説明

舶用推進システム

【課題】 ガスタービンを備えた船舶において、発電機と電力貯蔵装置とを組合わせてガスタービンを効率良く運用できる舶用推進システムを提供すること。
【解決手段】 ガスタービンGTで駆動する発電機Gで発電し、その電力でプロペラ5を駆動する推進電動機Mと、発電した電力を貯蔵する電力貯蔵装置Sと、各機器を制御する制御装置CUとを備え、制御装置CUは、ガスタービンGTを運転時には常に高出力域で運転して発電機Gを駆動し、発電した電力を船内電源SP、推進電動機M、電力貯蔵装置Sへ供給し、電力貯蔵装置Sが所要の最大充電量に達するとガスタービンGTを停止し、ガスタービン停止後には電力貯蔵装置Sからその貯蔵した電力を船内電源、推進電動機Mへ供給し、電力貯蔵装置Sの貯蔵電力量が所定の最小充電量に達するとガスタービンGTを高出力域で運転して発電機Gを駆動する発電状態に戻るサイクルを繰り返すように構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスタービンを備えた舶用推進システムに関する。
【背景技術】
【0002】
従来、小型軽量コンパクト、低振動、優れた始動特性・加減速性能などからガスタービンが船舶の主機として用いられていた。しかし、ガスタービンは低出力になるほど燃料消費率が大きくなるため、常時広範な出力範囲で使用されたり、平均的な所要出力が最大出力に比べて低い船舶でガスタービンを主機として用いた場合、燃料消費率が大きい、つまり燃費の悪さが大きな課題となり、現在は主機の主流になっていない。
【0003】
図14は、ガスタービンとディーゼルエンジンとにおける出力と燃料消費率(単位出力,単位時間当たりの燃料消費量)との関係を示すグラフである。横軸に出力を示し、縦軸に燃料消費率を示している。一点鎖線で示すディーゼルエンジンの場合には、低出力時には高出力時に比べて燃料消費率は大きくなるが、大きな変化はない。しかし、実線で示すガスタービンの場合には、低出力時には高出力時に比べて燃料消費率が非常に大きくなり、燃費が非常に悪くなることがわかる。
【0004】
なお、この種の先行技術として、ガスタービンとディーゼルエンジンとを併設し、ガスタービンで駆動する発電機と、ディーゼルエンジンで駆動する発電機と、これらの発電機で発電した電力を蓄えるバッテリーとを設け、低速航行する場合はガスタービンを定格出力で運転して発電し、電力が不足する場合にはディーゼルエンジンを運転するようにすることで、船舶全体の燃料消費効率を高く維持するようにした舶用推進装置がある(例えば、特許文献1参照)。
【0005】
また、他の先行技術として、交流発電機を作動させるディーゼルエンジン(またはガスタービン)を設け、交流発電機で発電した余剰電力や、交流電動機で駆動するプロペラが減速時や潮流等の影響で発電機として駆動されたときに発生する交流電力を、直流電力に変換してキャパシタに蓄え、必要に応じて交流電力に変換して交流電動機に供給したり、船内電源として利用できるようにしたものがある(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−22650号公報
【特許文献2】特開2008−024187号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、上記図14に示すように、単純サイクルのガスタービンは、低出力になるほど燃料消費率(以下、単に「燃費」ともいう)が悪くなる特性を避けることができない。そのため、特に広範な出力範囲でガスタービンが運転される船舶では、上記したように低出力でのガスタービンの燃費の悪さが問題となり、主機の主流として採用されていない。特に、燃費の悪さは、近年、原油の高騰によって問題となることが多い。
【0008】
この燃費の悪さを解決する一手段として、例えば、比較的低出力のガスタービンを複数台搭載し、低出力の時には1台のみを運転して、その出力を推進、船内電源負荷双方に供給することが考えられる。しかし、このように構成したとしても、ガスタービン負荷が定格出力よりも小さい場合には燃費の悪い運転をしなければならず、燃費の悪さは改善できない。この課題は上記特許文献1においても生じ、定格出力で運転するガスタービンを定格出力よりも小さい出力で運転する場合には燃費の悪い運転をしなければならず、燃費の悪さは改善できない。
【0009】
また、このように低出力の時に運転中のガスタービンが緊急停止した場合、他の停止中のガスタービンを起動して負荷を発生するまでの間、船舶は推進・制御・操舵能力を失って漂流するだけでなく、停止中のガスタービンの起動に電力を要する場合、所要の電力を確保できないおそれがある。
【0010】
なお、上記特許文献2は、プロペラが発電機として駆動されたときに発生する交流電力を直流電源に変換してキャパシタに蓄えようとするものであり、ガスタービンの運転/停止と電力貯蔵装置に貯蔵された電力量とに基づいたガスタービンの効率の良い運用については記載されていない。この点は、上記特許文献1にも記載されていない。
【0011】
そこで、本発明は、ガスタービンを備えた船舶において、発電機と電力貯蔵装置とを組合わせてガスタービンを効率良く運用できる舶用推進システムを提供することを目的とする。
【課題を解決するための手段】
【0012】
上記目的を達成するために、本発明は、発電機を駆動するガスタービンと、前記発電機で発電した電力を貯蔵する電力貯蔵装置と、各機器を制御する制御装置とを備え、前記制御装置は、前記ガスタービンを運転時には常に高出力域で運転して前記発電機を駆動し、発電した電力を船内電源への給電及び前記電力貯蔵装置への充電電力として供給し、前記電力貯蔵装置が所定の最大充電量に達すると前記ガスタービンを停止し、ガスタービン停止後には前記電力貯蔵装置からその貯蔵した電力を船内電源へ供給し、前記電力貯蔵装置が所定の最小充電量に達すると前記ガスタービンを高出力域で運転して前記発電機を駆動する発電状態に戻るサイクルを繰り返すように構成されていることを特徴とする。この明細書及び特許請求の範囲の書類中における「高出力域」は、ガスタービンの最高出力(定格出力)を含む高出力の領域をいう。また、「ガスタービンを停止」とは、「停止」または「アイドリング状態」にすることをいう。この構成により、ガスタービンで駆動する発電機を搭載した舶用推進システムに電力貯蔵装置を付加し、ガスタービンを常に燃料消費率の良好な高出力域で運転するように制御して発電機で発電した電力を電力貯蔵装置に充電することにより、ガスタービンの燃料消費率を大幅に改善するとともに、ガスタービン出力と電力貯蔵装置の電力とを利用して効率良く運用できる舶用推進システムを構成することができる。その上、ガスタービンが緊急停止したとしても、電力貯蔵装置からの電力供給によって船内電源等を長期間継続維持できるため、信頼性、安全性の向上も図れる。
