説明

蛍光検出装置、蛍光測定方法および環境測定装置

【課題】安価且つ小型の蛍光検出装置を提供する。
【解決手段】蛍光検出装置10は、被検出物52に対して励起光を照射する照射部と、被検出物52が発生した蛍光を受光する受光部16とを備える。励起光を照射する照射部は、励起光を発光する励起用LED12と、励起光の強度をモニタするモニタPD15と、モニタPD15の出力を基に、励起光の強度が一定となるように励起用LED12をフィードバック制御する制御部13とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検出物に励起光を照射して、該被検出物が発生した蛍光を検出する蛍光検出装置、該蛍光検出装置を用いた蛍光測定方法、および周囲環境を測定する環境測定装置に関する。
【背景技術】
【0002】
近年、ライフサイエンスの分野において、蛍光検出装置が多く使われ始めている。蛍光検出装置は、検出感度が高いため、特にDNAを検出する際に有効である。例えば、特許文献1に記載されたような光ファイバを用いた蛍光検出装置は、外乱光に影響を受けにくく、安価で高感度な蛍光検出が可能である。
【0003】
ところで、蛍光物質は、一般に、励起光が長く当たると蛍光の発光強度劣化が発生する。従って、長時間の測定や高精度の測定が必要な場合、測定を行わない期間は励起光が被検出物に当たらないようにし、且つできるだけ短時間で測定を行うことが望ましい。
【0004】
しかしながら、励起光の光源として用いられるLEDは、一般的に、点灯後しばらくの間(数十分間)、自らが発生する熱の影響で出力パワーが低下し、安定なパワーが得られない。このため、安定な測定を行うためには、数十分間のLEDの暖機運転が必要で、その後はじめて安定な測定ができる。従って、暖機運転の間や、測定と測定との間にインターバル(非測定期間)がある場合、LEDは点灯させたまま、被検出物に当たらないにすることが必要である。
【0005】
例えば、特許文献2には、励起光が被検出物に照射されないようにするために、光遮断用のシャッタ−を設け、蛍光を測定しようとする時だけ該シャッタ−を開閉して被検出物が常に励起光にさらされないようにする技術が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−30830号公報
【特許文献2】特開平6−34546号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献2のように、光遮断用のシャッターを設けた場合、コストアップを招くと共に、装置が大型化する可能性がある。
【0008】
本発明はこうした状況に鑑みてなされたものであり、その目的は、安価且つ小型の蛍光検出装置、該蛍光検出装置を用いた蛍光測定方法、および環境測定装置を提供することにある。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明のある態様の蛍光検出装置は、被検出物に対して励起光を照射する照射部と、被検出物が発生した蛍光を受光する受光部とを備える蛍光検出装置であって、照射部は、励起光を発光するLEDと、励起光の強度をモニタする受光素子と、受光素子の出力を基に、励起光の強度が一定となるようにLEDをフィードバック制御する制御部とを備える。
【0010】
この態様によると、フィードバック制御を行う制御部を設けたことにより、瞬時に励起光の強度を一定とすることができる。従って、常にLEDに通電しておく必要はなく、被検出物に励起光を照射したいタイミングに合わせて、LEDに駆動電流を流せばよい。高価且つ大型のシャッターなどを設ける必要がないので、安価且つ小型の蛍光検出装置を実現できる。
【0011】
制御部は、受光素子からの出力が所定の基準値と等しくなるようにLEDをフィードバック制御してもよい。
【0012】
