説明

正立等倍レンズアレイプレート、光走査ユニット、画像読取装置および画像書込装置

【課題】フレアノイズを低減する。
【解決手段】正立等倍レンズアレイプレート11は、積層された第1レンズアレイプレート24および第2レンズアレイプレート26と、第2レンズアレイプレート26上に設けられた第4面側遮光壁32と、両レンズアレイプレート間に設けられた中間遮光壁34とを備える。中間遮光壁34に形成された中間貫通孔34aは、孔径が第1レンズアレイプレート24側から第2レンズアレイプレート26側に向けてテーパ状に小さくなるように形成されている。両レンズアレイプレート間のギャップをGapとし、第2レンズアレイプレート26の厚さをLとし、第4面側遮光壁32の高さをHとし、第4面側遮光壁32に形成された第4面側貫通孔32aの像面側開口径をDとしたときに、中間貫通孔34aの内壁面32bの光軸に対する傾斜角度θは、θ≧tan−1(D/(Gap+L+H))/2の範囲にある。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像読取装置や画像書込装置に用いられる正立等倍レンズアレイプレートに関する。
【背景技術】
【0002】
従来、スキャナ等の画像読取装置として、正立等倍結像光学系を用いた装置が知られている。正立等倍結像光学系を用いた場合、縮小結像光学系の場合よりも装置をコンパクトにすることができる。画像読取装置の場合、正立等倍結像光学系は、ライン状光源と、正立等倍レンズアレイと、ラインイメージセンサから構成される。
【0003】
正立等倍結像光学系における正立等倍レンズアレイとしては、正立等倍像を結像可能なロッドレンズアレイが用いられる。ロッドレンズアレイは、通常はレンズアレイの長手方向(画像読取装置の主走査方向)にロッドレンズが配列される。ロッドレンズの列数を増加することで、光量伝達率の向上、透過光量ムラの低減が図れるが、ロッドレンズアレイの場合、ロッドレンズの列数は、価格とのかねあいで1〜2列が一般的である。
【0004】
一方、正立等倍レンズアレイとして、両面に複数の微小凸レンズを規則的に配列した透明な平板状レンズアレイプレートを、個々の凸レンズの光軸が一致するように2枚積層した正立等倍レンズアレイプレートも構成可能である。このような正立等倍レンズアレイプレートは、射出成型などの方法により形成できるため、正立等倍レンズアレイを比較的安価に製造することができる。
【0005】
正立等倍レンズアレイプレートでは、隣接したレンズ間に光を隔離するための壁が無いため、正立等倍レンズアレイプレートに斜めに入射した光が、プレート内部を斜めに進んで隣接した凸レンズに入り込み、出射してノイズ(ゴーストノイズともいう)を発生するという問題がある。
【0006】
そこで、ゴーストノイズを除去するために、2枚のレンズアレイプレート間に遮光壁を設けた正立等倍レンズアレイプレートが知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2009−069801号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、2枚のレンズアレイプレート間に遮光壁を設けた場合、遮光壁で反射した光がフレアノイズとなる可能性がある。
【0009】
本発明はこうした状況に鑑みてなされたものであり、その目的は、フレアノイズを低減できる正立等倍レンズアレイプレート、並びに該正立等倍レンズアレイプレートを用いた光走査ユニット、画像読取装置および画像書込装置を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するために、本発明のある態様の正立等倍レンズアレイプレートは、第1面に規則的に配置された複数の第1レンズと、第1面に対向する第2面に規則的に配置された複数の第2レンズとを有する第1レンズアレイプレートと、第3面に規則的に配置された複数の第3レンズと、第3面に対向する第4面に規則的に配置された複数の第4レンズとを有する第2レンズアレイプレートとを備える。第1レンズアレイプレートと第2レンズアレイプレートは、対応するレンズの組が共軸のレンズ系を構成するように第2面と第3面とを対向させて積層され、第1面側に置かれた物体の正立等倍像を第4面側の像面に形成する。この正立等倍レンズアレイプレートは、第4レンズに対応する複数の第4面側貫通孔を有する第4面側遮光壁であって、各第4面側貫通孔が対応する第4レンズの正面に位置するように第4面上に設けられた第4面側遮光壁と、第2レンズおよび第3レンズに対応する複数の中間貫通孔を有する中間遮光壁であって、各中間貫通孔が対応する第2レンズおよび第3レンズの正面に位置するように第1レンズアレイプレートと第2レンズアレイプレートとの間に設けられた中間遮光壁とをさらに備える。中間貫通孔は、孔径が第2面側から第3面側に向けてテーパ状に小さくなるように形成されており、第1レンズアレイプレートと第2レンズアレイプレートとの間のギャップをGapとし、第2レンズアレイプレートの厚さをLとし、第4面側遮光壁の高さをHとし、第4面側貫通孔の像面側開口径をDとしたときに、中間貫通孔の内壁面の光軸に対する傾斜角度θが、θ≧tan−1(D/(Gap+L+H))/2の範囲にある。
【0011】
第1〜第4レンズの配列周期をPとしたとき、中間貫通孔の内壁面の光軸に対する傾斜角度θが、tan−1(D/(Gap+L+H))/2≦θ≦tan−1((P+D)/2/(Gap+L+H))の範囲にあってもよい。
【0012】
第1レンズに対応する複数の第1面側貫通孔を有する第1面側遮光壁であって、各第1面側貫通孔が対応する第1レンズの正面に位置するように第1面上に設けられた第1面側遮光壁をさらに備えてもよい。
【0013】
本発明の別の態様もまた、正立等倍レンズアレイプレートである。この正立等倍レンズアレイプレートは、第1面に規則的に配置された複数の第1レンズと、第1面に対向する第2面に規則的に配置された複数の第2レンズとを有する第1レンズアレイプレートと、第3面に規則的に配置された複数の第3レンズと、第3面に対向する第4面に規則的に配置された複数の第4レンズとを有する第2レンズアレイプレートとを備える。第1レンズアレイプレートと第2レンズアレイプレートは、対応するレンズの組が共軸のレンズ系を構成するように第2面と第3面とを対向させて積層され、第1面側に置かれた物体の正立等倍像を第4面側の像面に形成する。この正立等倍レンズアレイプレートは、第1レンズに対応する複数の第1面側貫通孔を有する第1面側遮光壁であって、各第1面側貫通孔が対応する第1レンズの正面に位置するように第1面上に設けられた第1面側遮光壁と、第2レンズおよび第3レンズに対応する複数の中間貫通孔を有する中間遮光壁であって、各中間貫通孔が対応する第2レンズおよび第3レンズの正面に位置するように第1レンズアレイプレートと第2レンズアレイプレートとの間に設けられた中間遮光壁とをさらに備える。中間貫通孔は、孔径が第2面側から第3面側に向けて逆テーパ状に大きくなるように形成されており、第1レンズアレイプレートと第2レンズアレイプレートとの間のギャップをGapとし、第1レンズアレイプレートの厚さをLとし、第1面側遮光壁の高さをHとし、第1面側貫通孔の光源側開口径をDとしたときに、中間貫通孔の内壁面の光軸に対する傾斜角度θが、θ≧tan−1(D/(Gap+L+H))/2の範囲にある。
【0014】
第1〜第4レンズの配列周期をPとしたとき、中間貫通孔の内壁面の光軸に対する傾斜角度θが、tan−1(D/(Gap+L+H))/2≦θ≦tan−1((P+D)/2/(Gap+L+H))の範囲にあってもよい。
【0015】
第4レンズに対応する複数の第4面側貫通孔を有する第4面側遮光壁であって、各第4面側貫通孔が対応する第4レンズの正面に位置するように第4面上に設けられた第4面側遮光壁をさらに備えてもよい。
【0016】
本発明のさらに別の態様は、光走査ユニットである。この光走査ユニットは、被読取画像に光を照射するライン状光源と、被読取画像から反射した光を集光する上述の正立等倍レンズアレイプレートと、正立等倍レンズアレイプレートを透過した光を受光するラインイメージセンサとを備える。
【0017】
本発明のさらに別の態様は、画像読取装置である。この装置は、上述の光走査ユニットと、光走査ユニットによって検出された画像信号を処理する画像処理部とを備える。