【0013】
また、前記発電機で発電した電力を推進装置駆動用電力に変換する変換装置と、前記変換装置で変換した電力でプロペラを駆動する推進電動機とを備え、前記制御装置は、前記ガスタービン運転時に発電機で発電した電力を船内電源への給電、前記電力貯蔵装置への充電及び前記推進電動機への駆動電力として供給し、前記ガスタービン停止後には、前記電力貯蔵装置からその貯蔵した電力を船内電源への給電、前記推進電動機への駆動電力として供給するように構成されていてもよい。このように構成すれば、ガスタービンが緊急停止した場合にも電力貯蔵装置からの電力供給により、操船、推進能力を継続維持できるため、信頼性、安全性の向上が可能な舶用推進システムを構成することができる。
【0014】
また、前記電力貯蔵装置は、大容量の電力貯蔵が可能な大容量電力貯蔵器と、瞬時大電力出力が可能な小容量電力貯蔵器と、を組み合わせた複数形式の電力貯蔵器で構成されていてもよい。このように構成すれば、一般的に大容量ではあるが瞬時負荷変動に対応が難しい形式の電力貯蔵器に電力を貯蔵し、一般的に瞬時大電力出力が可能であるが小容量である電力貯蔵器に貯蔵した電力によって短時間の大電力需要に対応して、電力貯蔵装置に蓄えられた電力を必要に応じて効率良く使用するようにできる。
【0015】
また、前記プロペラを駆動するプロペラ駆動用減速機を有し、前記プロペラ駆動用減速機は、前記ガスタービンで駆動する発電機で発電した電力または前記電力貯蔵装置の電力で駆動する推進電動機で駆動できるように構成されていてもよい。このように構成すれば、ガスタービンで駆動する発電機で発電した電力または電力貯蔵装置の電力を利用して推進電動機を駆動し、この推進電動機でプロペラ駆動用減速機を介してプロペラを駆動するように構成することができる。
【0016】
また、原動機で駆動するプロペラ駆動用減速機と、前記プロペラ駆動用減速機を駆動する推進電動機とを有し、前記原動機と前記推進電動機とが、前記プロペラ駆動用減速機を単独または同時に駆動できるように構成されていてもよい。このように構成すれば、原動機と推進電動機とによるプロペラ駆動用減速機の駆動を単独または同時に行うことで、原動機と推進電動機とを利用した効率的な推進が可能となる。
【0017】
また、前記推進電動機は、前記プロペラ側から駆動されることで発電機として動作する回生機能を有し、前記推進電動機で発電した電力を、船内電源への給電、電力貯蔵装置への充電が可能なように構成されていてもよい。このように構成すれば、プロペラの逆転時や潮流等によってプロペラが回転させられた時のエネルギーで発電して、その回生電力を船内電源や電力貯蔵装置への貯蔵電力とすることができる。
【0018】
また、前記ガスタービンで駆動する第1発電機と、前記プロペラ駆動用減速機で駆動する第2発電機とを備え、前記制御装置は、前記ガスタービンで駆動する第1発電機が緊急停止した場合には、前記電力貯蔵装置から必要な推進、船内電源を供給しながら、停止中の第2発電機を起動させるように構成されていてもよい。このように構成すれば、ガスタービンで駆動する第1発電機が停止した場合でも、プロペラ駆動用減速機で駆動する第2発電機を起動して電力供給することが可能なようにできる。
【0019】
また、前記プロペラ駆動用減速機で駆動するプロペラに加えて前記推進電動機で駆動するプロペラを備え、前記推進電動機で駆動するプロペラは、前記プロペラ駆動用減速機で駆動するプロペラと平行に配置された二軸式の推進装置に構成されていてもよい。このように構成すれば、プロペラ駆動用減速機で機械推進駆動するプロペラと、推進電動機で電気推進駆動する2つのプロペラとを備えた2軸船の舶用推進システムを構成することができる。
【0020】
また、前記プロペラ駆動用減速機で駆動するプロペラに加えて前記推進電動機で駆動するプロペラを備え、前記推進電動機で駆動するプロペラは、前記プロペラ駆動用減速機で駆動するプロペラの軸方向後方で対向するように配置されたポッド式の推進装置に構成されていてもよい。このように構成すれば、プロペラ駆動用減速機で駆動するプロペラに対して、船尾側から見て反対方向にポッド式プロペラを回転させることで、二重反転プロペラとして推進効率の向上を図った舶用推進システムを構成することができる。
【0021】
また、前記変換装置は、コンバータとインバータとを備え、前記電力貯蔵装置は、前記コンバータとインバータとの間の直流部に接続されていてもよい。このように構成すれば、電力貯蔵装置用のインバータが不要となって変換効率が向上して全体の効率が良くなり、電力貯蔵装置に効率良く電力を貯蔵することができる。
【0022】
また、前記プロペラを駆動するプロペラ駆動用減速機を有し、前記ガスタービンは、前記プロペラ駆動用減速機を介して前記発電機を駆動するように構成されていてもよい。このように構成すれば、ガスタービンでプロペラ駆動用減速機を介して駆動する発電機で発電した電力を電力貯蔵装置に充電して利用するように構成することができる。
【0023】
前記プロペラを駆動するプロペラ駆動用減速機を有し、前記ガスタービンは、前記プロペラ駆動用減速機と前記発電機とを選択的に駆動する駆動系を有し、前記駆動系は、前記プロペラ駆動用減速機の駆動系を切り離して発電機のみを駆動できるように構成されていてもよい。このように構成すれば、船舶の停泊時等にプロペラの駆動系を切り離して発電機のみを駆動して発電するように構成することができる。
【0024】