励起光を反射し且つ蛍光を透過する波長選択性部材と、励起光源から出射された励起光を波長選択性部材に伝搬する第1光ファイバと、波長選択性部材で反射した励起光を伝搬する第2光ファイバと、第2光ファイバの先端部と、第2光ファイバの先端部から出射された励起光を集光して被検出物に照射するとともに、励起光が照射された被検出物から発生する蛍光を集光して第2光ファイバの先端部へ導くレンズとを有するプローブと、波長選択性部材を透過した蛍光を受光部に伝搬する第3光ファイバと、をさらに備えてもよい。
【0013】
本発明の別の態様は、蛍光測定方法である。この方法は、上述の蛍光検出装置を用いた蛍光測定方法であって、被検出物に対して励起光を照射する照射ステップと、被検出物が発生した蛍光を受光する受光ステップとを備え、照射ステップにおいて、実際に蛍光検出を行う時間に合わせて、LEDを発光させる。
【0014】
この態様によると、被検出物が長時間の励起光照射により蛍光の発光強度劣化が発生する蛍光物質である場合であっても、蛍光強度劣化を最小限に防ぎながら、被検出物の測定を行うことができる。
【0015】
本発明のさらに別の態様は、環境測定装置である。この装置は、周辺環境の変化に伴って蛍光発光強度が変化する機能物質と、機能物質に対して励起光を照射する照射部と、機能物質が発生した蛍光を受光する受光部とを備える環境測定装置であって、照射部は、励起光を発光するLEDと、励起光の強度をモニタする受光素子と、受光素子の出力を基に、励起光の強度が一定となるようにLEDをフィードバック制御する制御部とを備える。
【0016】
この態様によると、フィードバック制御を行う制御部を設けたことにより、瞬時に励起光の強度を一定とすることができる。従って、常にLEDに通電しておく必要はなく、周囲環境を測定したいタイミングに合わせて、LEDに駆動電流を流せばよい。その結果、仮に機能物質が励起光照射により蛍光の発光強度劣化が発生する蛍光物質であったとしても、周囲環境の測定精度を高めることができる。
【0017】
制御部は、実際に周囲環境の測定を行う時間に合わせて、LEDを発光させてもよい。
【発明の効果】
【0018】
本発明によれば、安価且つ小型の蛍光検出装置、該蛍光検出装置を用いた蛍光測定方法、および環境測定装置を提供できる。
【図面の簡単な説明】
【0019】
【図1】本実施形態に係る蛍光検出装置を説明するための図である。
【図2】分波器の概略構造の一例を示す図である。
【図3】本実施形態に係る蛍光検出装置における、通電開始後の励起用LEDの出力パワーの時間変化を示す図である。
【図4】本実施形態に係る蛍光検出装置における、励起用LEDの出力パワーと周囲温度との関係を示す図である。
【図5】比較例に係る蛍光検出装置における、通電開始後の励起用LEDの出力パワーの時間変化を示す図である。
【図6】比較例に係る蛍光検出装置における、励起用LEDの出力パワーと周囲温度との関係を示す図である。
【図7】PCRで用いられる蛍光物質における蛍光強度劣化の一例を示す図である。
【図8】本発明の別の実施形態に係る環境測定装置を示す図である。
【発明を実施するための形態】
【0020】
以下、本発明の実施形態に係る蛍光検出装置について説明する。
【0021】
図1は、本実施形態に係る蛍光検出装置10を説明するための図である。蛍光検出装置10は、被検出物52に対して励起光を照射し、該照射により被検出物52から発生した蛍光を検出するものである。
【0022】
図1に示すように、蛍光検出装置10は、励起用LED12と、制御部13と、モニタPD15と、分波器14と、受光部16と、プローブ18と、励起用LED12と分波器14とを接続する第1光ファイバ20と、分波器14とプローブ18とを接続する第2光ファイバ22と、分波器14と受光部16とを接続する第3光ファイバ24と、励起用LED12とモニタPD15とを接続する第4光ファイバ25とを備える。上述の構成要素のうち、励起用LED12、制御部13、モニタPD15、分波器14、プローブ18、第1光ファイバ20、第2光ファイバ22が被検出物52に対して励起光を照射する照射部を構成する。
【0023】