【0018】
本発明のさらに別の態様は、画像書込装置である。この装置は、複数のLEDがアレイ状に配列されたLEDアレイと、LEDアレイから出射された光を集光する上述の正立等倍レンズアレイプレートと、正立等倍レンズアレイプレートを透過した光を受光する感光体ドラムとを備える。
【0019】
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。
【発明の効果】
【0020】
本発明によれば、フレアノイズを低減できる正立等倍レンズアレイプレート、並びに該正立等倍レンズアレイプレートを用いた光走査ユニット、画像読取装置および画像書込装置を提供できる。
【図面の簡単な説明】
【0021】
【図1】本発明の実施形態に係る画像読取装置を説明するための図である。
【図2】光走査ユニットの一部の主走査方向における断面図である。
【図3】比較例に係る正立等倍レンズアレイプレートの動作を説明するための図である。
【図4】本実施形態に係る正立等倍レンズアレイプレートの動作を説明するための図である。
【図5】フレアノイズの除去に必要な中間貫通孔の内壁面の傾斜角度の下限値を説明するための図である。
【図6】中間貫通孔の内壁面の傾斜角度の上限値を説明するための図である。
【図7】本発明の別の実施形態に係る正立等倍レンズアレイプレートを示す図である。
【図8】フレアノイズの除去に必要な中間貫通孔の内壁面の傾斜角度の下限値を説明するための図である。
【図9】中間貫通孔の内壁面の傾斜角度の上限値を説明するための図である。
【図10】本発明の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図11】本発明の別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図12】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図13】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図14】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図15】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図16】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図17】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図18】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図19】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図20】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図21】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図22】中間貫通孔の内壁面の傾斜角度の下限値とノイズ比の屈曲点(正側)の相関関係を示す図である。
【図23】中間貫通孔の内壁面の傾斜角度の下限値とノイズ比の屈曲点(負側)の相関関係を示す図である。
【図24】本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す図である。
【図25】本発明の別の実施形態に係る画像書込装置を説明するための図である。
【発明を実施するための形態】
【0022】
図1は、本発明の実施形態に係る画像読取装置100を説明するための図である。図1に示すように、画像読取装置100は、筐体102、原稿Gを載置する原稿台としてのガラス板14、筐体102内に収容された光走査ユニット10、光走査ユニット10を走査する駆動機構(図示せず)、光走査ユニット10によって読み取られたデータを処理する画像処理部(図示せず)等を備える。
【0023】
光走査ユニット10は、ガラス板14上に載置された原稿Gに光を照射するライン状光源16と、原稿Gからの反射光を集光する正立等倍レンズアレイプレート11と、正立等倍レンズアレイプレート11により集光された光を受けるラインイメージセンサ(光電変換素子)20と、ライン状光源16、正立等倍レンズアレイプレート11およびラインイメージセンサ20を固定するケース(図示せず)とを備える。
【0024】
ライン状光源16は、略直線状の光を出射する光源である。ライン状光源16は、その光軸が、正立等倍レンズアレイプレート11の光軸Axとガラス板14の上面との交点を通るように固定される。ライン状光源16から出射された光は、ガラス板14上に置かれた原稿Gに照射される。原稿Gに照射された光は、原稿Gにより正立等倍レンズアレイプレート11に向けて反射される。
【0025】
正立等倍レンズアレイプレート11は、後述するように、複数の凸レンズを両面に形成した第1レンズアレイプレート24、第2レンズアレイプレート26が対応するレンズの組が共軸のレンズ系を構成するように積層されたものである。第1レンズアレイプレート24、第2レンズアレイプレート26は、ホルダ(図示せず)により積層状態で保持されている。正立等倍レンズアレイプレート11は、その長手方向が主走査方向に、短手方向が副走査方向に一致するように画像読取装置100に装着される。
【0026】
正立等倍レンズアレイプレート11は、上方に位置する原稿Gから反射されたライン状の光を受けて、下方に位置する像面、すなわちラインイメージセンサ20の受光面に正立等倍像を形成する。画像読取装置100は、光走査ユニット10を副走査方向に走査することにより、原稿Gを読み取ることができる。
【0027】
図2は、光走査ユニット10の一部の主走査方向における断面図である。図2において、縦方向が正立等倍レンズアレイプレート11の主走査方向(長手方向)であり、奥行き方向が副走査方向(短手方向)である。
【0028】
上述したように、正立等倍レンズアレイプレート11は、第1レンズアレイプレート24と第2レンズアレイプレート26とが積層されて構成されている。第1レンズアレイプレート24および第2レンズアレイプレート26は、長方形状のプレートであり、その両面には複数の凸レンズが配列形成されている。
【0029】
第1レンズアレイプレート24および第2レンズアレイプレート26は、射出成形により形成される。第1レンズアレイプレート24および第2レンズアレイプレート26の材質は、射出成形に使用可能で、必要な波長帯域の光に対して光透過性が高く、吸水性の低いものが望ましい。望ましい材質としては、シクロオレフィン系樹脂や、オレフィン系樹脂、ノルボルネン系樹脂、ポリカーボネートなどを例示することができる。
【0030】
第1レンズアレイプレート24の一方の面である第1面24c上には、複数の第1レンズ24aが、第1レンズアレイプレート24の長手方向に沿って一列に配列されている。また、第1レンズアレイプレート24の第1面24cに対向する第2面24d上には、複数の第2レンズ24bが、第1レンズアレイプレート24の長手方向に沿って一列に配列されている。
【0031】
第2レンズアレイプレート26の一方の面である第3面26c上には、複数の第3レンズ26aが、第2レンズアレイプレート26の長手方向に沿って一列に配列されている。また、第3面26cに対向する第4面26d上には、複数の第4レンズ26bが、第2レンズアレイプレート26の長手方向に沿って一列に配列されている。
【0032】
なお、本実施の形態では、第1レンズ24a、第2レンズ24b、第3レンズ26aおよび第4レンズ26bの形状を球面としたが、非球面であってもよい。
【0033】
第1レンズアレイプレート24と第2レンズアレイプレート26は、対応する第1レンズ24a、第2レンズ24b、第3レンズ26a、第4レンズ26bの組が共軸のレンズ系を構成するように第2面24dと第3面26cとを対向させて積層される。言い換えると、第1レンズアレイプレート24と第2レンズアレイプレート26は、対応する第1レンズ24a、第2レンズ24b、第3レンズ26a、第4レンズ26bの光軸が一致するように積層される。
【0034】