また、前記電力貯蔵装置は、船内の複数箇所に分散配置され、前記制御装置は、前記電力貯蔵装置の何れかが故障した場合に、他の故障していない電力貯蔵装置に貯蔵されている電力を供給して電力供給を継続させるように構成されていてもよい。このように構成すれば、船内の複数箇所に配置された電力貯蔵装置の何れかが故障したとしても、故障していない電力貯蔵装置に貯蔵されている電力によって安定した電力供給を続けることができる。
【発明の効果】
【0025】
本発明によれば、ガスタービンを常に燃料消費率の良い高出力域で運転し、そのガスタービンで駆動する発電機で発電した電力を貯蔵した電力貯蔵装置の電力を利用して効率良く運用できる舶用推進システムを構成することが可能となる。
【図面の簡単な説明】
【0026】
【図1】本発明の第1実施形態に係る舶用推進システムを示す構成図である。
【図2】図1に示す舶用推進システムにおけるガスタービンの起動/停止の判断を含む運転のフローチャート図である。
【図3】図1に示す舶用推進システムにおける一例の運用タイムチャート図である。
【図4】図3に示す運用タイムチャートの各時間における各構成の状態図である。
【図5】本発明の第2実施形態に係る舶用推進システムを示す構成図である。
【図6】本発明の第3実施形態に係る舶用推進システムを示す構成図である。
【図7】本発明の第4実施形態に係る舶用推進システムを示す構成図である。
【図8】本発明の第5実施形態に係る舶用推進システムを示す構成図である。
【図9】本発明の第6実施形態に係る舶用推進システムを示す構成図である。
【図10】本発明の第7実施形態に係る舶用推進システムを示す構成図である。
【図11】本発明の第8実施形態に係る舶用推進システムを示す構成図である。
【図12】本発明の第9実施形態に係る舶用推進システムを示す構成図である。
【図13】本発明の第10実施形態に係る舶用推進システムを示す構成図である。
【図14】従来のガスタービンとディーゼルエンジンとの出力と燃料消費率との関係を示すグラフである。
【発明を実施するための形態】
【0027】
以下、本発明の実施形態を図面に基づいて説明する。以下の実施形態では、各構成をブロックで示し、記号を付して説明する。各記号は、GT:ガスタービン、G:発電機(交流発電機)、C:コンバータ、I:インバータ、S:電力貯蔵装置、SP:船内電源、M:推進電動機、CU:制御装置,P:原動機、CL:クラッチ、RG:減速機、AC:交流、DC:直流、である。また、二本線は回転軸を示し、一本線は電線を示し、一点鎖線は制御ラインを示している。
【0028】
図1に示す第1実施形態の舶用推進システム1は、ガスタービンGTの回転軸2で発電機Gを駆動して発電し、この発電機Gで発電した電力は、電線3を介して電力変換装置4から推進電動機Mに供給され、この推進電動機Mによってプロペラ5が回転させられている。また、上記発電機Gで発電した電力は、電線3から船内電源SPに給電されるとともに、電力貯蔵装置Sに供給されて充電電力として貯蔵されている。この電力貯蔵装置Sとしては、通常、充放電可能な二次電池から構成され、充放電は直流であるため、上記電線3から供給される交流を直流に変換する機能を具備している。
【0029】
そして、電力貯蔵装置Sが満充電(所定の最大充電量)になると、ガスタービンGTを停止(アイドリング状態を含む)させて、電力貯蔵装置Sに貯蔵された電力が船内電源SPに供給されるとともに、推進電動機Mに供給されてプロペラ5が回転させられる。
【0030】
この電力貯蔵装置Sに貯蔵した電力を推進電動機Mに供給する場合、この推進電動機Mは、プロペラ回転数を船速に応じて変化させたり後進時には逆転させる必要があるため、交流で回転数制御が可能となっており、一定周波数(一般には60Hz)の船内電源系統と推進電動機間に設けた電力変換装置4にて周波数変換が行われている。この電力変換装置4としては、交流の船内電源をコンバータCで一旦直流に変換後、この直流を推進電動機Mが必要とする周波数の交流に変換するインバータIから構成されている。これらの制御は、制御装置CUからの信号に基づいて行われている。
【0031】
次に、図2に示すフローチャートに基づいて、上記舶用推進システム1におけるガスタービンGTの起動/停止の判断を含む運転を説明する。このフローチャートで使用する略号は、GT:ガスタービン、GTmax:ガスタービン最大出力(定格運転)、Smax:電力貯蔵装置最大出力、SoC:電力貯蔵装置充電残量、SoCmax:電力貯蔵装置最大充電量、SoCmin:電力貯蔵装置最小充電量、PD:所要出力=船体推進動力+船内電源、である。
【0032】
上記舶用推進システム1におけるガスタービンGTの運転/停止の判断としては、まずガスタービンGTが運転中か否かが判断される(S1)。そして、ガスタービンGTが運転中の場合には所要出力PDがガスタービン最大出力GTmaxよりも小さいかが判断される(S2)。この所要出力PDがガスタービン最大出力GTmaxよりも小さい場合には、電力貯蔵装置充電残量SoCが電力貯蔵装置最大充電量SoCmaxよりも大きく、且つ所要出力PDが電力貯蔵装置最大出力Smaxよりも小さいかが判断される(S3)。この判断(S3)で2つの条件を満足している場合には、ガスタービンGTが停止させられる(S4)。
【0033】
また、上記判断(S3)で2つの条件を満足していない場合には、余剰分の電力が電力貯蔵装置Sに貯蔵(充電)される(S5)。
【0034】
さらに、上記判断(S2)で所要出力PDがガスタービン最大出力GTmaxよりも大きい場合には、電力貯蔵装置充電残量SoCが電力貯蔵装置最小充電量SoCminよりも小さいかが判断される(S6)。この判断(S6)で電力貯蔵装置充電残量SoCが小さい場合には、所要出力(船体推進動力+船内電源)PDが制限される(S7)。上記判断(S6)で電力貯蔵装置充電残量SoCが電力貯蔵装置最小充電量SoCminよりも大きい場合には、電力貯蔵装置Sの貯蔵電力が使用(放電)される(S8)。
【0035】
一方、上記判断(S1)でガスタービンGTが運転中ではない場合、所要出力(船体推進動力+船内電源)PDが電力貯蔵装置最大出力Smaxよりも小さいかが判断される(S9)。この判断(S9)で所要出力PDが電力貯蔵装置最大出力Smaxよりも大きい場合には、ガスタービンGTが起動され(S10)、上記判断(S2)へと流れる。