励起用LED12は、被検出物52に照射するための励起光を発光するものであり、例えば、主波長λ=470nmの光を発光するLEDを用いることができる。励起用LED12の出力パワーは、制御部13およびモニタPD15を用いて制御される。
【0024】
励起用LED12から出射された励起光は、第1光ファイバ20を通って分波器14に伝搬される。第1光ファイバ20としては、主波長λ=470nmの励起光を低損失で伝送することができるよう、石英ガラス製の光ファイバが好適に用いられる。
【0025】
分波器14に入射した励起光は、分波器14内において第2光ファイバ22へ導かれ、第2光ファイバ22を伝搬して第2光ファイバ22の先端に取り付けられたプローブ18から出射される。第2光ファイバ22としては、第1光ファイバ20と同様に、石英ガラス製の光ファイバが好適に用いられる。
【0026】
プローブ18は、第2光ファイバ22の先端部を保持するフェルール26と、第2光ファイバ22の先端部から出射された励起光を集光して所定の前側焦点に照射するとともに、該前側焦点において発生した光を集光して第2光ファイバ22へと導くレンズ28と、フェルール26とレンズ28とを固定する筒状の固定部材30とを備える。レンズ28としては、例えば、第2光ファイバ22の端面に等倍像が結像するよう設計されたロッドレンズを用いることができる。レンズ28は、複数のレンズにより構成されてもよい。レンズ28から被検出物52に励起光が照射されると、被検出物52から蛍光が発生する。この蛍光は、レンズ28により集光され、レンズ28の後側焦点に配置された第2光ファイバ22の先端部に入射する。また、第2光ファイバ22には、励起光の反射光もレンズ28によって集光されて入射する。
【0027】
第2光ファイバ22に入射した蛍光および反射光は、第2光ファイバ22を伝搬して分波器14に入射する。この分波器14においては、蛍光が第3光ファイバ24に導かれる。第3光ファイバ24を伝搬した蛍光は、受光部16によって受光され、電気信号に変換される。この電気信号を解析することにより、被検出物52の状態を測定できる。
【0028】
図2は、分波器14の概略構造の一例を示す図である。分波器14は、分波フィルタ40と、分波フィルタ40を挟んで配置された第1レンズ41および第2レンズ42と、第1光ファイバ20および第2光ファイバ22を保持し、第1レンズ41側に配置された第1キャピラリ43と、第3光ファイバ24を保持し、第2レンズ42側に配置された第2キャピラリ44とが、筒状の保持部材45に保持された構造を有している。
【0029】
第1キャピラリ43および第2キャピラリ44としては、例えばホウ珪酸ガラス等からなるガラス製のものを用いることができる。
【0030】
第1レンズ41および第2レンズ42は、中心から外部に向かって屈折率が低下するように屈折率勾配が設けられた屈折率分布型円柱状ロッドレンズを用いることができる。屈折率分布型円柱状ロッドレンズを用いることにより、入射面と出射面の2端面が光軸方向に直角方向の平面となり、レンズの結合等の組立を容易にするできる。また、屈折率分布型円柱状ロッドレンズは円柱状であるため、保持部材45に容易に格納でき、光軸合わせを容易とすることができる。
【0031】
分波フィルタ40は、励起光を反射し且つ蛍光を透過する波長選択性部材として機能する。一般的に、励起光の主波長λと蛍光の主波長λとの間には、λ<λという関係が成り立つため、分波フィルタ40のカットオフ波長λoffは、λより大きくλより小さいことが必要である。よって、分波フィルタ40としては、所謂ロングパスフィルタが用いられる。
【0032】
分波フィルタ40は、具体的には、屈折率の低いSiO等から成る層と屈折率の高いTiO,ZrO,Ta等から成る層が多層に積層された誘電体多層膜を用いることができる。分波フィルタ40の透過特性は、カットオフ波長λoffより短波長の光の透過率が−30dB以下(0.1%)であって、λoffより長波長の光の透過率が−3dB以上(97〜50%)であることが好ましい。
【0033】
