説明

負極活物質及び該物質を採用したリチウム電池

【課題】負極活物質及び該物質を採用したリチウム電池を提供する。
【解決手段】負極活物質及び該負極活物質を採用したリチウム電池に係り、該負極活物質は、表面にシリコン系ナノワイヤが配置された結晶質炭素系コア上に、シリコン系ナノワイヤの少なくとも一部が露出されないように非晶質炭素系コーティング層がコーティングされている一次粒子を含むことによって、膨脹率を制御して伝導性を付与してリチウム電池の充放電効率及びサイクル寿命特性を向上させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、負極活物質及び該負極活物質を採用したリチウム電池に関する。
【背景技術】
【0002】
PDA(personal digital assistant)、移動電話、ノート型パソコンなどの情報通信のための携帯用電子機器や電気自転車、電気自動車などに使われるリチウム二次電池は、既存の電池に比べて、2倍以上の放電電圧を示し、その結果、高いエネルギー密度を示すことができる。
【0003】
リチウム二次電池は、リチウムイオンの吸蔵及び放出の可能な活物質を含んだ正極と負極との間に、有機電解液またはポリマー電解液を充填させた状態で、リチウムイオンが正極及び負極で吸蔵/放出されるときの酸化反応、還元反応によって電気エネルギーを生産する。
【0004】
リチウム二次電池の正極活物質としては、例えば、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)またはリチウムニッケルコバルトマンガン酸化物(Li[NiCoMn]O、Li[Ni1−x−yCo]O)などのように、リチウムイオンの吸蔵可能な構造を有したリチウムと遷移金属とからなる酸化物を使用することができる。
【0005】
負極活物質としては、リチウムの吸蔵/放出の可能な人造黒鉛、天然黒鉛、ハードカーボンを含んだ多様な形態の炭素系材料、及びSiのような非炭素系物質に対する研究がなされている。
【0006】
前記非炭素系物質は、黒鉛対比の容量密度が10倍以上であり、非常に高容量を示すことができるが、リチウム充放電時に、体積の膨脹収縮によって、容量維持率、充電/放電効率及び寿命特性が低下することがある。従って、容量特性及びサイクル寿命特性が改善された高性能負極活物質の開発が必要である。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の一側面は、改善された容量特性及びサイクル寿命特性を示す負極活物質を提供することである。
本発明の他の側面は、前記負極活物質を採用したリチウム電池を提供することである。
【課題を解決するための手段】
【0008】
本発明の一側面では、表面にシリコン系ナノワイヤが配置された結晶質炭素系コアと、前記シリコン系ナノワイヤの少なくとも一部が埋め込まれるように、前記結晶質炭素系コア上にコーティングされた非晶質炭素系コーティング層と、を含む一次粒子を含む負極活物質が提供される。
一実施例によれば、前記シリコン系ナノワイヤの少なくとも50%が、前記非晶質炭素系コーティング層に埋め込まれていてもよい。
一実施例によれば、前記非晶質炭素系コーティング層の厚みが0.1ないし10μmであってもよい。
一実施例によれば、前記非晶質炭素系コーティング層は、ラマンスペクトルで、Gバンドピークの強度面積に対するDバンドピークの強度面積の比率で表示されるD/G値が、0.31以上である。
一実施例によれば、前記非晶質炭素系コーティング層は、ソフトカーボン(soft carbon)、ハードカーボン(hard carbon)、メゾ相ピッチ炭化物、焼成されたコークス、及びそれらの組み合わせから選択される非晶質炭素を含んでもよい。
一実施例によれば、前記非晶質炭素系コーティング層の含有量は、前記一次粒子100重量%を基準に、0.1ないし30重量%であってもよい。
一実施例によれば、前記結晶質炭素系コアが、0.2ないし1の範囲の円形度(circularity)を有する球状であってもよい。具体的には、例えば、円形度が0.7ないし1.0または0.8ないし1.0、さらに具体的には、例えば、0.9ないし1.0範囲である球状であってもよい。
一実施例によれば、前記炭素系基材は、内部に気孔を含み、気孔度が炭素系基材全体体積を基準に、5ないし30%であってもよい。
一実施例によれば、前記結晶質炭素系コアは、ラマンスペクトルで、Gバンドピークの強度面積に対するDバンドピークの強度面積の比率で表示されるD/G値が、0.3以下であってもよい。
一実施例によれば、前記結晶質炭素系コアは、天然黒鉛、人造黒鉛、膨脹黒鉛、グラフェン、カーボンブラック、フラーレンスート(fullerene soot)、及びそれらの組み合わせのうち少なくとも一つを含んでもよい。