【0036】
上記判断(S9)で所要出力PDが電力貯蔵装置最大出力Smaxよりも小さい場合には、電力貯蔵装置充電残量SoCが電力貯蔵装置最小充電量SoCminよりも小さいかが判断される(S11)。この判断(S11)で電力貯蔵装置充電残量SoCが電力貯蔵装置最小充電量SoCminよりも小さい場合、上記(S10)のガスタービンGTの起動へと流れる。この判断(S11)で電力貯蔵装置充電残量SoCが電力貯蔵装置最小充電量SoCminよりも大きい場合には、上記(S8)の電力貯蔵装置Sの貯蔵電力が使用(放電)される(S8)。
【0037】
次に、図3に示す運用タイムチャートと図4に示す各時間における各構成の状態図に基づいて、上記図2に示すようなフローチャートで運転される舶用推進システム1の運用例の一例を説明する。図3では横軸に時間、縦軸に各パラメータの量を示しており、運用例を時間経過とともに説明する。
【0038】
[時間A〜B]
船体の推進所要動力はガスタービンGTの最高出力の60%、船内所要電力は5%とすると、ガスタービンGTは停止し、所要動力と電力は電力貯蔵装置Sに貯蔵した電力が利用される。これにより、電力貯蔵装置Sに貯蔵されている電力貯蔵残量は減少する。
【0039】
[時間B〜C]
電力貯蔵装置Sに貯蔵された電力貯蔵残量が所定の最小充電量(SoCmin)に達すると、船体の推進所要動力はガスタービンGTの最高出力の60%、船内所要電力は5%、を維持するためにガスタービンGTが最高出力で運転される。これにより、ガスタービンGTで駆動される発電機Gで発電した電力が所要動力と電力に利用されながら余剰分が電力貯蔵装置Sに充電される。
【0040】
[時間C〜D]
そして、時間Cで電力貯蔵装置Sが所定の最大充電量(SoCmax)になると、ガスタービンGTは停止する。その後、所要動力と電力は電力貯蔵装置Sに貯蔵された電力が利用される。これにより、電力貯蔵装置Sに貯蔵されている電力貯蔵残量は減少する。
【0041】
[時間D〜E]
その後、時間Dで船内所要電力が急激に上昇した場合、電力貯蔵装置Sの充電残量も急激に減少して不足するため、ガスタービンGTが起動しで最高出力で運転されて、発電機Gで発電した電力が再び所要動力と電力に利用されながら余剰分が電力貯蔵装置Sに充電されるが、使用電力が多いため電力貯蔵装置Sに貯蔵された電力貯蔵残量は、時間Eで最小充電量(SoCmin)に達する。
【0042】
[時間E〜F]
そして、時間Eで、推進所要動力は最高出力の50%、船内所要電力は10%となったとすると、ガスタービンGTで駆動する発電機Gで発電した電力が所要動力と電力に利用されながら電力貯蔵装置Sに充電される。
【0043】
[時間F〜]
そして、時間Fで電力貯蔵装置Sが満充電となると、ガスタービンGTは停止する。その後、所要動力と電力は電力貯蔵装置Sに貯蔵された電力が利用される。これにより、電力貯蔵装置Sに貯蔵されている充電残量は減少する。
【0044】
以上が一連のサイクルであり、推進所要動力、船内所要電力、及び電力貯蔵装置Sの電力貯蔵残量との関係によって、上記したようにガスタービンGTを運転/停止させるサイクルが繰り返されるように制御装置CUで制御される。
【0045】
このように、上記舶用推進システム1によれば、ガスタービンGTが運転される場合は常に高出力域の最高出力で運転されるため、出力の増大と共に燃料消費率が低減し、定格出力近傍で最良の燃料消費率となる特性を持つガスタービンGTは、常に燃料消費率が小さい燃費の良い運用となる。
【0046】
また、燃料消費率が良い高出力域で運転されるガスタービンGTで駆動する発電機Gで発電した電力を電力貯蔵装置Sに応じた所定の最大充電量に達するまで貯蔵し、その電力が所定の最小充電量に達するまで電力貯蔵装置Sに貯蔵された電力を船内電源SPへの給電、推進電動機Mへの駆動電力に利用して船舶で使用する電力を効率良く運用することができる。従って、ガスタービンGTの利点と電力貯蔵装置Sを利用した効率の良い運用が可能な舶用推進システム1を構成することが可能となる。
【0047】
しかも、ガスタービンGTと発電機Gが緊急停止した場合でも、電力貯蔵装置Sに貯蔵された電力で、瞬時に推進電動機Mの推進動力、船内電源SPの双方に供給することができ、安全性や信頼性の向上が可能となる。また、貯蔵電力を用いてガスタービンGTと発電機Gを直ちに起動させることもできる。さらに、ガスタービンGTは発電機Gを駆動する間だけ高出力域で運転されるので、ガスタービンGTの延べ運転時間が短縮され、ガスタービンGTの保守整備費用の低減も可能となる。
【0048】
なお、上記舶用推進システム1において、電気推進用を含む船内電源合計需要が発電機Gの発揮可能電力(容量)を上回った場合には、電力貯蔵装置Sから給電することで、発電機Gの容量以上の電力を供給することもできる。
【0049】
次に、図5〜図13に基づいて、他の実施の形態を説明する。以下の説明における各実施形態においても、ガスタービンGTは常に燃費の良い高出力域で運転され、発電機Gで発電した電力は、電力貯蔵装置Sの電力貯蔵残量に応じて上記図2〜4に示すような制御が行われるものとする。なお、以下の実施形態において上記第1実施形態と同一の構成には、同一の一桁番号の符号を付して、その説明は省略する。
【0050】
まず、図5に示す第2実施形態の舶用推進システム11を説明する。この舶用推進システム11は、上記第1実施形態における電力変換装置14のコンバータCとインバータIとの間の電線16に電力貯蔵装置Sが接続されている。つまり、交流(推進電動機M側)にするインバータIと直流(電力貯蔵装置S側)にするコンバータCとの間の直流部分に上記電力貯蔵装置Sが設けられている。
【0051】
このように構成すれば、電力貯蔵装置SがコンバータCとインバータIとの間の直流部分に接続されたことにより、交流の船内電源系統に電力貯蔵装置Sを接続させた場合に必須となる直流(電力貯蔵装置S側)と交流(船内電源SP側)との間のコンバータを省略または簡素化することができる。
【0052】
