えた点が、第1実施形態の装置と異なっている。第1段目と第2段目の嫌気性処理部の両方に固液分離部を備えた嫌気性処理槽を備えたことにより、処理水からSSがより効率良く分離されるため、さらに良好な処理水が得られる。
【0060】
本実施形態においては、2つの嫌気性処理槽21,20で分離されたSSは、一つの可溶化処理槽22により可溶化処理される。可溶化処理液は、配管62を介して第1段目の酸生成槽14に戻される。なお、この場合、各嫌気性処理槽ごとに個別の可溶化処理槽を配置しても良い。
【0061】
図4は、本発明の第3実施形態に係る有機性廃水の処理装置を示す図である。本実施形態の処理装置300では、バイパス路を形成する配管とバルブが配置されることにより、第1段目の嫌気性処理部10と第2段目の嫌気性処理部12の順番を入れ替えることができる点が、第2実施形態の装置と異なっている。
【0062】
廃水を第1段目の酸生成槽14に供給する配管の間にはバルブ90が設けられている。また、廃水を第2段目の酸生成槽18に直接供給するための配管(ライン)84が設けられ、配管84の間にはバルブ91が設けられている。また第1段目の嫌気性処理部10で処理した処理水が通る配管34の間には、バルブ92が設けられている。配管34には第1段目の嫌気性処理部10で処理した処理水を直接系外に排出するための配管(ライン)86が繋げられ、配管86の間にはバルブ93が設けられている。また、第2段目の嫌気性処理部12の処理水が通る配管56の間には、バルブ94が設けられている。配管56には、第2段目の嫌気性処理部12で処理した処理水を第1段目の嫌気性処理部10に供給するための配管(ライン)88が繋げられ、配管88の間にはバルブ95が設けられている。
【0063】
本実施形態の処理装置300が初めに運転する際には、バルブ90、バルブ92、およびバルブ94は開放され、バルブ91、バルブ93、およびバルブ95は閉鎖される。そうすると、廃水は、第1段目の酸生成槽14、第1段目の嫌気性処理槽21、第2段目の酸生成槽18、第2段目の嫌気性処理槽20の順序で流れることになり、前述の第1実施形態および第2実施形態と同様の流れとなる。
【0064】
一方、第1段目の嫌気性処理部10と第2段目の嫌気性処理部12の順番を入れ替える場合は、バルブ91、バルブ93、およびバルブ95は開放され、バルブ90、バルブ92、およびバルブ94は閉鎖される。こうすると、廃水は配管84を介して直接第2段目の酸生成槽18に供給され、第2段目の嫌気性処理槽20で嫌気性処理される。第2段目の嫌気性処理槽20で処理された処理水は、配管88を介して第1段目の酸生成槽14に供給されて、第1段目の嫌気性処理槽21で嫌気性処理される。第1段目の嫌気性処理槽21で処理された処理水は、配管86を介して系外に排出される。この場合、廃水は、第2段目の酸生成槽18、第2段目の嫌気性処理槽20、第1段目の酸生成槽14、第1段目の嫌気性処理槽21の順序で流れることになる。すなわち、第2段目の嫌気性処理部12が第1段目となり、第1段目の嫌気性処理部10が第2段目となる。
【0065】
前述のように第1段目の嫌気性処理槽では、廃水中の有機成分の濃度が高いため、メタン菌が増加し、第2段目の嫌気性処理槽では、排水中の有機成分の濃度が低いため、メタン菌が減少する。しかし、本実施形態のように第1段目と第2段目を適宜切り替えることにより、それぞれの嫌気性処理槽21、20では、菌体の増加・減少が繰返されることになり、装置全体として菌体量を均一に一定に保つことができる。
【実施例】
【0066】
(実施例1)
図5の(I)に示すような組成を有するビール製造工場からの有機性固形物を含有する有機性廃水を、図1に示すような処理装置の第1段目の酸生成槽(有効容積1m)に供給し、嫌気性処理槽(有効容積3.5m)で嫌気性処理をして、嫌気性処理槽の処理水の一部を酸生成槽に返送した。酸生成槽はpH7に調整し、嫌気性処理槽内は38℃とした。この時の第1段目の嫌気性処理槽における流出水の組成は、図5の(II)に示す通りであった。
【0067】
更に、上記の第1段目の嫌気性処理槽の流出水を、第2段目の酸生成槽(有効容積1m)に供給し、固液分離部を有する第2段目の嫌気性処理槽(有効容積1m)で嫌気性処理をした。
【0068】
以上の条件で6ヶ月間の連続運転を行った結果、第1段目及び第2段目の嫌気性処理槽内でのSSの蓄積はなく、順調な運転が可能であった。また、得られた処理水は図5の(III)に示すように良好であった。
【0069】
(比較例1)
実施例1の第1段目の嫌気性処理部と同じ形式のものをシリーズに2段連結した、固液分離部を有しない嫌気性処理槽を備えた処理装置を用いて、実施例1と同じ条件で有機性廃水を処理した。
【0070】
以上の条件で6ヶ月間の連続運転を行った結果、2段目の嫌気性処理槽の処理水の性状は、図5の(IV)に示す通りであった。すなわち、嫌気性処理部をシリーズに連結して2段処理することにより、溶解性有機物は効率良く処理できるが、処理水中のSSの除去ができないため、T−CODCr(全化学的酸素要求量)を満足に低減することができなかった。
【0071】
以上の通り、本実施例に係る複数段の有機性廃水の処理装置では、気泡発生の少ない最終段の嫌気性処理槽として、設備費や設置面積の低減が図れる簡易な固液分離部を有する嫌気性処理槽を配設するだけで、固形物が処理水から除かれるので、廃水規制される化学的酸素要求量(COD)等を効果的に削減することができる。