一実施例によれば、前記結晶質炭素系コアの平均粒径が1ないし30μmであってもよい。
一実施例によれば、前記シリコン系ナノワイヤはSi、SiO(0<x≦2)、Si−Z合金(ここで、前記Zは、アルカリ金属、アルカリ土類金属、13族元素、14族元素、遷移金属、希土類元素、またはそれらの組み合わせであり、但しSiを除く)、及びそれらの組み合わせのうち少なくとも1つの物質を含んでもよい。例えば、前記シリコン系ナノワイヤは、Siナノワイヤであってもよい。
一実施例によれば、前記シリコン系ナノワイヤは、直径が10ないし500nmであり、長さが0.1ないし100μmであってもよい。
一実施例によれば、前記シリコン系ナノワイヤは、前記結晶質炭素系コア上で直接成長されたものであってもよい。このとき、前記シリコン系ナノワイヤは、Pt、Fe、Ni、Co、Au、Ag、Cu、Zn及びCdのうち少なくとも1つの金属触媒の存在下で成長しうる。
一実施例によれば、前記結晶質炭素系コア及びシリコン系ナノワイヤの合計を基準に、前記結晶質炭素系コアの含有量は、60ないし99重量%であり、前記シリコン系ナノワイヤの含有量は、1ないし40重量%であってもよい。
一実施例によれば、前記負極活物質は、前記一次粒子と共に、天然黒鉛、人造黒鉛、膨脹黒鉛、グラフェン、カーボンブラック、フラーレンスート(fullerene soot)、炭素ナノチューブ、炭素ファイバ、及びそれらの組み合わせのうち少なくとも一つを含む炭素系粒子をさらに含んでもよい。ここで、前記炭素系粒子は、球状、板状、ファイバ状、チューブ状または粉末状の形態で含まれてもよい。
本発明の他の側面によれば、前述の負極活物質を含む負極と、前記負極に対向して配置される正極と、前記負極及び正極間に配置される電解質と、を含むリチウム電池が提供される。
前記負極に含まれる負極活物質については、前述の通りである。
一実施例によれば、前記負極は、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ベンズイミダゾール、ポリイミド、ポリ酢酸ビニル、ポリアクリロニトリル、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、ポリアニリン、アクリロニトリルブタジエンスチレン、フェノール樹脂、エポキシ樹脂、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリフェニルスルフィド、ポリアミドイミド、ポリエーテルイミド、ポリエチレンスルホン、ポリアミド、ポリアセタル、ポリフェニレンオキシド、ポリブチレンテレフタレート、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ化ゴム、及びそれらの組み合わせのうち少なくとも1つのバインダをさらに含んでもよい。前記バインダの含有量は、前記負極活物質100重量部に対して、1ないし50重量部であってもよい。さらに具体的には、前記バインダの含有量は、前記負極活物質100重量部に対して、1ないし30重量部、1ないし20重量部、または1ないし15重量部であってもよい。
一実施例によれば、前記負極は、選択的に導電剤をさらに含み、前記導電剤は、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素ファイバ、銅、ニッケル、アルミニウム、銀、導電性ポリマー、及びそれらの組み合わせのうち少なくとも一つであってもよい。
【発明の効果】
【0009】
本発明の負極活物質は、リチウム電池の充放電時、膨脹率を制御して負極極板に伝導性を付与し、リチウム電池の充放電効率及びサイクル寿命特性を向上させることができる。
【図面の簡単な説明】
【0010】
【図1】一実施例による負極活物質に含まれる一次粒子の構成を模式的に図示した図面である。
【図2】一実施例によるリチウム電池の概略的な構造を示した概略図である。
【図3A】実施例1で製造した負極活物質の断面に対する電界放射走査電子顕微鏡(FE−SEM :field emission scanning electron microscope)写真である。
【図3B】実施例1で製造した負極活物質の断面に対する電界放射走査電子顕微鏡(FE−SEM :field emission scanning electron microscope)写真である。
【図4A】比較例1で製造した負極活物質のFE−SEM写真である。
【図4B】比較例1で製造した負極活物質のFE−SEM写真である。
【図5】実施例1で製造した負極活物質に係わるラマンスペクトル分析結果である。
【図6】実施例1ないし4及び比較例1のコインセルに使われた負極活物質の粒度分布測定結果である。
【図7】実施例1ないし4及び比較例1で製造した負極活物質の電気伝導度測定結果である。