しかも、電気推進の船舶は、前進から後進、あるいは後進から前進に移行するとき、固定ピッチプロペラが回されて推進電動機Mが発電機になる状態が存在する。そして、その時の発生電力は、発電機を加速する方向に働き、船内電源周波数などの擾乱要素、更には発電機Gのオーバスピードなどを招く危険性があるため、推進電動機Mと発電機Gの間に別途抵抗(バックパワー吸収装置)を設けて、発生電力を吸収させる必要がある。
【0053】
しかし、この舶用推進システム11によれば、推進電動機Mがプロペラ15側から回転させられて発電機として動作した際の回生電力を、インバータIから直流のまま電力貯蔵装置Sに蓄えることができ、この電力貯蔵装置Sを効率の良いバックパワー吸収装置として機能させることができる。なお、電力貯蔵装置Sを交流部に接続してバックパワー吸収装置として機能させてもよい。この場合、電力貯蔵装置Sは上流側(プロペラ側)に接続する方が好ましい。
【0054】
従って、この実施形態の舶用推進システム11によれば、ガスタービンGTの高出力域での運転による燃費低減、ガスタービンGTで駆動する発電機Gで発電した電力を貯蔵した電力貯蔵装置Sによる船舶で使用する電力の効率の良い運用、信頼性向上という利点に加え、電気推進においては別途装備する必要のあったバックパワー吸収装置を電力貯蔵装置Sで代用して省略することができ、構成の簡略化を図った舶用推進システムを構成することができる。
【0055】
しかも、回生電力発生時に電力貯蔵装置Sに充電した電力を推進、船内電源用に再利用できるため、更なる燃費低減を図ることも可能となる。
【0056】
次に、図6に示す第3実施形態の舶用推進システム21を説明する。この舶用推進システム21は、上記第1実施形態における電力貯蔵装置Sが複数台設けられており、船内の複数箇所に分散配置されている。
【0057】
従って、この実施形態の舶用推進システム21によれば、いずれかの電力貯蔵装置Sが故障した場合でも、正常に機能する残存した電力貯蔵装置Sで推進動力、船内電源SPの双方に電力供給して船舶で使用する電力の運用を継続することができる。なお、上記第1実施形態における舶用推進システム1と同一の構成による作用効果は上記第1実施形態と同一であるため、その説明は省略する。
【0058】
次に、図7に示す第4実施形態の舶用推進システム31を説明する。この舶用推進システム31は、上記第1実施形態における電力貯蔵装置Sの構成が異なっている。電力貯蔵装置Sに用いられる電力貯蔵器は、一般的に大容量のものは瞬時負荷変動に対する追従性が悪く、大きな瞬時負荷変動に対応できるものは容量が小さい傾向がある。そこで、この実施形態の電力貯蔵装置Sは、大容量ではあるが急激な電力需要変化に対応するのが難しい形式の大容量電力貯蔵器S1と、容量は小さいが短時間の瞬時大電力出力が可能な形式の小容量電力貯蔵器S2との複数形式で構成されている。上記大容量電力貯蔵器S1としては、充放電可能な二次電池が用いられ、上記小容量電力貯蔵器S2としては、例えば、フライホイールの運動エネルギとして電気エネルギを貯蔵するフライホイール電源装置のようなものが用いられる。
【0059】
従って、この実施形態の舶用推進システム31によれば、瞬時負荷変動に対しては小容量電力貯蔵器S2に貯蔵された電力で応答性良く対応し、継続的な負荷変動に対しては大容量電力貯蔵器S1に貯蔵された十分な容量の電力で対応し、これらを組み合わせることで、大容量且つ大きな瞬時負荷変動にも追従可能な電力貯蔵装置Sを構成している。
【0060】
しかも、この舶用推進システム31によれば、船体側の負荷変動に対して、大容量電力貯蔵器S1と小容量電力貯蔵器S2とに貯蔵された電力の好ましい方を選択して柔軟に電力供給できる電力貯蔵装置Sを構成することができる。なお、上記第1実施形態における舶用推進システム1と同一の構成による作用効果は上記第1実施形態と同一であるため、その説明は省略する。
【0061】
次に、図8に示す第5実施形態の舶用推進システム41を説明する。この舶用推進システム41は、ガスタービンGTの回転軸42Aによって駆動されるプロペラ駆動用減速機RG(単に「減速機」ともいう)が設けられ、このプロペラ駆動用減速機RGを介して回転軸42Bで発電機Gが駆動されるようになっている。発電機Gは、回転軸42Bに設けられたクラッチCLで接続/切断することができるようになっている。発電機Gを駆動する必要が無い場合は、クラッチCLが切り離される。
【0062】
また、プロペラ45は、減速機RGによって駆動されている。減速機RGから取り出された動力で駆動される発電機Gで発電された電力は、電線43に設けられた電力変換装置44を介して船内電源SPに給電されるとともに、電力貯蔵装置Sに貯蔵されている。
【0063】
従って、この実施形態の舶用推進システム41によれば、ガスタービンGTの出力は減速機RGを介してプロペラ45と発電機Gに供給されるため、プロペラ45は直接駆動の推進方法(機械推進)となり、上述した実施形態のように、ガスタービンGTの機械動力を発電機Gで電力に変換した後、再び推進電動機Mで機械動力に戻す構成に比べて伝達損失を少なくできる。
【0064】
しかも、この舶用推進システム41の場合もガスタービンGTは常に高出力域の最高出力で運転されるので、ガスタービンGTは常に燃料消費率が小さい燃費の良い運用となる。そして、最高出力で運転されるガスタービンGTの出力は、プロペラ駆動用減速機RGによるプロペラ45の駆動動力と、発電機Gの駆動動力として利用される。例えば、プロペラ45の駆動動力にガスタービン出力の30%が利用されれば、発電機Gはガスタービン出力の70%で駆動され、プロペラ45の駆動動力にガスタービン出力の5%が利用されれば、発電機Gはガスタービン出力の95%で駆動される。なお、上記第1実施形態における舶用推進システム1と同一の構成による作用効果は上記第1実施形態と同一であるため、その説明は省略する。
【0065】
次に、図9に示す第6実施形態の舶用推進システム51を説明する。この舶用推進システム51は、ガスタービンGTによって減速機RGと発電機Gとを単独または同時に選択的に駆動することができる駆動系を有するようにした実施形態である。
【0066】