第1レンズアレイプレート24の第1面24c上には、第1面側遮光壁30が設けられている。この第1面側遮光壁30は、遮光性材料によって形成された膜状の遮光部材であり、複数の第1面側貫通孔30aが形成されている。第1面側貫通孔30aは、第1面側遮光壁30の長手方向に沿って一列に、第1レンズアレイプレート24の第1レンズ24aと対応するように形成されている。各第1面側貫通孔30aの孔径は第1レンズ24aのレンズ有効径と等しい。第1面側遮光壁30は、各第1面側貫通孔30aが対応する第1レンズ24aの正面に位置するように第1面24c上に設けられる。言い換えると、第1面側遮光壁30は、各第1面側貫通孔30aの中心軸が対応する第1レンズ24aの光軸と一致するように第1面24c上に設けられる。図2に示すように、第1面側遮光壁30により、第1レンズ24aの有効領域以外の第1面24cの領域(以下、「第1面平坦領域」とも呼ぶ)が覆われている。レンズの有効領域とは、レンズとしての機能を有する部分のことである。第1面側遮光壁30により、第1面平坦領域を透過する結像に寄与しない光が遮断される。第1面側遮光壁30は、第1面24c上に、黒色インキなどの光吸収性材料を用いて遮光パターンを印刷することにより形成することができる。
【0035】
第2レンズアレイプレート26の第4面26d上には、第4面側遮光壁32が設けられている。この第4面側遮光壁32は、遮光性材料によって形成されたプレート状の遮光部材であり、複数の第4面側貫通孔32aが形成されている。第4面側貫通孔32aは、第4面側遮光壁32の長手方向に沿って一列に、第2レンズアレイプレート26の第4レンズ26bと対応するように形成されている。各第4面側貫通孔32aは、円柱形状であり、その孔径は第4レンズ26bのレンズ有効径と等しい。第4面側遮光壁32は、各第4面側貫通孔32aが対応する第4レンズ26bの正面に位置するように第4面26d上に設けられる。言い換えると、第4面側遮光壁32は、各第4面側貫通孔32aの中心軸が対応する第4レンズ26bの光軸と一致するように第4面26d上に設けられる。図2に示すように、第4面側遮光壁32により、第4レンズ26bの有効領域以外の第4面26dの領域(以下、「第4面平坦領域」とも呼ぶ)が覆われている。
【0036】
なお、本実施形態では、第1面側遮光壁30を「膜状」とし、第4面側遮光壁32を「プレート状」としているが、これは、第1面側遮光壁30が第4面側遮光壁32に比べて非常に薄いことを意味する。言い換えると、「膜状」とは、厚さが無視できる程度に薄いことを意味する。
【0037】
図2に示すように、第1レンズアレイプレート24と第2レンズアレイプレート26との間には中間遮光壁34が設けられている。この中間遮光壁34は、遮光性材料によって形成されたプレート状の遮光部材であり、複数の中間貫通孔34aが形成されている。中間貫通孔34aは、中間遮光壁34の長手方向に沿って一列に、第2レンズ24bと第3レンズ26aと対応するように形成されている。本実施形態において、中間貫通孔34aは、孔径が第2面24d側から第3面26c側に向けてテーパ状に小さくなる円錐台形状に形成されている。中間遮光壁34は、各中間貫通孔34aが対応する第2レンズ24bおよび第3レンズ26aの正面に位置するように、第1レンズアレイプレート24と第2レンズアレイプレート26との間に設けられる。言い換えると、中間遮光壁34は、各中間貫通孔34aの中心軸が対応する第2レンズ24bおよび第3レンズ26aの光軸と一致するように第1レンズアレイプレート24と第2レンズアレイプレート26との間に設けられる。中間遮光壁34は、結像に寄与しない迷光を遮断し、ゴーストノイズを低減する機能を有する。
【0038】
第4面側遮光壁32および中間遮光壁34は、例えば黒色のABS樹脂などの光吸収性材料を用いて、射出成形などの方法により形成することができる。また、第4面側遮光壁32および中間遮光壁34は、黒色樹脂塗料を積層させることににより形成されてもよい。
【0039】
以上のように構成された正立等倍レンズアレイプレート11は、第1レンズ24aから原稿Gまでの距離および第4レンズ26bからラインイメージセンサ20までの距離が所定の作動距離となるように、画像読取装置100に組み込まれる。
【0040】
次に、本実施の形態に係る正立等倍レンズアレイプレート11の動作について説明する。正立等倍レンズアレイプレート11の動作を説明する前に、まず比較例を示す。図3は、比較例に係る正立等倍レンズアレイプレート311の動作を説明するための図である。比較例に係る正立等倍レンズアレイプレート311は、中間遮光壁334における中間貫通孔334aの形状が本実施形態に係る正立等倍レンズアレイプレート11と異なる。比較例に係る正立等倍レンズアレイプレート311では、中間貫通孔334aは、円柱形状に形成されている。すなわち、正立等倍レンズアレイプレート311においては、中間貫通孔334aの内壁面334bは、レンズの光軸Axと平行である。
【0041】
図3には、原稿Gから出射された光L1(破線)と光L2(一点鎖線)の光路が図示されている。中間遮光壁334は、第1レンズアレイプレート24を斜めに進んで第2レンズ24bから出射した光L1やL2のような光が、隣接する第2レンズアレイプレート26に入射するのを防ぐ機能を有する。しかしながら、中間貫通孔334aの内壁面334bに入射した光は、光吸収性材料を用いた場合でも完全には吸収されず、一部が内壁面334bで反射(フレネル反射)して第3レンズ26aに入射してしまう。これは、光L1やL2は中間貫通孔334aの内壁面334bに対して90度に近い大きな入射角で入射しているが、フレネル反射は、90度に近い入射角では非常に大きな反射率を有するためである。中間貫通孔334aの内壁面334bで反射した光L1およびL2は、第3レンズ26a、第4レンズ26bを通った後、ラインイメージセンサ20に入射し、所謂フレアノイズが発生してしまう。
【0042】
図4は、本実施形態に係る正立等倍レンズアレイプレート11の動作を説明するための図である。図4には、図3と同様に原稿Gから出射された光L1(破線)と光L2(一点鎖線)の光路が図示されている。本実施形態においては、中間貫通孔34aは、孔径が第2面24d側から第3面26c側に向けてテーパ状に小さくなる円錐台形状に形成されている。つまり、中間貫通孔34aの内壁面34bは、レンズの光軸Axに対して傾斜している。このように内壁面34bが傾斜していることにより、中間貫通孔34aの内壁面34bにおける光L1およびL2の反射角は、図3に示す比較例よりも小さくなる。ここでいう反射角とは、内壁面34bの法線と反射光とのなす角である。光軸Axに対する内壁面34bの傾斜角度をθとすると、内壁面34bを光軸Axに対してθ傾斜させることにより、光L1およびL2の反射角は、図3の比較例の場合の反射角よりも2θ分だけ小さくなる。反射角が小さくなったことにより、光L1およびL2は、第4面側遮光壁32に衝突し、減衰する。従って、本実施形態においては、光L1およびL2はラインイメージセンサ20に実質的に到達せず、フレアノイズの発生を防止できる。
【0043】
図5(a)(b)は、フレアノイズの除去に必要な中間貫通孔34aの内壁面34bの傾斜角度θの下限値θL1を説明するための図である。図5(a)は、比較例に係る正立等倍レンズアレイプレート311の一部を示し、図5(b)は、本実施形態に係る正立等倍レンズアレイプレート11の一部を示す。
【0044】
図5(a)には、比較例に係る正立等倍レンズアレイプレート311において、中間貫通孔334aの内壁面334bの第2面側端部付近で反射され、第4面側貫通孔32aの像面側開口端部32cをぎりぎりで通過する光L3が図示されている。この光L3が本実施形態に係る正立等倍レンズアレイプレート11に入射する場合を考える。中間貫通孔34aの内壁面34bの傾斜角を大きくしていくと、光L3は第4面側貫通孔32aの像面側開口端部32cから離れていき、第4面側貫通孔32aを挟んで対向する像面側開口端部32dに近づいていく。従って、光L3が像面側開口端部32dで内壁面32bに衝突するように中間貫通孔34aの内壁面34bを光軸Axに対して傾斜させれば、光L3がラインイメージセンサ20に到達するのを防止できる。このときの中間貫通孔34aの内壁面34bの傾斜角度θL1が、フレアノイズの除去に必要な傾斜角度の下限値となる。傾斜角度θL1は、以下の(1)式のように表される。