【図8】実施例1ないし4及び比較例1のコインセルの負極のpH測定結果である。
【図9】実施例1ないし4及び比較例1のコインセルの充放電による負極の体積膨張率を測定した結果である。
【図10A】実施例1ないし4及び比較例1のコインセルに係わる充放電効率(CDE)測定結果である。
【図10B】図10A及び10Bは実施例1ないし4及び比較例1のコインセルに係わる充放電効率(CDE)測定結果である。
【図11A】実施例1ないし4及び比較例1のコインセルに係わる容量維持率(CRR)測定結果である。
【図11B】実施例1ないし4及び比較例1のコインセルに係わる容量維持率(CRR)測定結果である。
【発明を実施するための形態】
【0011】
以下、本発明についてさらに具体的に説明する。
本発明の一側面による負極活物質は、表面にシリコン系ナノワイヤが配置された結晶質炭素系コアと、前記シリコン系ナノワイヤの少なくとも一部が埋め込まれるように、前記結晶質炭素系コア上にコーティングされた非晶質炭素系コーティング層と、を含む一次粒子を含む。
【0012】
一実施例による負極活物質に含まれる一次粒子を、図1に模式的に図示した。図1を参照すれば、前記負極活物質の一次粒子100は、結晶質炭素系コア110の表面に、シリコン系ナノワイヤ120が配置されており、前記シリコン系ナノワイヤ120の少なくとも一部が埋め込まれるように、前記結晶質炭素系コア110上に、非晶質炭素系コーティング層130がコーティングされた構造を有する。
【0013】
前記結晶質炭素系コア110で、「炭素系」というのは、少なくとも約50重量%の炭素を含むことを意味する。例えば、前記結晶質炭素系コアは、少なくとも約60重量%、70重量%、80重量%または90重量%の炭素を含むか、あるいは100重量%の炭素からなってもよい。
【0014】
また、「結晶質(crystalline)」というのは、sp混成オービタルを形成した炭素原子に、他の3個の炭素原子が共有結合する六方晶格子構造を少なくとも約50重量%含むことを意味する。例えば、前記結晶質炭素系コア110は、約60重量%、約70重量%、約80重量%または約90重量%の六方晶格子構造の炭素を含むか、あるいは約100重量%の六方晶格子構造の炭素からなってもよい。前記六方晶格子構造は、単層構造または多層構造を形成したり、あるいは二次元的な形状を基本としつつ、反ったり、カールしたり、部分的に欠損したりするような多様な変形形態を有し、サッカーボール状に連結されもする。前記結晶質炭素系コア110は、充放電時に、リチウムイオンの可逆的な吸蔵・放出が可能であるならば、結晶構造が特別に制限されるものではない。前記結晶質炭素系コア110は、例えば、X線回折による(002)面の面間隔(d002)が、0.333nm以上0.339nm未満であって、例えば、0.335nm以上0.339nm未満、または0.337nm以上0.338nm以下であってもよい。
【0015】
一実施例によれば、前記結晶質炭素系コア110は、天然黒鉛(natural graphite)、人造黒鉛(artificial graphite)、膨脹黒鉛(expandable graphite)、グラフェン(grapheme)、カーボンブラック、フラーレンスート(fullerene soot)、またはそれらの組み合わせを含み、それらに限定されるものではない。天然黒鉛は、天然的に産出される黒鉛であって、鱗片(flake)黒鉛、高結晶質(high crystalline)黒鉛、微晶質(microcrystalline or cryptocrystalline,amorphous)黒鉛などがある。人造黒鉛は、人工的に合成された黒鉛であり、無定形炭素を高温で加熱して作られ、一次(primary)黒鉛あるいは電気黒鉛(electrographite)、二次(secondary)黒鉛、黒鉛ファイバ(graphite fiber)などがある。膨脹黒鉛の層間に、酸やアルカリの化学物質を吸蔵(intercalation)して加熱し、分子構造の垂直層を膨らませたものである。グラフェンは、黒鉛の単一層をいう。カーボンブラックは、黒鉛より規則性が小さい結晶性物質であり、カーボンブラックを約3,000℃で長時間加熱すれば、黒鉛に変わる。フラーレンスートは、60個またはそれ以上の炭素原子からなる多面体束状の化合物であるフラーレンが少なくとも3重量%含まれた炭素混合物である。前記炭素系コアは、かような結晶性炭素系物質を1種単独または2種以上組み合わせして使用することができる。例えば、負極製造時、合剤密度を高めやすいという点で天然黒鉛を利用することができる。
【0016】