【0072】
また、2段の嫌気性処理が行われるので、その処理過程で固形物の一部は可溶化され、残部の分離されたSSのみが可溶化処理されるので、例えば、嫌気性処理の前段で可溶化処理するのに比べて、可溶化処理するSSの量が少ないため、可溶化に使用するアルカリ剤等の低減化など、可溶化の負荷を低減することが可能である。
【0073】
尚、本発明の有機性廃水の処理装置は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【図面の簡単な説明】
【0074】
【図1】本発明の第1実施形態に係る有機性廃水の処理装置を示す図である。
【図2】本発明の第1実施形態に係る固液分離部を有することを特徴とする嫌気性処理槽を示す図である。
【図3】本発明の第2実施形態に係る有機性廃水の処理装置を示す図である。
【図4】本発明の第3実施形態に係る有機性廃水の処理装置を示す図である。
【図5】実施例および比較例における有機性廃水の処理装置の運転結果を示す表である。
【符号の説明】
【0075】
10…第1段目の嫌気性処理部、12…第2段目の嫌気性処理部、14…酸生成槽、16…嫌気性処理槽、18…酸生成槽、20…嫌気性処理槽、21…嫌気性処理槽、22…可溶化処理槽、24…配管(ライン)、26…廃水導入部、28…グラニュール汚泥層、30…三相分離部、32…配管(ライン)、34…配管(ライン)、36…配管(ライン)、38…配管(ライン)、40…配管(ライン)、42…廃水導入部、43…出水口、44…上向流部、46…グラニュール汚泥層、48…固液分離部、49…管入口、50…管状部材(流動体循環経路)、51…管出口、52…配管(ライン)、54…配管(ライン)、56…配管(ライン)、58…バルブ、60…配管(ライン)、62…配管(ライン)、64…底壁、66…側壁、68…上壁、70…上端、72…中間壁、74…外側壁、76…トラフ部、78…排水口、80…ガス排出口、82…引抜口、84…配管(ライン)、86…配管(ライン)、88…配管(ライン)、90,91,92,93,94,95…バルブ、100,200,300…処理装置、R1,R2,R3,R4,R5…流路、H…液面

【特許請求の範囲】
【請求項1】
有機性固形物を含有する有機性廃水を嫌気性処理する有機性廃水の処理装置であって、
酸生成槽と、前記酸生成槽から流出された有機性廃水を嫌気性汚泥を用いて嫌気性処理する嫌気性処理槽と、を含む嫌気性処理部が直列に複数段連結されてなり、
前記複数段の嫌気性処理部の各嫌気性処理槽の少なくとも1つは、
前記酸生成槽から流出された有機性廃水を導入するための廃水導入部と、
前記嫌気性汚泥を収容する空間を画成する側壁を有し、前記導入された有機性廃水を前記嫌気性汚泥を通して上向きに流動させ嫌気性処理を行う上向流部と、
前記上向流部で処理され前記上向流部の上端を越流した処理水から固形物を分離する固液分離部と、
前記固液分離部で分離された前記固形物を前記上向流部へ案内する流動体循環経路と、
を有することを特徴とする有機性廃水の処理装置。
【請求項2】
前記複数段の嫌気性処理部の少なくとも最後段の前記嫌気性処理部の前記嫌気性処理槽は、前記廃水導入部と、前記上向流部と、前記固液分離部と、前記流動体循環経路とを有することを特徴とする請求項1に記載の有機性廃水の処理装置。
【請求項3】
前記嫌気性処理部を2段備えることを特徴とする請求項1または請求項2に記載の有機性廃水の処理装置。
【請求項4】
前記流動体循環経路は、前記固液分離部と、前記上向流部の前記有機性廃水が導入された部位よりも上方の部位とを繋ぐようになっていることを特徴とする請求項1ないし請求項3のいずれか1項に記載の有機性廃水の処理装置。
【請求項5】
前記嫌気性処理部の前記嫌気性処理槽の前記固液分離部で分離された前記固形物を可溶化処理するための可溶化処理槽を備え、
前記可溶化処理槽で可溶化処理された固形物を前記複数段の嫌気性処理部の少なくともいずれか1つに戻すラインを備えたことを特徴とする請求項1ないし請求項4のいずれか1項に記載の有機性廃水の処理装置。
【請求項6】
前記複数の嫌気性処理部それぞれの少なくとも2つの嫌気性処理槽同士を繋ぎ、前記嫌気性処理槽内の嫌気性汚泥を交換するラインを備えたことを特徴とする請求項1ないし請求項5のいずれか1項に記載の有機性廃水の処理装置。
【請求項7】
前記流動体循環経路は、前記固液分離部から前記上向流部の前記廃水導入部よりも上方の箇所まで伸びた管状部材を含むことを特徴とする請求項1ないし請求項6のいずれか1項に記載の有機性廃水の処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−68632(P2006−68632A)
【公開日】平成18年3月16日(2006.3.16)
【国際特許分類】
【出願番号】特願2004−254679(P2004−254679)
【出願日】平成16年9月1日(2004.9.1)
【出願人】(000002107)住友重機械工業株式会社 (2,241)
【出願人】(000000055)アサヒビール株式会社 (535)
【出願人】(597005875)株式会社アサヒビールエンジニアリング (7)
【Fターム(参考)】