θL1≒tan−1(D/(Gap+L+H))/2 ・・・(1)
ここで、Gapは、第1レンズアレイプレート24と第2レンズアレイプレート26との間のギャップであり、Lは、第2レンズアレイプレート26の厚さであり、Hは、第4面側遮光壁32の高さであり、Dは、第4面側貫通孔32aの像面側開口径である。従って、中間貫通孔34aの内壁面34bの傾斜角度θは、下記の(2)式を満たす必要がある。
θ≧tan−1(D/(Gap+L+H))/2 ・・・(2)
【0045】
図6は、中間貫通孔34aの内壁面34bの傾斜角度θの上限値θU1を説明するための図である。中間貫通孔34aの内壁面34bの傾斜角度θを大きく取ろうとし過ぎると、レンズ径に対して極端にレンズ配列周期を大きくするか、中間貫通孔34aの第3面側開口径をレンズ径に対して極端に小さくすることになる。しかしながら、これらの構成は何れも光量の大幅な低下を引き起こすおそれがあるので、中間貫通孔34aの内壁面34bの傾斜角度θは必要以上に大きくすべきではない。そこで、フレアノイズを除去するのに十分な内壁面34bの傾斜角度θを求めるために、図6に示すように中間貫通孔34aの内壁面34bの延長線40が、第4面側貫通孔32aの像面側開口端部32dで内壁面32bに当たる状態を想定する。この場合、中間貫通孔34aの内壁面34bで反射した光は、全て第4面側遮光壁32に当たって減衰することになる。よって、上記の状態を満たすときの内壁面34bの傾斜角度θU1は、これ以上傾斜角度θを大きくしてもフレアノイズの更なる低減は期待できない上限角度と捉えることができる。ここで、上記の状態を満たす内壁面34bの傾斜角度θは、中間貫通孔34aの第2面側開口径が大きいほど大きくなり、第2面側開口径の取り得る最大値は、レンズの配列周期に等しい。よって、上記の傾斜角度θU1は、以下の(3)式のように表される。
θU1≒tan−1((P+D)/2/(Gap+L+H)) ・・・(3)
ここで、Pは第1〜第4レンズの配列周期である。
従って、中間貫通孔34aの内壁面34bの傾斜角度θは、下記の(4)式を満たすことが好ましい。
θ≦tan−1((P+D)/2/(Gap+L+H)) ・・・(4)
(2)式と(4)式をまとめると、中間貫通孔34aの内壁面34bの傾斜角度θは、以下の(5)式を満たすことが望ましい。
tan−1(D/(Gap+L+H))/2≦θ≦tan−1((P+D)/2/(Gap+L+H)) ・・・(5)
【0046】
以上説明したように、本実施形態に係る正立等倍レンズアレイプレート11によれば、中間遮光壁34の中間貫通孔34aを、孔径が第2面24d側から第3面26c側に向けてテーパ状に小さくなる円錐台形状に形成したことにより、中間遮光壁34での反射に起因するフレアノイズを低減することができる。従って、正立等倍レンズアレイプレート11を用いた画像読取装置100は、フレアノイズの低減された良好な画像を読み取ることができる。
【0047】
本実施形態では、第1面側遮光壁30を膜状の遮光部材としたが、第1面側遮光壁30は、プレート状の遮光部材であってもよい。この場合、ゴーストノイズの低減効果を高めることができる。
【0048】
また、本実施形態では、第4面側貫通孔32aを円柱形状とした。しかしながら、第4面側貫通孔32aは、円錐台形状であってもよい。すなわち、第4面側貫通孔32aは、像面側開口径と第4面側開口径が異なっていてもよい。同様に、第1面側遮光壁30がプレート状の遮光部材の場合、第1面側貫通孔30aは円柱形状であっても円錐台形状であってもよい。
【0049】
図7は、本発明の別の実施形態に係る正立等倍レンズアレイプレート411を示す。本実施形態に係る正立等倍レンズアレイプレート411は、第1レンズアレイプレート24の第1面24c上にプレート状の第1面側遮光壁30が設けられ、第2レンズアレイプレート26の第4面26d上に膜状の第4面側遮光壁32が設けられている点が、図2に示す正立等倍レンズアレイプレート11と異なる。また、本実施形態に係る正立等倍レンズアレイプレート411においては、中間貫通孔34aは、孔径が第2面24d側から第3面26c側に向けて逆テーパ状に大きくなる円錐台形状に形成されている。すなわち、中間貫通孔34aの内壁面34bは、レンズの光軸に対して傾斜している。その他の構成については図2に示す正立等倍レンズアレイプレート11と同様であるため、対応する構成要素については同一の符号を用い、説明を省略する。なお、図7においては、原稿Gやラインイメージセンサ20等の位置が図2と比べて左右逆となっている点に注意されたい。
【0050】
次に、正立等倍レンズアレイプレート411の動作について説明する。ここでは、説明の都合上、ラインイメージセンサ20から出射された光L5(破線)と光L6(一点鎖線)について考える。図7に示すように、光L5およびL6は、第2レンズアレイプレート26を斜めに進んだ後、中間遮光壁34の内壁面34bで反射し、第1レンズアレイプレート24を斜めに進んで第1面側遮光壁30に衝突している。これは、原稿Gから出射された後、ラインイメージセンサ20に到達するパスが存在しないことを意味している。従って、本実施形態に係る正立等倍レンズアレイプレート411によれば、中間貫通孔34aの内壁面34bでの反射に起因するフレアノイズを低減できる。
【0051】
図8は、フレアノイズの除去に必要な中間貫通孔34aの内壁面34bの傾斜角度θの下限値θL2を説明するための図である。この下限値θL2を求めるために、中間貫通孔34aの内壁面34bの第3面側端部付近で反射した後、第1レンズアレイプレート24を斜めに進む光L7について考える。この光L7が第1面側貫通孔30aの光源側開口端部30dで内壁面30bに衝突するように、中間貫通孔34aの内壁面34bを光軸Axに対して傾斜させる。このとき、中間貫通孔34aの内壁面34bで反射してラインイメージセンサに到達するパスは存在しないことになる。上記の状態のときの中間貫通孔34aの内壁面34bの傾斜角度θL2が、フレアノイズの除去に必要な傾斜角度の下限値となる。傾斜角度θL2は、以下の(6)式のように表される。
θL2≒tan−1(D/(Gap+L+H))/2 ・・・(6)
ここで、Gapは、第1レンズアレイプレート24と第2レンズアレイプレート26との間のギャップであり、Lは、第1レンズアレイプレート24の厚さであり、Hは、第1面側遮光壁30の高さであり、Dは、第1面側貫通孔30aの光源側開口径である。従って、中間貫通孔34aの内壁面34bの傾斜角度θは、下記の(7)式を満たす必要がある。
θ≧tan−1(D/(Gap+L+H))/2 ・・・(7)
【0052】
図9は、中間貫通孔34aの内壁面34bの傾斜角度θの上限値θU2を説明するための図である。図6と同様に、中間貫通孔34aの内壁面34bの延長線40が、第1面側貫通孔30aの光源側開口端部30dで内壁面30bに当たる状態を想定する。この状態を満たすとき、第1面側遮光壁30に当たらずに中間遮光壁34に到達する光は存在しないことになる。上記の状態を満たすときの内壁面34bの傾斜角度θU2は、これ以上傾斜角度θを大きくしてもフレアノイズの更なる低減は期待できない上限角度と捉えることができる。上記の傾斜角度θU2は、以下の(8)式のように表される。
θU2≒tan−1((P+D)/2/(Gap+L+H)) ・・・(8)
ここで、Pは第1〜第4レンズの配列周期である。
従って、中間貫通孔34aの内壁面34bの傾斜角度θは、下記の(9)式を満たすことが好ましい。
θ≦tan−1((P+D)/2/(Gap+L+H)) ・・・(9)
(7)式と(9)式をまとめると、中間貫通孔34aの内壁面34bの傾斜角度θは、以下の(10)式を満たすことが望ましい。
tan−1(D/(Gap+L+H))/2≦θ≦tan−1((P+D)/2/(Gap+L+H)) ・・・(10)
【0053】
本実施形態では、第4面側遮光壁32を膜状の遮光部材としたが、第4面側遮光壁32は、プレート状の遮光部材であってもよい。この場合、ゴーストノイズの低減効果を高めることができる。
【0054】
また、実施形態では、第1面側貫通孔30aを円柱形状とした。しかしながら、第1面側貫通孔30aは、円錐台形状であってもよい。すなわち、第1面側貫通孔30aは、光源側開口径と第1面側開口径が異なっていてもよい。同様に、第4面側遮光壁32がプレート状の遮光部材の場合、第4面側貫通孔32aは円柱形状であっても円錐台形状であってもよい。