一実施例によれば、前記結晶質炭素系コア110は、ラマンスペクトルで、Gバンドピークの強度面積に対するDバンドピークの強度面積の比率で表示されるD/G値が、0.3以下であってもよい。例えば、前記結晶質炭素系コア110は、ラマンスペクトルでD/G値が、0.1ないし0.3であってもよい。前記D/G値が、0.3以下であるとき、前記炭素系コアの結晶性によって、充放電時に、リチウムイオンの非可逆反応を最小化し、可逆効率を高めることができる。
【0017】
一実施例によれば、前記結晶質炭素系コア110は、球状の形状を有する。ここで「球状」というのは、炭素系コアの少なくとも一部が、湾曲または屈曲した外形を有していればよく、完全な球形ではなくとも、だいたいの球形または楕円状を有してもよく、表面に凹凸を有してもよい。
【0018】
前記球状の結晶質炭素系コア110は、円形度(circularity)によって、その丸さ加減を測定することができる。円形度は、粒子の投影像である円形状が正確な円からいかほど外れるかという測定値であり、0ないし1の範囲を有することができ、円形度が1に近いほど、理想的な円に近づく。一実施例によれば、前記結晶質炭素系コア110の円形度は、0.2ないし1の範囲を有し、例えば、円形度が0.7ないし1、具体的には、0.8ないし1、さらに具体的には、0.9ないし1の範囲を有することができる。
【0019】
かような球状を有する結晶質炭素系コア110は、一次粒子の形状を決定するのに寄与し、板状、または塊状の炭素系コアに比べて、プレス時(加圧成形処理時)に特定方向に配向せず、高率放電特性や低温特性などに有利であり、比表面積が小さくなり、電解液との反応性が低くなることによって、サイクル特性を向上させることができる。
【0020】
かような球状の結晶質炭素系コア110は、例えば、天然黒鉛、人造黒鉛、膨脹黒鉛、グラフェン、カーボンブラック、フラーレンスートなどの結晶性炭素系物質を球形化処理することによって製造することができる。例えば、黒鉛を球形化処理して得られる球状の炭素系コアは、層状構造の黒鉛が湾曲または屈曲し、または湾曲または屈曲した複数の鱗片状の黒鉛からなる微細構造を有することができる。
【0021】
一実施例によれば、前記炭素系基材は、球形化処理過程を介して、球状に製造されるとき、内部に気孔を含んでもよい。炭素系基材内部に存在する気孔は、充放電時に、シリコン系ナノワイヤの体積膨脹緩和に一助となる。一実施例によれば、前記炭素系基材は、気孔度が炭素系基材の全体体積を基準に、5ないし30%であって、例えば、10ないし20%であってもよい。
【0022】
前記結晶質炭素系コア110の平均粒径は、特別に限定されるものではないが、過度に小さい場合には、電解液との反応性が高くてサイクル特性が低下し、過度に大きい場合には、負極スラリ形成時に、分散安定性が低下して負極の表面が粗くなることがある。例えば、前記炭素系コア110は、平均粒径が1ないし30μmであってもよい。具体的には、例えば、前記炭素系コア110は、平均粒径が5ないし25μm、さらに具体的には、10ないし20μmであってもよい。
【0023】
前記結晶質炭素系コア110は、その表面に配置されるシリコン系ナノワイヤ120を固定させる支持体として作用し、これによって、充放電時に、シリコン系ナノワイヤ120の体積変化を抑制する効果をもたらすことができる。
【0024】
シリコン系ナノワイヤ120は、前記結晶質炭素系コア110の表面に配置される。ここで、「シリコン系」というのは、少なくとも約50重量%のシリコン(Si)を含むものを意味し、例えば、少なくとも約60重量%、約70重量%、約80重量%または約90重量%のSiを含むか、あるいは100重量%のSiからなってもよい。また、ここで、「ナノワイヤ」というのは、nm単位の断面直径を有するワイヤ構造体をいい、例えば、断面の直径が10ないし500nmであり、長さが0.1ないし100μmであり、縦横比(長さ:幅)が10以上、具体的には、50以上、さらに具体的には、100以上である。一方、ナノワイヤは、直径が実質的に均一であるか、あるいは可変的であり、ナノワイヤの長軸において、少なくとも一部が直線であるか、あるいは湾曲または曲折していたり、あるいは分枝(branched)してもいる。かようなシリコン系ナノワイヤは、リチウム電池の充放電と関連した体積変化を吸収できる能力を有する。
【0025】
前記シリコン系ナノワイヤ120は、その種類に特別に限定があるのではないが、例えば、Si、SiO(0<x≦2)、Si−Z合金(ここで、前記Zは、アルカリ金属、アルカリ土類金属、13族元素、14族元素、遷移金属、希土類元素、またはそれらの組み合わせであり、但しSiを除く)、及びそれらの組み合わせから選択される物質を含んでもよい。前記元素Zは、Mg、Ca、Sr、Ba、Ra、Sc、Y、La、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、B、Ge、P、As、Sb、Bi、S、Se、Te、Po、及びそれらの組み合わせからなる群から選択されてもよい。また、かようなSi、SiOx、Si−Z合金などのシリコン系物質は、非晶質シリコン、結晶質(単結晶、多結晶を含む)シリコン、またはそれらの混合された形態を含んでもよい。かようなシリコン系ナノワイヤは、1種単独で、または2種以上を組み合わせして使用することができる。例えば、前記シリコン系ナノワイヤは、高容量の側面で、Siナノワイヤであってもよい。