上記のような分波フィルタ40を用いることにより、励起用LED12から出射された主波長がλである励起光は、分波フィルタ40に対する透過率が−30dB以下となるため、分波フィルタ40で反射して第2光ファイバ22に導光される。これにより、分波器14内を励起光が透過することを確実に防止することができ、蛍光の測定・検出ノイズレベルを効果的に低下させることができる。
【0034】
一方、プローブ18および第2光ファイバ22を介して分波器14に導光される光は、上述したように、主波長λの励起光の反射光と、主波長λの蛍光である。これらの光のうち、反射光は、励起用LED12からの励起光と同様に分波フィルタ40で反射されるが、蛍光は、分波フィルタ40に対する透過率が−3dB以上となるため、分波フィルタ40を透過して第2レンズ42に入射し、第2レンズ42により第3光ファイバ24に導光される。これにより、分波器14内を透過する蛍光の検出信号強度を確保することができる。
【0035】
図1に戻るが、上述したように本実施形態において、励起用LED12の出力パワーは、制御部13およびモニタPD15を用いて制御される。
【0036】
モニタPD15は、励起用LED12の出力した励起光の強度をモニタする機能を有する。本実施形態において、モニタPD15は、第4光ファイバ25によって伝搬された励起光を受光するように配置される。第4光ファイバ25は、その一端部に励起用LED12が出力した励起光の漏れ光の一部が入射するように配置される。「漏れ光」とは、励起用LED12が出力した励起光のうち、第1光ファイバ20に入射しない光である。
【0037】
あるいは、第4光ファイバ25を用いずに、励起用LED12が出力した励起光の漏れ光の一部が直接入射するようにモニタPD15を配置してもよい。モニタPD15が出力した電気信号は、制御部13に入力される。
【0038】
制御部13は、モニタPD15の出力を基に、励起光の強度が一定となるように励起用LED12をフィードバック制御する機能を有する。例えば、制御部13部は、モニタPD15からの電気信号が所定の基準値と等しくなるように励起用LED12に供給する電流を制御する。
【0039】
図3は、本実施形態に係る蛍光検出装置における、通電開始後の励起用LEDの出力パワーの時間変化を示す。また、図4は、本実施形態に係る蛍光検出装置における、励起用LEDの出力パワーと周囲温度との関係を示す。また、図5は、比較例に係る蛍光検出装置における、通電開始後の励起用LEDの出力パワーの時間変化を示す。また、図6は、比較例に係る蛍光検出装置における、励起用LEDの出力パワーと周囲温度との関係を示す。ここで、比較例に係る蛍光検出装置とは、フィードバック制御を行う制御部13を設けず、励起用LEDを定電流駆動する構成の蛍光検出装置である。
【0040】
なお、図3および図5において、横軸は、通電開始後の時間(sec)を表し、縦軸は、安定後の出力パワーで規格化した励起用LEDの出力パワーを表す。また、図4および図6において、横軸は、周囲温度(℃)を表し、縦軸は、周囲温度が25℃のときの出力パワーで規格化した励起用LEDの出力パワーを表す。
【0041】
比較例に係る図5に示すように、励起用LEDを定電流駆動した場合、出力パワーは、一旦上昇した後、時間とともに徐々に減少する。これは、点灯により励起用LEDに熱が発生し、この熱でLED素子の温度が上昇し、これによって同じ駆動電流を流しても出力パワーが下がるためで、LEDの温度が一定になるまで出力パワーは下がり続ける。また、比較例に係る図6に示すように、周囲温度が異なると同じ駆動電流を流しても出力パワーが異なるため、励起光に比例する被検出物からの蛍光量も周囲温度が変われば違う値となる。このことから、励起用LEDの出力パワーが安定してから実際の測定または検出を行う必要があり、その間に被検出物に励起光を当てられない場合は、例えばシャッターなどを設ける必要がある。
【0042】