この実施形態のガスタービンGTは、減速機RGを駆動する外側回転軸52Aと、発電機Gを駆動する内側回転軸52Bとが二重軸構造となっている。減速機RGを駆動する外側回転軸52Aには、ガスタービンGTと減速機RGとの間にクラッチCL1が設けられている。発電機Gを駆動する内側回転軸52Bには、減速機RGを通過して発電機Gに至る間にクラッチCL2が設けられている。これらのクラッチCL1,CL2により、外側回転軸52Aと内側回転軸52Bとを、それぞれ接続/切断することができるようになっている。
【0067】
従って、この実施形態の舶用推進システム51によれば、ガスタービンGTで駆動する外側回転軸52Aによって減速機RGを駆動するとともに、内側回転軸52Bによって発電機Gを同時に駆動することができる。
【0068】
そして、外側回転軸52AのクラッチCL1を切り離せば、内側回転軸52Bによって発電機Gのみを単独で駆動することができ、内側回転軸52BのクラッチCL2を切り離せば、外側回転軸52Aによって減速機RGを介してプロペラ55のみを単独で駆動することができる。このように、プロペラ駆動用減速機RGまたは発電機Gを単独または同時にガスタービンGTで駆動することができるようになっている。
【0069】
また、この舶用推進システム51も、ガスタービンGTは常に高出力域の最高出力で運転されるので、ガスタービンGTは常に燃料消費率が小さい燃費の良い運用となる。そして、停泊時には減速機RGを駆動するガスタービンGTの外側回転軸52AをクラッチCL1で切り離し、発電機GのみをガスタービンGTで駆動することができる。これにより、停泊中等にプロペラ55を回すことなく発電のみを行うことができる。なお、上記第5実施形態における舶用推進システム41と同一の構成による作用効果は上記第5実施形態と同一であるため、その説明は省略する。
【0070】
次に、図10に示す第7実施形態の舶用推進システム61を説明する。この舶用推進システム61は、上述した第1実施形態と同様にガスタービンGTの回転軸62Aで駆動する発電機Gを有し、この発電機Gで発電された電力が、電線63から船内電源SPに給電されるとともに、電力貯蔵装置Sに供給されて貯蔵されている。
【0071】
そして、この舶用推進システム61には、原動機(例えば、ディーゼルエンジン)Pの回転軸62Bで駆動する減速機RGによって駆動されるプロペラ65と、この減速機RGを駆動する推進電動機Mとが設けられている。この推進電動機Mは、回転軸62Cが減速機RGと連結され、上記発電機Gで発電された電力、または上記電力貯蔵装置Sに貯蔵された電力で駆動できるようになっている。この構成の場合、原動機Pで減速機RGを介してプロペラ65を駆動するときには回転軸62CのクラッチCL2が切り離される。また、電動機Mで減速機RGを介してプロペラ65を駆動するときには回転軸62BのクラッチCL1が切り離される。
【0072】
従って、この実施形態の舶用推進システム61によれば、原動機Pによる減速機RGを介したプロペラ65の駆動と、電動機Mによる減速機RGを介したプロペラ65の駆動とが可能であるため、原動機Pによる駆動が緊急停止した場合などに、発電機Gで発電した電力で電動機Mを駆動して減速機RGを介してプロペラ65を駆動することが可能である。しかも、運転中の発電機Gが緊急停止した場合には、電力貯蔵装置Sが即座に必要な推進、船内電源を供給しながら電動機Mで減速機RGを介してプロペラ65を駆動し、運転不能等になることなく航行することができる。さらに、高速が必要な場合は、原動機Pによる動力に電動機Mによる動力を加えることでプロペラ65をより大きな動力で駆動することもできる。
【0073】
しかも、ガスタービンGTは常に高出力域の最高出力で運転されるので、ガスタービンGTは常に燃料消費率が小さい燃費の良い運用となるとともに、プロペラ65を駆動する推進動力に対する電気推進容量の割合を低減することもできる。従って、電気推進に要する構成を小型化し、各機器の調達コスト的にも優れた舶用推進システム61を構成することができる。
【0074】
次に、図11に示す第8実施形態の舶用推進システム71を説明する。この舶用推進システム71は、上記第7実施形態において減速機RGを駆動する電動機Mが、電動機の機能に加えて減速機RGで駆動される発電機Gの機能を有する電動機兼発電機77となっている。第7実施形態と同一の構成は、説明を省略する。この実施形態でも、上述した第1実施形態と同様にガスタービンGTの回転軸72Aで駆動する発電機Gを有し、この発電機Gで発電された電力が、電線73から船内電源SPに給電されるとともに、電力貯蔵装置Sに供給されて貯蔵されている。なお、この実施形態においては、原動機Pがガスタービンであっても効率よく運用できる推進システムとすることが可能である。
【0075】
従って、この実施形態の舶用推進システム71によれば、原動機Pによる減速機RGを介したプロペラ65の駆動と、電動機Mによる減速機RGを介したプロペラ75の駆動とが可能であるため、原動機Pによる駆動が緊急停止した場合などに、発電機Gで発電した電力で電動機Mを駆動して減速機RGを介してプロペラ75を駆動することが可能である。しかも、ガスタービンGTは常に高出力域の最高出力で運転されるので、ガスタービンGTは常に燃料消費率が小さい燃費の良い運用となるとともに、運転中の原動機PまたはガスタービンGTが緊急停止した場合には、電力貯蔵装置Sが即座に必要な推進、船内電源を供給しながら、停止中の原動機PまたはガスタービンGTを起動させることができる。そして、その電力を、船内電源への給電、電力貯蔵装置Sへの充電に供給して、船舶で使用する電力を効率良く利用するすることができる。また、電動機兼発電機77を電動機として運転することで減速機RGを介してプロペラ65を駆動し、運転不能等になることなく航行することができる。
【0076】
その上、この舶用推進システム71によれば、船内電源合計需要が、ガスタービンGTで駆動する発電機Gの発電可能電力(容量)を上回った場合には、減速機RGで駆動される上記電動機兼発電機77によっても発電し、その電力を給電することにより、発電機Gの容量以上の電力を供給することができる。なお、上記第7実施形態における舶用推進システム61と同一の構成による作用効果は上記第7実施形態と同一であるため、その説明は省略する。