【0026】
シリコン系ナノワイヤ120の製造は、球状の結晶質炭素系コア110上に、シリコン系ナノワイヤ120を直接成長させる方法、または結晶質炭素系コア110と別途に成長させた後、結晶質炭素系コア110上に、例えば、付着させたり結合させる方式で配置させる方法がある。前記シリコン系ナノワイヤ120を、結晶質炭素系コア110上に配置させる方法については、公知のあらゆる方法により、特別に限定されるものではない。例えば、いわゆるガス−液体−固体(VLS:vapor-liquid-solid)成長方法を使用してナノワイヤを成長させたり、あるいは触媒の近くに、前駆体ガスを熱分解させるナノサイズ触媒を使用する方法で製造される。結晶質炭素系コア110を利用し、その上にシリコン系ナノワイヤ120を直接成長させる場合、金属触媒の存在下または不存在下で成長させることが可能である。金属触媒の例としては、Pt、Fe、Ni、Co、Au、Ag、Cu、Zn、Cdなどを挙げることができる。
【0027】
一実施例によれば、前記結晶質炭素系コア110及びシリコン系ナノワイヤ120の合計を基準に、前記結晶質炭素系コア110の含有量が60ないし99重量%であり、前記シリコン系ナノワイヤ120の含有量が、1ないし40重量%であってもよい。かような含有量で高容量のシリコン系ナノワイヤを十分に含有することによって、高容量の負極活物質を発現させることができる。
【0028】
このように、表面にシリコン系ナノワイヤ120が配置された結晶質炭素系コア110上には、前記シリコン系ナノワイヤ120の少なくとも一部が埋め込まれるように、非晶質炭素系コーティング層130がコーティングされる。ここで、「非晶質」というのは、明確な結晶構造を示さないということを意味する。前記非晶質炭素系コーティング層130は、例えば、少なくとも約50重量%、約60重量%、約70重量%、約80重量%または約90重量%の非晶質炭素を含むか、あるいは100重量%の非晶質炭素からなってもよい。
【0029】
一実施例によれば、前記非晶質炭素系コーティング層130は、ラマンスペクトルで、Gバンドピークの強度面積に対するDバンドピークの強度面積の比率で表示されるD/G値が、3.0以上である。例えば、前記非晶質炭素系コーティング層130は、ラマンスペクトルで、D/G値が、3.0ないし4.0であり、例えば、3.1ないし3.6、3.1ないし3.2または3.3ないし3.6であってもよい。かような非晶質のD/G値は前記結晶質炭素系コアのD/G値範囲と差がある。
【0030】
一実施例によれば、前記非晶質炭素系コーティング層130は、シリコン系ナノワイヤ120の少なくとも50体積%ほど、前記非晶質炭素系コーティング層130に埋め込まれる状態で形成できる。例えば、前記シリコン系ナノワイヤ120の少なくとも60体積%、70体積%、80体積%または90体積%が、前記非晶質炭素系コーティング層130に埋め込まれ、または一次粒子表面に、シリコン系ナノワイヤ120が露出されないように、完全に埋め込まれた形態で、前記非晶質炭素系コーティング層130を結晶質炭素系コア110上にコーティングさせることができる。
【0031】
このように、コーティングされた非晶質炭素系コーティング層130は、充放電時に、シリコン系ナノワイヤ120の脱離を抑えるために、電極の安定性に寄与することができ、寿命を延長させることができる。それだけではなく、シリコン系ナノワイヤ120によって、電気伝導性が低下した負極活物質に電気伝導性を付与し、効率特性を改善させることができる。
【0032】
一実施例によれば、前記非晶質炭素系コーティング層130は、ソフトカーボン(低温焼成炭素)、ハードカーボン、ピッチ炭化物、メゾ相ピッチ炭化物、焼成されたコークス、及びそれらの組み合わせから選択された物質を含んでもよい。
【0033】
前記非晶質炭素系コーティング層130のコーティング方法としては、これらに制限されるものではないが、乾式コーティング法または液状コーティング法のいずれも使用されもする。前記乾式コーティングの例として、蒸着、CVD(chemical vapor deposition)法などを使用することができ、液状コーティングの例として、含浸、スプレーなどを使用することができる。例えば、シリコン系ナノワイヤ120が配置された結晶質炭素系コア110を、石炭系ピッチ、メゾ相ピッチ、石油系ピッチ、石炭系オイル、石油系重質油、有機合成ピッチ、フェノール樹脂、フラン樹脂、ポリイミド樹脂などの高分子樹脂のような炭素前駆体にコーティングさせて熱処理することにより、非晶質炭素系コーティング層130を形成することもできる。