【0055】
図2に示す正立等倍レンズアレイプレート11および図7に示す正立等倍レンズアレイプレート411では、中間遮光壁34が第1レンズアレイプレート24の第2面24dと第2レンズアレイプレート26の第3面26cに接触している。つまり、第1レンズアレイプレート24と第2レンズアレイプレート26との間のギャップが中間遮光壁34で規定されている。しかしながら、レンズアレイプレート間のギャップを中間遮光壁34で規定する必要はない。例えばギャップを別の部材で規定して、レンズアレイプレートと中間遮光壁34との間には、第2面24d側および第3面26c側の一方または両方に隙間がある構造にしてもよい。この場合、レンズアレイプレート間のギャップが、中間遮光壁34の高さの寸法精度の影響を受けないという利点がある。また、この場合、中間遮光壁34の高さを隙間の分小さくできるので、中間貫通孔34aの内壁面34bの傾斜角度を大きくできるという利点もある。
【0056】
図10は、本発明の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図10は、第1〜第4レンズの配列周期(以下、レンズ配列周期)=0.7mm、0.8mm、0.9mmの3つの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。図10において、実線がレンズ配列周期=0.7mm、破線がレンズ配列周期=0.8mm、一点鎖線がレンズ配列周期=0.9mmのときのシミュレーション結果を表す。図10においては、中間貫通孔の第3面側開口径よりも第2面側開口径が大きくなる場合の傾斜角度θを「正」とし、中間貫通孔の第2面側開口径よりも第3面側開口径が大きくなる場合の傾斜角度θを「負」としている。
【0057】
その他のミュレーション条件は、共役長TC=9.9mm、第1〜第4レンズのレンズ径(以下、レンズ径)=0.6mm、第1レンズアレイプレートと第2レンズアレイプレート間のギャップ(以下、ギャップ)=1.0mm、第1レンズアレイプレートおよび第2レンズアレイプレートの厚さ(以下、レンズ厚)=1.15mm、第1面側遮光壁の光源側開口径=0.5mm、第1面側遮光壁の第1面側開口径=0.55mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の像面側開口径=0.5mm、第4面側遮光壁の第4面側開口径=0.55mm、第4面側遮光壁の高さ=0.5mmである。光線追跡シミュレーションにて、正立等倍レンズアレイプレートの主走査方向の領域にわたり、点状の光源からの光線をランバシャン90度の条件で発し、像面の特定の点に到達した結像光の光量を結像光伝達光量とし、特定の点以外に到達した光量をノイズ伝達光量とした。これを主走査方向にわたるライン状で実施した。ノイズ伝達光量の総和を結像光伝達光量で割った値をノイズ比とした。
【0058】
図10に示すように、レンズ配列周期=0.7mmとした場合、傾斜角度θを0°から大きくしていくと、「正側」と「負側」の双方において傾斜角度θ=約±5°を屈曲点としてノイズ比の変化率が変わっており、その屈曲点よりも大きな傾斜角度ではノイズ比が低く抑えられていることが分かる。また、レンズ配列周期=0.8mmとした場合も、傾斜角度θ=約±5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、レンズ配列周期=0.9mmとした場合も、傾斜角度θ=約±6°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式および(6)式を計算すると、θL1=θL2=5.3°となる。θL1およびθL2は、フレアノイズの除去に必要な傾斜角度の下限値であるので、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。このように、レンズ配列周期を変化させた場合でも、中間貫通孔の内壁面の傾斜角度を調整することにより、ノイズ比を低減できる。
【0059】
図11は、本発明の別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図11は、ギャップ=0.6mm、1.0mm、1.4mmの3つの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。図11において、一点鎖線がギャップ=0.6mm、破線がギャップ=1.0mm、実線がギャップ=1.4mmのシミュレーション結果を表す。その他のシミュレーション条件は、共役長TC=9.9mm、レンズ配列周期=0.8mm、レンズ径=0.6mm、第1面側遮光壁の光源側開口径=0.5mm、第1面側遮光壁の第1面側開口径=0.55mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の像面側開口径=0.5mm、第4面側遮光壁の第4面側開口径=0.55mm、第4面側遮光壁の高さ=0.5mmである。また、ギャップ=0.6mmのときのレンズ厚=1.35mm、ギャップ=1.0mmのときのレンズ厚=1.15mm、ギャップ=1.4mmのときのレンズ厚=0.95mmである。
【0060】
図11に示すように、ギャップ=0.6mmとした場合、傾斜角度θを0°から大きくしていくと、傾斜角度θ=約±6°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、レンズ配列周期=1.0mmとした場合も、傾斜角度θ=約±5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、レンズ配列周期=1.4mmとした場合も、傾斜角度θ=約±4.5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式および(6)式を計算すると、ギャップ=0.6mmのときθL1=θL2=5.8°、ギャップ=1.0mmのときθL1=θL2=5.3°、ギャップ=1.4mmのときθL1=θL2=5.0°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。このように、ギャップを変化させた場合でも、中間貫通孔の内壁面の傾斜角度を調整することにより、ノイズ比を低減できる。
【0061】
図12は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図12は、第1面側遮光壁の高さ=第4面側遮光壁の高さ=0.1mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。その他のシミュレーション条件は、共役長TC=9.9mm、レンズ配列周期=0.8mm、レンズ径=0.6mm、ギャップ=1.0mm、レンズ厚=1.15mm、第1面側遮光壁の光源側開口径=0.5mm、第1面側遮光壁の第1面側開口径=0.55mm、第4面側遮光壁の像面側開口径=0.5mm、第4面側遮光壁の第4面側開口径=0.55mmである。
【0062】
図12に示すように、傾斜角度θを0°から大きくしていくと、傾斜角度θ=約±6.0°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式および(6)式を計算すると、θL1=θL2=6.3°となるので、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。このように、第1面側遮光壁および第4面側遮光壁の高さを変化させた場合でも、中間貫通孔の内壁面の傾斜角度を調整することにより、ノイズ比を低減できる。
【0063】