一方、本実施形態に係る蛍光検出装置10においては、フィードバック制御を行う制御部13を設けたことにより、図3に示すように通電開始後、瞬時に励起用LED12の出力パワーを一定とすることができる。また、図4に示すように、周囲温度が変わっても、一定の出力パワーを保つことができる。従って、本実施形態においては、常に励起用LED12に通電しておく必要はなく、被検出物52に励起光を照射したいタイミングに合わせて、励起用LED12に駆動電流を流せばよい。本実施形態によれば、高価且つ大型のシャッターなどを設ける必要がないので、安価且つ小型の蛍光検出装置10を実現できる。
【0043】
次に、本実施形態に係る蛍光検出装置10の適用例について説明する。ここでは、DNAの測定で用いられるPCR(Polymerase Chain Reaction)と呼ばれるヒートサイクルによる増幅工程に蛍光検出装置10を適用する場合について説明する。
【0044】
PCRでは、温度が下がった状態での蛍光量を各サイクルで測定し、その増え方をもってDNAの判定を行う。このサイクルで実際の測定時間は全サイクルの1/4程度の時間である。一方、PCRで使用される蛍光物質は、長時間の励起光照射により蛍光の発光強度劣化が発生する。図7は、PCRで用いられる蛍光物質における蛍光強度劣化の一例を示す。
【0045】
そこで、本実施形態に係る蛍光検出装置10を用いたPCRでは、被検出物であるDNAに対して励起光を照射するときに、実際に測定を行う測定時間に合わせて、励起用LED12を発光させ、DNAに励起光を照射する。測定を行わないときには、励起用LED12を消灯しておき、実際に測定を行う測定時間のみ励起用LED12を発光させるのである。そして、DNAが発生した蛍光を受光し、蛍光強度を測定することで、DNAの反応状態を判定する。
【0046】
このように実際に測定を行う測定時間に合わせて励起用LED12を発光させることにより、蛍光強度劣化を防ぎながら、DNAの正確な測定が可能になる。さらに正確な測定を行うためには、測定時間の一部だけ励起光を照射し、蛍光を検出する。これにより、さらに蛍光強度劣化を防ぐことができる。
【0047】
また、実際に測定を行う測定時間に合わせて励起用LED12を発光させることにより、励起用LED12の寿命を延ばすことができるので、蛍光検出装置10の耐用年数を増加できる。
【0048】
図8は、本発明の別の実施形態に係る環境測定装置110を示す。図8に示す環境測定装置110においては、図1に示す蛍光検出装置10と同一または対応する構成要素については、同様の符号を用い、説明を適宜省略する。環境測定装置110は、プローブ18の構成が、図1に示す蛍光検出装置10と異なる。
【0049】
環境測定装置110のプローブ18は、第2光ファイバ22の先端部を保持するフェルール26と、第2光ファイバ22の先端部から出射された励起光を集光して所定の前側焦点に照射するとともに、該前側焦点において発生した光を集光して第2光ファイバ22へと導くレンズ28と、レンズ28の前側焦点に配置された機能膜29と、フェルール26、レンズ28、および機能膜29を固定する筒状の固定部材30とを備える。
【0050】
機能膜29は、周辺環境の変化に伴って蛍光発光強度が変化する機能物質で構成される。例えば、酸素量の変化に伴って蛍光発光強度が変化する機能物質を用いることができる。
【0051】
環境測定装置110において、励起用LED12から出射された励起光は、第1光ファイバ20、分波器14、第2光ファイバ22、レンズ28を介して、機能膜29に照射される。機能膜29が発生した蛍光は、レンズ28により集光され、第2光ファイバ22の先端部に入射する。また、第2光ファイバ22には、励起光の反射光もレンズ28によって集光されて入射する。第2光ファイバ22に入射した蛍光および反射光は、第2光ファイバ22を伝搬して分波器14に入射する。この分波器14においては、蛍光が第3光ファイバ24に導かれる。第3光ファイバ24を伝搬した蛍光は、受光部16によって受光され、電気信号に変換される。この電気信号を解析することにより、プローブ18の周辺環境を測定できる。例えば、機能膜29を酸素量の変化に伴って蛍光発光強度が変化する機能物質で構成した場合、周囲環境の酸素濃度を測定する酸素センサーを実現できる。