【0034】
前記非晶質炭素系コーティング層130は、一次粒子間に十分な導電通路を提供しつつ、電池容量を低下させない範囲で適切な厚みに形成される。例えば、0.1ないし10μm、具体的には、0.5ないし10μm、さらに具体的には、1ないし5μmの厚みに形成され、それらに限定されるものではない。
【0035】
一実施例によれば、前記非晶質炭素系コーティング層130の含有量は、前記一次粒子を基準に、0.1ないし30重量%であってもよい。例えば、非晶質炭素系コーティング層の含有量は、前記一次粒子を基準に、1ないし25重量%、さらに具体的には、5ないし25重量%であってもよい。前記範囲で、適切な厚みの非晶質炭素系コーティング層が形成され、負極活物質に伝導性を付与することができる。
【0036】
一実施例によれば、前記一次粒子は、互いに凝集または結合したり、あるいは他の活物質成分との組み合わせを介して、二次粒子を形成することができる。
【0037】
一実施例によれば、前記負極活物質は、前記一次粒子のように、天然黒鉛、人造黒鉛、膨脹黒鉛、グラフェン、カーボンブラック、フラーレンスート、炭素ナノチューブ、炭素ファイバ、及びそれらの組み合わせのうち少なくとも一つを含む炭素系粒子をさらに含んでもよい。ここで、前記炭素系粒子は、球状、板状、ファイバ状、チューブ状または粉末状で含まれてもよい。例えば、前記炭素系粒子は、各材料の固有な形態、すなわち、球状、板状、ファイバ状、チューブ状または粉末状で負極活物質に追加されたり、あるいは前記一次粒子の炭素系コアのように、球状化処理して球状の粒子状で負極活物質に追加されてもよい。球状の粒子状で追加される場合、前記一次粒子の炭素系コアと同じ素材の球状粒子を追加したり、あるいは前記一次粒子の炭素系コアと異なる素材の球状粒子を追加することができる。
【0038】
本発明の他の側面によるリチウム電池は、前述の負極活物質を含む負極と、前記負極に対向して配置される正極と、前記負極及び正極間に配置される電解質と、を含む。
前記負極は、前述の負極活物質を含み、例えば、前述の負極活物質、バインダ及び選択的に導電剤を溶媒中に混合し、負極活物質組成物を製造した後、これを一定の形状に成形したり、あるいは銅箔(copper foil)などの集電体に塗布する方法で製造される。
【0039】
前記負極活物質組成物に使われるバインダは、負極活物質と導電剤との結合や、負極活物質と集電体とのる結合に助力する成分であり、負極活物質100重量部を基準として、1ないし50重量部で添加される。例えば、負極活物質100重量部を基準として、1ないし30重量部、1ないし20重量部、または1ないし15重量部の範囲でバインダを添加することができる。かようなバインダの例としては、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ベンズイミダゾール、ポリイミド、ポリ酢酸ビニル、ポリアクリロニトリル、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、ポリアニリン、アクリロニトリルブタジエンスチレン、フェノール樹脂、エポキシ樹脂、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリフェニルスルフィド、ポリアミドイミド、ポリエーテルイミド、ポリエチレンスルホン、ポリアミド、ポリアセタル、ポリフェニレンオキシド、ポリブチレンテレフタレート、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ化ゴム、多様な共重合体などを挙げることができる。
【0040】
前記負極は、前述の負極活物質に導電通路を提供し、電気伝導性をさらに向上させるために、選択的に導電剤をさらに含んでもよい。前記導電剤としては、一般的に、リチウム電池に使われるものであるならば、いずれのものも使用することができ、その例として、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素ファイバ(例えば、気相成長炭素ファイバ)などの炭素系物質;銅、ニッケル、アルミニウム、銀などの金属粉末または金属ファイバなどの金属系物質;ポリフェニレン誘導体などの導電性ポリマー;またはそれらの混合物を含む導電性材料を使用することができる。導電剤の含有量は、適度に調節して使用することができる。例えば、前記負極活物質及び導電剤の重量比は、99:1ないし90:10範囲で添加される。
【0041】