【0077】
次に、図12に示す第9実施形態の舶用推進システム81を説明する。この舶用推進システム81は、上記第8実施形態の原動機Pで減速機RGを介して駆動する電動機兼発電機77が、減速機RGで駆動される第2発電機G2となっている。また、この実施形態では、上述した第1実施形態と同様にガスタービンGTの回転軸82Aで駆動する第1発電機G1を有し、この第1発電機G1で発電された電力が、電線83から船内電源SPに給電されるとともに、電力貯蔵装置Sに供給されて貯蔵されている。この電力貯蔵装置Sには、上記第2発電機G2で発電した電力も貯蔵される。なお、この実施形態においても、減速機RGを駆動する原動機Pがガスタービンであっても効率よく運用できる推進システムとすることが可能である。
【0078】
そして、この実施形態では、上記電線83から分岐した電線88に、電力変換装置84が設けられるとともに推進電動機M、及びこの推進電動機Mで回転させる第2プロペラ89が設けられている。この第2プロペラ89は、上記第1発電機G1及び第2発電機G2で発電した電力、及び上記電力貯蔵装置Sに貯蔵された電力で推進電動機Mが駆動されて回転させられる。
【0079】
従って、この実施形態の舶用推進システム81によれば、上記減速機RGで駆動する第1プロペラ85に加えて推進電動機Mで駆動する第2プロペラ89(推進装置)によって推進する二軸船などに適用することができ、機械推進駆動、電気推進駆動双方の2つのプロペラ85,89を持っことで、一方のプロペラ85または89の軸またはプロペラが損傷を受けたとしても、運転不能等になることなく航行することができる。
【0080】
しかも、この舶用推進システム81によれば、原動機PまたはガスタービンGTを常に高出力域の最高出力で運転させることができるので、原動機PまたはガスタービンGTは常に燃料消費率が小さい燃費の良い運用となるとともに、第1発電機G1と第2発電機G2とで発電した電力を、推進電動機Mの推進動力、船内電源に供給して利用できる。また、一方の発電機が故障したとしても他方の発電機で発電した電力を利用して船舶で使用する電力の運用を継続することができる。
【0081】
その上、電気推進用を含む船内電源合計需要が第1発電機G1によって発電可能な電力(容量)を上回って大電力が必要な場合には、第2発電機G2で発電した電力や電力貯蔵装置Sに貯蔵された電力を給電することで、第1発電機G1の容量以上の電力を供給することができる。また、通常使用する船内電源SPが最大電力よりも小さい場合には、第1発電機G1または第2発電機G2の容量を抑制して機器コストを抑えてもよい。なお、上記第7実施形態における舶用推進システム61と同一の構成による作用効果は上記第7実施形態と同一であるため、その説明は省略する。
【0082】
次に、図13に示す第10実施形態の舶用推進システム91を説明する。この舶用推進システム91は、上記図12に示す第9実施形態における推進電動機Mと第2プロペラ99とを、減速機RGで駆動される第1プロペラ95の軸方向後方に第2プロペラ99を対向配置した二重反転形式のポッド式に推進装置を構成した例である。図12に示す構成と同一の構成には、同一の一桁番号の符号を付して、その説明は省略する。
【0083】
この実施形態では、上記推進電動機Mで駆動される第2プロペラ99をポッド式プロペラとし、この第2プロペラ99を減速機RGによって駆動される第1プロペラ95の軸方向後方に対向する形で配置している。ポッド式プロペラの第2プロペラ99は、回転方向が船尾側から見て第1プロペラ95の回転方向と反対方向に回転するようになっており、二重反転形式となっている。なお、他の構成は上記第9実施形態と同一であるため、説明は省略する。また、この実施形態においても、上記原動機Pがガスタービンであっても効率よく運用できる推進システムとすることが可能である。
【0084】
従って、この実施形態の舶用推進システム91によれば、機械推進駆動、電気推進駆動双方の2つのプロペラ95,99を持っことで、一方のプロペラ95または99の軸またはプロペラが損傷を受けたとしても、運転不能等になることなく航行することができる。しかも、2つのプロペラ95,99を二重反転とすることで、推進効率の向上も図ることができる。
【0085】
なお、上記第7実施形態における舶用推進システム61と同一の構成による作用効果は上記第7実施形態と同一であり、上記第9実施形態における舶用推進システム81と同一の構成による作用効果は上記第9実施形態と同一であるため、その説明は省略する。
【0086】
さらに、上記第2〜10実施形態では、個々の実施形態における全ての構成を含むタイムチャート等は記載していないが、ガスタービンGTの運転制御は、上述した図2〜4に示す第1実施形態の制御を基本とし、ガスタービンGTは常に高出力域で運転される。そして、図1に示す構成と異なる構成が含まれる実施形態においては、その構成の運転条件も考慮してガスタービンGTが高出力域で運転され、電力貯蔵装置Sの貯蔵電力量に応じてガスタービンGTが高出力域で運転されるように制御される。
【0087】
なお、上記実施形態における各構成は一例であり、各実施形態における構成を複数組合わせてもよく、上記実施形態に限定されるものではない。
【0088】
さらに、上述した実施形態は一例を示しており、本発明の要旨を損なわない範囲での種々の変更は可能であり、本発明は上述した実施形態に限定されるものではない。
【産業上の利用可能性】
【0089】
本発明に係る舶用推進システムは、ガスタービンの利点である小型軽量コンパクト、低振動、優れた始動特性・加減速性能などを生かして搭載したい船舶に利用できる。
【符号の説明】
【0090】
1 舶用推進システム
2 回転軸
3 電線
4 電力変換装置
5 プロペラ
11 舶用推進システム
12 回転軸
13 電線
14 電力変換装置
15 プロペラ
16 電線
21 舶用推進システム
22 回転軸
23 電線
24 電力変換装置
25 プロペラ
31 舶用推進システム
32 回転軸
33 電線
34 電力変換装置
35 プロペラ
41 舶用推進システム
42A 回転軸
42B 回転軸
43 電線