図13は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図13は、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.5mm、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.55mm、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.6mm、の3つの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。図13において、一点鎖線が第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.5mm、破線が第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.55mm、実線が第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.6mmのシミュレーション結果を表す。その他のシミュレーション条件は、共役長TC=9.9mm、レンズ配列周期=0.8mm、レンズ径=0.6mm、ギャップ=1.0mm、レンズ厚=1.15mm、第1面側遮光壁の第1面側開口径=0.55mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の第4面側開口径=0.55mm、第4面側遮光壁の高さ=0.5mmである。
【0064】
図13に示すように、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.5mmとした場合、傾斜角度θを0°から大きくしていくと、傾斜角度θ=約±5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.55mmとした場合も、傾斜角度θ=約±6°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.6mmとした場合も、傾斜角度θ=約±6°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式および(6)式を計算すると、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.5mmのときθL1=θL2=5.3°、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.55mmのときθL1=θL2=5.9°、第1面側遮光壁の光源側開口径=第4面側遮光壁の像面側開口径=0.6mmのときθL1=θL2=6.4°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。このように、第1面側遮光壁の光源側開口径および第4面側遮光壁の像面側開口径を変化させた場合でも、中間貫通孔の内壁面の傾斜角度を調整することにより、ノイズ比を低減できる。
【0065】
図14は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図14は、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の高さ=0.1mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。その他のシミュレーション条件は、共役長TC=9.9mm、レンズ配列周期=0.8mm、レンズ径=0.6mm、ギャップ=1.0mm、レンズ厚=1.15mm、第1面側遮光壁の光源側開口径=0.5mm、第1面側遮光壁の第1面側開口径=0.55mm、第4面側遮光壁の像面側開口径=0.5mm、第4面側遮光壁の第4面側開口径=0.55mmである。
【0066】
図14に示すように、傾斜角度θを0°から大きくしていくと、正側に関しては傾斜角度θ=約+7°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、負側に関しては傾斜角度θ=約−5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式を計算すると、θL1=6.3°となり、(6)式を計算するとθL2=5.3°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。
【0067】
図15は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図15は、第1面側遮光壁の高さ=0.1mm、第4面側遮光壁の高さ=0.5mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。その他のシミュレーション条件は、共役長TC=9.9mm、レンズ配列周期=0.8mm、レンズ径=0.6mm、ギャップ=1.0mm、レンズ厚=1.15mm、第1面側遮光壁の光源側開口径=0.5mm、第1面側遮光壁の第1面側開口径=0.55mm、第4面側遮光壁の像面側開口径=0.5mm、第4面側遮光壁の第4面側開口径=0.55mmである。
【0068】
図15に示すように、傾斜角度θを0°から大きくしていくと、正側に関しては傾斜角度θ=約+5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、負側に関しては傾斜角度θ=約−7°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式を計算するとθL1=5.3°となり、(6)式を計算するとθL2=6.3°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。
【0069】
図14および図15に示すように、第1面側遮光壁の高さと第4面側遮光壁の高さとを異ならせた場合でも、中間貫通孔の内壁面の傾斜角度を調整することにより、ノイズ比を低減できる。
【0070】
図16は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図16は、第1面側遮光壁の光源側開口径=0.5mm、第1面側遮光壁の第1面側開口径=0.55mm、第4面側遮光壁の像面側開口径=0.6mm、第4面側遮光壁の第4面側開口径=0.55mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。その他のシミュレーション条件は、共役長TC=9.9mm、レンズ配列周期=0.8mm、レンズ径=0.6mm、ギャップ=1.0mm、レンズ厚=1.15mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の高さ=0.5mmである。
【0071】
図16に示すように、傾斜角度θを0°から大きくしていくと、正側に関しては傾斜角度θ=約+7°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、負側に関しては傾斜角度θ=約−5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式を計算するとθL1=6.4°となり、(6)式を計算するとθL2=5.3°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。
【0072】
図17は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図17は、第1面側遮光壁の光源側開口径=0.6mm、第1面側遮光壁の第1面側開口径=0.55mm、第4面側遮光壁の像面側開口径=0.5mm、第4面側遮光壁の第4面側開口径=0.55mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。その他のシミュレーション条件は、共役長TC=9.9mm、レンズ配列周期=0.8mm、レンズ径=0.6mm、ギャップ=1.0mm、レンズ厚=1.15mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の高さ=0.5mmである。
【0073】
図17に示すように、傾斜角度θを0°から大きくしていくと、正側に関しては傾斜角度θ=約+5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。また、負側に関しては傾斜角度θ=約−6.5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式を計算するとθL1=5.3°となり、(6)式を計算するとθL2=6.4°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。
【0074】
図16および図17に示すように、第1面側遮光壁の形状と第4面側遮光壁の形状とを異ならせた場合でも、中間貫通孔の内壁面の傾斜角度を調整することにより、ノイズ比を低減できる。