前記溶媒としては、N−メチルピロリドン(NMP)、アセトン、水などが使われてもよい。前記溶媒の含有量は、負極活物質100重量部を基準として、10ないし100重量部を使用する。溶媒の含有量が前記範囲であるとき、活物質層を形成するための作業が容易である。
【0042】
また、前記集電体は、一般的に、3ないし500μm厚に設けられる。前記集電体としては、当該電池に化学的変化を誘発せずに、導電性を有したものであるならば、特別に制限されるものではなく、例えば、銅、ステンレススチール、アルミニウム、ニッケル、チタン、焼成炭素、銅やステンレススチールの表面にカーボン・ニッケル・チタン・銀などで表面処理したもの、アルミニウム−カドミウム合金などが使われてもよい。また、表面に微細な凹凸を形成して負極活物質の結合力を強化させることができ、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体など多様な形態で使われてもよい。
【0043】
製造された負極活物質組成物を集電体上に直接コーティングして負極極板を製造したり、あるいは別途の支持体上にキャスティングし、前記支持体から剥離させた負極活物質フィルムを銅箔集電体にラミネーションして負極極板を得ることができる。前記負極は、前記で列挙した形態に限定されるものではなく、前記形態以外の形態であってもよい。
【0044】
前記負極活物質組成物は、リチウム電池の電極製造に使われるだけではなく、柔軟な(flexible)電極基板上に印刷されて印刷電池(printable battery)製造にも使われてもよい。
【0045】
これと別途に、正極を製作するために、正極活物質、導電剤、バインダ及び溶媒が混合された正極活物質組成物が準備される。
前記正極活物質としては、リチウム含有金属酸化物として、当技術分野で、一般的に使われるものであるならば、いずれも使用することができる。例えば、LiCoO、LiMn2x(x=1、2)、LiNi1−xMn(0<x<1)またはLiNi1−x−yCoMn(0≦x≦0.5、0≦y≦0.5)などである。例えば、LiMn、LiCoO、LiNiO、LiFeO、V、TiSまたはMoSのようなリチウムの吸蔵/放出が可能な化合物である。
【0046】
正極活物質組成物で、導電剤、バインダ及び溶媒は、前述の負極活物質組成物の場合と同じものを使用することができる。場合によっては、前記正極活物質組成物及び負極活物質組成物に可塑剤をさらに付加し、電極板内部に気孔を形成することも可能である。前記正極活物質、導電剤、バインダ及び溶媒の含有量は、リチウム電池で一般的に使用するレベルである。
【0047】
前記正極集電体は、3ないし500μm厚であり、当該電池に化学的変化を誘発せずに、高い導電性を有するものであるならば、特別に制限されるものではなく、例えば、ステンレススチール、アルミニウム、ニッケル、チタン、焼成炭素、またはアルミニウムや、ステンレススチールの表面に、カーボン・ニッケル・チタン・銀などで表面処理したものなどが使われてもよい。集電体は、その表面に微細な凹凸を形成し、正極活物質の接着力を高めることができ、フィルム、シート、ホイル、ネット、多孔質体、発泡体、不織布体など多様な形態が可能である。
【0048】
準備された正極活物質組成物は、正極集電体上に直接コーティング及び乾燥されて、正極極板を製造することができる。代案としては、前記正極活物質組成物を別途の支持体上にキャスティングした後、前記支持体から剥離して得たフィルムを、正極集電体上にラミネーションして正極極板を製造することができる。
【0049】
前記正極と負極は、セパレータによって分離され、前記セパレータとしては、リチウム電池で一般的に使われるものであるならば、いずれも使われる。特に、電解質のイオン移動に対して低抵抗であり、かつ電解液含湿能にすぐれるものが適している。例えば、ガラスファイバ、ポリエステル、テフロン(登録商標)、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、その化合物のうちから選択された材質であり、不織布または織布の形態でもよい。前記セパレータは、気孔直径が0.01〜10μmであり、厚みは、一般的に、5〜300μmであるものを使用する。
【0050】
リチウム塩含有非水系電解質は、非水電解液とリチウムとからなる。非水電解質としては、非水電解液、固体電解質、無機固体電解質などが使われる。
前記非水電解液としては、例えば、N−メチル−2−ピロリドン、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、フッ化エチレンカーボネート、エチレンメチレンカーボネート、メチルプロピルカーボネート、エチルプロパノエート、酢酸メチル、酢酸エチル、酢酸プロピル、ジメチルエステル、γ−ブチロラクトン、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、ギ酸メチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エーテル、プロピオン酸メチル、プロピオン酸エチルなどの非プロトン性有機溶媒が使われてもよい。