【0052】
本実施形態においても、励起用LED12をフィードバック制御しているので、瞬時に励起用LED12の出力パワーを一定とすることができる。従って、本実施形態に係る環境測定装置110においては、常に励起用LED12に通電しておく必要はなく、制御部13は、実際に周囲環境を測定する時間に合わせて、励起用LED12に駆動電流を流し、発光させればよい。その結果、仮に機能膜29が励起光照射により蛍光の発光強度劣化が発生する蛍光物質であったとしても、周囲環境の測定精度を高めることができる。
【0053】
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
【符号の説明】
【0054】
10 蛍光検出装置、 12 励起用LED、 13 制御部、 14 分波器、 15 モニタPD、 16 受光部、 18 プローブ、 20 第1光ファイバ、 22 第2光ファイバ、 24 第3光ファイバ、 25 第4光ファイバ、 28 レンズ、 29 機能膜、 30 固定部材、 52 被検出物、 110 環境測定装置。

【特許請求の範囲】
【請求項1】
被検出物に対して励起光を照射する照射部と、前記被検出物が発生した蛍光を受光する受光部とを備える蛍光検出装置であって、
前記照射部は、
励起光を発光するLEDと、
励起光の強度をモニタする受光素子と、
前記受光素子の出力を基に、励起光の強度が一定となるように前記LEDをフィードバック制御する制御部と、
を備えることを特徴とする蛍光検出装置。
【請求項2】
前記制御部は、前記受光素子からの出力が所定の基準値と等しくなるように前記LEDをフィードバック制御することを特徴とする請求項1に記載の蛍光検出装置。
【請求項3】
励起光を反射し且つ蛍光を透過する波長選択性部材と、
励起光源から出射された励起光を前記波長選択性部材に伝搬する第1光ファイバと、
前記波長選択性部材で反射した励起光を伝搬する第2光ファイバと、
前記第2光ファイバの先端部と、前記第2光ファイバの先端部から出射された励起光を集光して前記被検出物に照射するとともに、励起光が照射された前記被検出物から発生する蛍光を集光して前記第2光ファイバの先端部へ導くレンズとを有するプローブと、
前記波長選択性部材を透過した蛍光を前記受光部に伝搬する第3光ファイバと、
をさらに備えることを特徴とする請求項1または2に記載の蛍光検出装置。
【請求項4】
請求項1から3のいずれかに記載の蛍光検出装置を用いた蛍光測定方法であって、
被検出物に対して励起光を照射する照射ステップと、
前記被検出物が発生した蛍光を受光する受光ステップと、
を備え、
前記照射ステップにおいて、実際に蛍光検出を行う時間に合わせて、前記LEDを発光させることを特徴とする蛍光測定方法。
【請求項5】
周辺環境の変化に伴って蛍光発光強度が変化する機能物質と、前記機能物質に対して励起光を照射する照射部と、前記機能物質が発生した蛍光を受光する受光部とを備える環境測定装置であって、
前記照射部は、
励起光を発光するLEDと、
励起光の強度をモニタする受光素子と、
前記受光素子の出力を基に、励起光の強度が一定となるように前記LEDをフィードバック制御する制御部と、
を備えることを特徴とする環境測定装置。
【請求項6】
前記制御部は、実際に周囲環境の測定を行う時間に合わせて、前記LEDを発光させることを特徴とする請求項5に記載の環境測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−37355(P2012−37355A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−177106(P2010−177106)
【出願日】平成22年8月6日(2010.8.6)
【出願人】(000004008)日本板硝子株式会社 (853)
【Fターム(参考)】