【0075】
図18は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図18は、共役長TC=14.0mm、レンズ配列周期=0.9mm、レンズ径=0.7mm、ギャップ=0.6mm、レンズ厚=0.8mm、第1面側遮光壁の光源側開口径=0.6mm、第1面側遮光壁の第1面側開口径=0.65mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の像面側開口径=0.6mm、第4面側遮光壁の第4面側開口径=0.65mm、第4面側遮光壁の高さ=0.5mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。
【0076】
図18に示すように、傾斜角度θを0°から大きくしていくと、傾斜角度θ=約±8°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式および(6)式を計算するとθL1=θL2=8.8°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。
【0077】
図19は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図19は、共役長TC=14.0mm、レンズ配列周期=0.75mm、レンズ径=0.6mm、ギャップ=0.6mm、レンズ厚=0.8mm、第1面側遮光壁の光源側開口径=0.5mm、第1面側遮光壁の第1面側開口径=0.55mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の像面側開口径=0.5mm、第4面側遮光壁の第4面側開口径=0.55mm、第4面側遮光壁の高さ=0.5mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。
【0078】
図19に示すように、傾斜角度θを0°から大きくしていくと、傾斜角度θ=約±7°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式および(6)式を計算すると、θL1=θL2=7.4°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。
【0079】
図20は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図20は、共役長TC=14.0mm、レンズ配列周期=0.5mm、レンズ径=0.35mm、ギャップ=0.6mm、レンズ厚=0.8mm、第1面側遮光壁の光源側開口径=0.3mm、第1面側遮光壁の第1面側開口径=0.32mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の像面側開口径=0.3mm、第4面側遮光壁の第4面側開口径=0.32mm、第4面側遮光壁の高さ=0.5mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。
【0080】
図20に示すように、傾斜角度θを0°から大きくしていくと、正側に関しては傾斜角度θ=約+4.5°、負側に関しては傾斜角度θ=約−5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式および(6)式を計算すると、θL1=θL2=4.5°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。
【0081】
図18〜図20に示すように、レンズ光学系の設計を変化させた場合でも、中間貫通孔の内壁面の傾斜角度を調整することにより、ノイズ比を低減できる。
【0082】
図21は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図21は、共役長TC=18.0mm、レンズ配列周期=0.5mm、レンズ径=0.35mm、ギャップ=0.5mm、レンズ厚=2.15mm、第1面側遮光壁の光源側開口径=0.3mm、第1面側遮光壁の第1面側開口径=0.32mm、第1面側遮光壁の高さ=1.0mm、第4面側遮光壁の像面側開口径=0.3mm、第4面側遮光壁の第4面側開口径=0.32mm、第4面側遮光壁の高さ=1.0mmの場合について、中間貫通孔の内壁面の傾斜角度θを変化させたときのノイズ比の変化を示している。
【0083】
図21に示すように、傾斜角度θを0°から大きくしていくと、正側に関しては傾斜角度θ=約+2.5°、負側に関しては傾斜角度θ=約−3°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられていることが分かる。本シミュレーションの条件を用いて(1)式および(6)式を計算すると、θL1=θL2=2.3°となる。従って、本シミュレーションの結果は、上記の実施形態で述べた理論とほぼ整合していると言える。このように、レンズ光学系の設計を変化させた場合でも、中間貫通孔の内壁面の傾斜角度を調整することにより、ノイズ比を低減できる。
【0084】
図22は、中間貫通孔の内壁面の傾斜角度の下限値θL1とノイズ比の屈曲点(正側)の相関関係を示す。また、図23は、中間貫通孔の内壁面の傾斜角度の下限値θL2とノイズ比の屈曲点(負側)の相関関係を示す。図22および図23は、図10〜図21のシミュレーション結果をまとめたものである。図22および図23から、(1)式および(6)式から計算した傾斜角度の下限値θL1およびθL2と、シミュレーションから求めたノイズ比の屈曲点とは、高い相関関係を有していることが分かる。
【0085】
図24は、本発明のさらに別の実施例に係る正立等倍レンズアレイプレートのシミュレーション結果を示す。図24は、図2に示す正立等倍レンズアレイプレート11と、図7に示す正立等倍レンズアレイプレート411のシミュレーション結果を示す。具体的には、正立等倍レンズアレイプレート11のシミュレーション条件を、共役長TC=9.9mm、レンズ配列周期=0.8.mm、レンズ径=0.6mm、ギャップ=1.0mm、レンズ厚=1.15mm、第1面側遮光壁の開口径=0.6mm、第1面側遮光壁の高さ≒0.0mm、第4面側遮光壁の像面側開口径=0.5mm、第4面側遮光壁の第4面側開口径=0.55mm、第4面側遮光壁の高さ=0.5mmとした。また、正立等倍レンズアレイプレート411のシミュレーション条件を、共役長TC=9.9mm、レンズ配列周期=0.8.mm、レンズ径=0.6mm、ギャップ=1.0mm、レンズ厚=1.15mm、第1面側遮光壁の光源側開口径=0.5mm、第1面側遮光壁の第1面側開口径=0.55mm、第1面側遮光壁の高さ=0.5mm、第4面側遮光壁の開口径=0.6mm、第4面側遮光壁の高さ≒0.0mmとした。図24において、実線が正立等倍レンズアレイプレート11のシミュレーション結果を表し、破線が正立等倍レンズアレイプレート411のシミュレーション結果を表す。
【0086】
図24の実線に示すように、正立等倍レンズアレイプレート11に関しては、傾斜角度θを0°から正側に大きくしていくと傾斜角度θ=約+5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられている。しかしながら、傾斜角度θを0°から負側に大きくしていっても、ノイズ比の屈曲点は存在せず、ノイズ比はほとんど低下しない。これは、図2に示す正立等倍レンズアレイプレート11においては、孔径が第2面24d側から第3面26c側に向けてテーパ状に小さくなるよう中間貫通孔34aを形成する必要があることを示している。
【0087】
また、図24の破線に示すように、正立等倍レンズアレイプレート411に関しては、傾斜角度θを0°から負側に大きくしていくと傾斜角度θ=約−5°を屈曲点として、その屈曲点よりも大きな傾斜角度ではノイズ比を低く抑えられている。しかしながら、傾斜角度θを0°から正側に大きくしていっても、ノイズ比の屈曲点は存在せず、ノイズ比はほとんど低下しない。これは、図7に示す正立等倍レンズアレイプレート411においては、孔径が第2面24d側から第3面26c側に向けてテーパ状に大きくなるよう中間貫通孔34aを形成する必要があることを示している。
【0088】