44 電力変換装置
45 プロペラ
51 舶用推進システム
52A 外側回転軸
52B 内側回転軸
53 電線
54 電力変換装置
55 プロペラ
61 舶用推進システム
62A 回転軸
62B 回転軸
62C 回転軸
63 電線
64 電力変換装置
65 プロペラ
71 舶用推進システム
72A 回転軸
72B 回転軸
72C 回転軸
73 電線
74 電力変換装置
75 プロペラ
77 電動機兼発電機
81 舶用推進システム
82A 回転軸
82B 回転軸
82C 回転軸
83 電線
84 電力変換装置
85 第1プロペラ
88 電線
89 第2プロペラ
91 舶用推進システム
92A 回転軸
92B 回転軸
92C 回転軸
93 電線
94 電力変換装置
95 第1プロペラ
98 電線
99 第2プロペラ
GT ガスタービン
G 発電機(交流発電機)
G1 第1発電機(交流発電機)
G2 第2発電機(交流発電機)
C コンバータ
I インバータ
S 電力貯蔵装置
SP 船内電源
M 推進電動機
CU 制御装置
P 原動機
CL クラッチ
RG プロペラ駆動用減速機
AC 交流
DC 直流

【特許請求の範囲】
【請求項1】
発電機を駆動するガスタービンと、前記発電機で発電した電力を貯蔵する電力貯蔵装置と、各機器を制御する制御装置と、を備え、
前記制御装置は、前記ガスタービンを運転時には常に高出力域で運転して前記発電機を駆動し、発電した電力を船内電源への給電及び前記電力貯蔵装置への充電電力として供給し、前記電力貯蔵装置が所定の最大充電量に達すると前記ガスタービンを停止し、ガスタービン停止後には前記電力貯蔵装置からその貯蔵した電力を船内電源へ供給し、前記電力貯蔵装置が所定の最小充電量に達すると前記ガスタービンを高出力域で運転して前記発電機を駆動する発電状態に戻るサイクルを繰り返すように構成されていることを特徴とする舶用推進システム。
【請求項2】
前記発電機で発電した電力を推進装置駆動用電力に変換する変換装置と、前記変換装置で変換した電力でプロペラを駆動する推進電動機と、を備え、
前記制御装置は、前記ガスタービン運転時に発電機で発電した電力を船内電源への給電、前記電力貯蔵装置への充電及び前記推進電動機への駆動電力として供給し、前記ガスタービン停止後には、前記電力貯蔵装置からその貯蔵した電力を船内電源への給電、前記推進電動機への駆動電力として供給するように構成されている請求項1に記載の舶用推進システム。
【請求項3】
前記電力貯蔵装置は、大容量の電力貯蔵が可能な大容量電力貯蔵器と、瞬時大電力出力が可能な小容量電力貯蔵器と、を組み合わせた複数形式の電力貯蔵器で構成されている請求項1または2に記載の舶用推進システム。
【請求項4】
前記プロペラを駆動するプロペラ駆動用減速機を有し、
前記プロペラ駆動用減速機は、前記ガスタービンで駆動する発電機で発電した電力または前記電力貯蔵装置の電力で駆動する推進電動機で駆動できるように構成されている請求項2または3に記載の舶用推進システム。
【請求項5】
原動機で駆動するプロペラ駆動用減速機と、前記プロペラ駆動用減速機を駆動する推進電動機とを有し、
前記原動機と前記推進電動機とが、前記プロペラ駆動用減速機を単独または同時に駆動できるように構成されている請求項2または3に記載の舶用推進システム。
【請求項6】
前記推進電動機は、前記プロペラ側から駆動されることで発電機として動作する回生機能を有し、
前記推進電動機で発電した電力を、船内電源への給電、電力貯蔵装置への充電が可能なように構成されている請求項2〜5に記載の舶用推進システム。
【請求項7】
前記ガスタービンで駆動する第1発電機と、前記プロペラ駆動用減速機で駆動する第2発電機と、を備え、
前記制御装置は、前記ガスタービンで駆動する第1発電機が緊急停止した場合には、前記電力貯蔵装置から必要な推進、船内電源を供給しながら、停止中の第2発電機を起動させるように構成されている請求項4〜6のいずれか1項に記載の舶用推進システム。
【請求項8】
前記プロペラ駆動用減速機で駆動するプロペラに加えて前記推進電動機で駆動するプロペラを備え、
前記推進電動機で駆動するプロペラは、前記プロペラ駆動用減速機で駆動するプロペラと平行に配置された二軸式の推進装置に構成されている請求項4〜7のいずれか1項に記載の舶用推進システム。
【請求項9】
前記プロペラ駆動用減速機で駆動するプロペラに加えて前記推進電動機で駆動するプロペラを備え、
前記推進電動機で駆動するプロペラは、前記プロペラ駆動用減速機で駆動するプロペラの軸方向後方で対向するように配置されたポッド式の推進装置に構成されている請求項4〜7のいずれか1項に記載の舶用推進システム。
【請求項10】
前記変換装置は、コンバータとインバータとを備え、
前記電力貯蔵装置は、前記コンバータとインバータとの間の直流部に接続されている請求項2〜9のいずれか1項に記載の舶用推進システム。
【請求項11】
前記プロペラを駆動するプロペラ駆動用減速機を有し、
前記ガスタービンは、前記プロペラ駆動用減速機を介して前記発電機を駆動するように構成されている請求項1に記載の舶用推進システム。
【請求項12】
前記プロペラを駆動するプロペラ駆動用減速機を有し、
前記ガスタービンは、前記プロペラ駆動用減速機と前記発電機とを選択的に駆動する駆動系を有し、
前記駆動系は、前記プロペラ駆動用減速機の駆動系を切り離して発電機のみを駆動できるように構成されている請求項1に記載の舶用推進システム。
【請求項13】
前記電力貯蔵装置は、船内の複数箇所に分散配置され、
前記制御装置は、前記電力貯蔵装置の何れかが故障した場合に、他の故障していない電力貯蔵装置で電力供給を継続させるように構成されている請求項1〜12のいずれか1項に記載の舶用推進システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2013−35297(P2013−35297A)
【公開日】平成25年2月21日(2013.2.21)
【国際特許分類】
【出願番号】特願2011−170197(P2011−170197)
【出願日】平成23年8月3日(2011.8.3)
【出願人】(000000974)川崎重工業株式会社 (1,710)