図25は、本発明の別の実施形態に係る画像書込装置200を説明するための図である。図25に示すように、画像書込装置200は、複数のLEDがアレイ状に配列されたLEDアレイ206と、LEDアレイ206が搭載された基板204と、LEDアレイ206を制御する制御部202と、LEDアレイ206から出射された光を集光する上述の正立等倍レンズアレイプレート11と、正立等倍レンズアレイプレート11を透過した光を受光する感光体ドラム208と、上記構成要素を収容する筐体210とを備える。なお、図25においては、感光体ドラム208の周辺に設けられる現像装置、転写装置などについては図示を省略している。
【0089】
画像書込装置200は、LEDを光源に用いた所謂LEDプリントヘッド方式の画像書込装置である。LEDプリントヘッド方式は、画素と発光源が1対1に対応しており、主走査方向の走査機構が不要である。従って、レーザ光源とポリゴンミラーを組み合わせたレーザROS(Raster Output Scanner)方式と比べて、装置を小型且つ軽量化できる。
【0090】
従来、LEDプリントヘッド方式の正立等倍レンズアレイとしては、ロッドレンズアレイが用いられていたが、本発明に係る正立等倍レンズアレイプレート11を用いることにより、より安価な画像書込装置200を実現できる。また、本発明に係る正立等倍レンズアレイプレート11を用いることにより、フレアノイズの低減された良好な画像を感光体ドラム208上に形成できる。
【0091】
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
【0092】
例えば、上述の実施形態では、各レンズ面のレンズを主走査方向に一列に配列したが、レンズの配列パターンはこれに限定されず、たとえば、レンズを主走査方向に2列に配列した場合や、正方配列で配置した場合でも本発明を適用でき、フレアノイズの低減効果を得ることができる。
【符号の説明】
【0093】
10 光走査ユニット、 11、311、411 正立等倍レンズアレイプレート、 14 ガラス板、 20 ラインイメージセンサ、 24 第1レンズアレイプレート、 26 第2レンズアレイプレート、 30 第1面側遮光壁、 32 第4面側遮光壁、 34、334 中間遮光壁、 100 画像読取装置、 102 筐体、 200 画像書込装置、 206 LEDアレイ、 208 感光体ドラム。

【特許請求の範囲】
【請求項1】
第1面に規則的に配置された複数の第1レンズと、前記第1面に対向する第2面に規則的に配置された複数の第2レンズとを有する第1レンズアレイプレートと、
第3面に規則的に配置された複数の第3レンズと、前記第3面に対向する第4面に規則的に配置された複数の第4レンズとを有する第2レンズアレイプレートと、を備え、
前記第1レンズアレイプレートと前記第2レンズアレイプレートが、対応するレンズの組が共軸のレンズ系を構成するように前記第2面と前記第3面とを対向させて積層され、第1面側に置かれた物体の正立等倍像を第4面側の像面に形成する正立等倍レンズアレイプレートであって、
前記第4レンズに対応する複数の第4面側貫通孔を有する第4面側遮光壁であって、各第4面側貫通孔が対応する前記第4レンズの正面に位置するように前記第4面上に設けられた第4面側遮光壁と、
前記第2レンズおよび前記第3レンズに対応する複数の中間貫通孔を有する中間遮光壁であって、各中間貫通孔が対応する前記第2レンズおよび前記第3レンズの正面に位置するように前記第1レンズアレイプレートと前記第2レンズアレイプレートとの間に設けられた中間遮光壁と、をさらに備え、
前記中間貫通孔は、孔径が前記第2面側から第3面側に向けてテーパ状に小さくなるように形成されており、
前記第1レンズアレイプレートと前記第2レンズアレイプレートとの間のギャップをGapとし、前記第2レンズアレイプレートの厚さをLとし、前記第4面側遮光壁の高さをHとし、前記第4面側貫通孔の像面側開口径をDとしたときに、前記中間貫通孔の内壁面の光軸に対する傾斜角度θが、
θ≧tan−1(D/(Gap+L+H))/2
の範囲にあることを特徴とする正立等倍レンズアレイプレート。
【請求項2】
前記第1〜第4レンズの配列周期をPとしたとき、前記中間貫通孔の内壁面の光軸に対する傾斜角度θが、
tan−1(D/(Gap+L+H))/2≦θ≦tan−1((P+D)/2/(Gap+L+H))
の範囲にあることを特徴とする請求項1に記載の正立等倍レンズアレイプレート。
【請求項3】
前記第1レンズに対応する複数の第1面側貫通孔を有する第1面側遮光壁であって、各第1面側貫通孔が対応する前記第1レンズの正面に位置するように前記第1面上に設けられた第1面側遮光壁をさらに備えることを特徴とする請求項1または2に記載の正立等倍レンズアレイプレート。
【請求項4】
第1面に規則的に配置された複数の第1レンズと、前記第1面に対向する第2面に規則的に配置された複数の第2レンズとを有する第1レンズアレイプレートと、
第3面に規則的に配置された複数の第3レンズと、前記第3面に対向する第4面に規則的に配置された複数の第4レンズとを有する第2レンズアレイプレートと、を備え、
前記第1レンズアレイプレートと前記第2レンズアレイプレートが、対応するレンズの組が共軸のレンズ系を構成するように前記第2面と前記第3面とを対向させて積層され、第1面側に置かれた物体の正立等倍像を第4面側の像面に形成する正立等倍レンズアレイプレートであって、
前記第1レンズに対応する複数の第1面側貫通孔を有する第1面側遮光壁であって、各第1面側貫通孔が対応する前記第1レンズの正面に位置するように前記第1面上に設けられた第1面側遮光壁と、
前記第2レンズおよび前記第3レンズに対応する複数の中間貫通孔を有する中間遮光壁であって、各中間貫通孔が対応する前記第2レンズおよび前記第3レンズの正面に位置するように前記第1レンズアレイプレートと前記第2レンズアレイプレートとの間に設けられた中間遮光壁と、をさらに備え、
前記中間貫通孔は、孔径が前記第2面側から第3面側に向けて逆テーパ状に大きくなるように形成されており、
前記第1レンズアレイプレートと前記第2レンズアレイプレートとの間のギャップをGapとし、前記第1レンズアレイプレートの厚さをLとし、前記第1面側遮光壁の高さをHとし、前記第1面側貫通孔の光源側開口径をDとしたときに、前記中間貫通孔の内壁面の光軸に対する傾斜角度θが、
θ≧tan−1(D/(Gap+L+H))/2
の範囲にあることを特徴とする正立等倍レンズアレイプレート。
【請求項5】
前記第1〜第4レンズの配列周期をPとしたとき、前記中間貫通孔の内壁面の光軸に対する傾斜角度θが、
tan−1(D/(Gap+L+H))/2≦θ≦tan−1((P+D)/2/(Gap+L+H))
の範囲にあることを特徴とする請求項4に記載の正立等倍レンズアレイプレート。
【請求項6】
前記第4レンズに対応する複数の第4面側貫通孔を有する第4面側遮光壁であって、各第4面側貫通孔が対応する前記第4レンズの正面に位置するように前記第4面上に設けられた第4面側遮光壁をさらに備えることを特徴とする請求項4または5に記載の正立等倍レンズアレイプレート。
【請求項7】
被読取画像に光を照射するライン状光源と、
前記被読取画像から反射した光を集光する請求項1から6のいずれかに記載の正立等倍レンズアレイプレートと、
前記正立等倍レンズアレイプレートを透過した光を受光するラインイメージセンサと、
を備えることを特徴とする光走査ユニット。
【請求項8】
請求項7に記載の光走査ユニットと、
前記光走査ユニットによって検出された画像信号を処理する画像処理部と、
を備えることを特徴とする画像読取装置。
【請求項9】
複数のLEDがアレイ状に配列されたLEDアレイと、
前記LEDアレイから出射された光を集光する請求項1から6のいずれかに記載の正立等倍レンズアレイプレートと、
前記正立等倍レンズアレイプレートを透過した光を受光する感光体ドラムと、
を備えることを特徴とする画像書込装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公開番号】特開2012−163850(P2012−163850A)
【公開日】平成24年8月30日(2012.8.30)
【国際特許分類】
【出願番号】特願2011−25303(P2011−25303)
【出願日】平成23年2月8日(2011.2.8)
【出願人】(000004008)日本板硝子株式会社 (853)
【Fターム(参考)】