【0051】
前記有機固体電解質としては、例えば、ポリエチレン誘導体、ポリエチレンオキシド誘導体、ポリプロピレンオキシド誘導体、リン酸エステルポリマー、ポリアジテーションリシン(agitation lysine)、ポリエステルスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、イオン性解離基を含む重合体などが使われてもよい。
【0052】
前記無機固体電解質としては、例えば、LiN、LiI、LiNI、LiN−LiI−LiOH、LiSiO、LiSiO−LiI−LiOH、LiSiS、LiSiO、LiSiO−LiI−LiOH、LiPO−LiS−SiSなどのLiの窒化物、ハロゲン化物、硫酸塩、ケイ酸塩などが使われてもよい。
【0053】
前記リチウム塩は、リチウム電池で一般的に使われるものであるならば、いずれも使用可能であり、前記非水系電解質に溶解されるのに好ましい物質として、例えば、LiCl、LiBr、LiI、LiClO、LiBF、LiB10Cl10、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、CHSOLi、CFSOLi、(CFSONLi、リチウムクロロボレート、低級脂肪族カルボン酸リチウム、4フェニルホウ酸リチウム、イミドなどの物質を一つ以上使用することができる。
【0054】
リチウム電池は、使用するセパレータ及び電解質の種類によって、リチウムイオン電池、リチウムイオンポリマー電池及びリチウムポリマー電池に分類され、形態によって、円筒形、角形、コイン型、ポーチ型などに分類され、サイズによって、バルクタイプと薄膜タイプとに分けることができる。また、リチウム一次電池及びリチウム二次電池いずれも可能である。
【0055】
それら電池の製造方法は、この分野に周知であるので、詳細な説明は省略する。
図2に、本発明の一具現例によるリチウム電池の代表的な構造を概略的に図示してある。
図2を参照し、前記リチウム電池30は、正極23、負極22、及び前記正極23と負極22との間に配置されたセパレータ24を含む。前述の正極23、負極22及びセパレータ24が巻き取られたり、折り畳まれ、電池容器25に収容される。次に、前記電池容器25に電解質が注入されて封入部材26に密封され、リチウム電池30が完成される。前記電池容器25は、円筒形、角形、薄膜型などであってもよい。前記リチウム電池は、リチウムイオン電池であってもよい。
【0056】
前記リチウム電池は、既存の携帯電話、携帯用コンピュータなどの用途以外に、電気車量(electric vehicle)のような高容量、高出力及び高温駆動が要求される用途にも適し、既存の内燃機関、燃料電池、スーパーキャパシタなどと結合し、ハイブリッド車両(hybrid vehicle)などに使われてもよい。また、前記リチウム電池は、高出力、高電圧及び高温駆動が要求されるその他あらゆる用途に使われてもよい。
【0057】
以下の実施例及び比較例を介して、例示的な具現例についてさらに詳細に説明する。ただ、実施例は、技術的思想を例示するためのものであり、それらのみで本発明の範囲が限定されるものではない。
【実施例1】
【0058】
ガス−液体−固体(VLS:vapor-liquid-solid)成長法を利用し、平均直径が約10μmである球状の天然黒鉛(Hitachi Chemical社)上に、Siナノワイヤ(SiNW)を成長させた。先ず、イオン化されたAgを含む溶液を用いて、前記平均直径が約10μmである球状の天然黒鉛の表面に、Agシードを形成し、SiHガスを、10Lチャンバ基準0.2L/分の速度で10分間流してSiNWを成長させた。前記球状黒鉛の粒子を任意採取し、FPIA−3000を利用して測定した円形度は、0.808ないし1.000の範囲内に存在した。前記成長されたSiNWは、平均直径が約30〜50μm、平均長が約1.5μmであり、SiNWの含有量は、7.15重量%であった。
【0059】
全体活物質100重量%を基準に、3重量%のコールタールピッチで、前記SiNWが成長された球状黒鉛表面にピッチコーティングを実施した。先ず、NMP溶媒にピッチを溶かしてから60℃の温度で約30分間かき混ぜた後、SiNW活物質を添加しつつ攪拌し、150℃程度の温度で溶媒が乾燥するまで攪拌を行った後、110℃の乾燥オーブン内で、完全に乾燥させた。前記ピッチコーティングされた球状黒鉛を、窒素雰囲気下で、5℃/分の速度で昇温し、1000℃で1時間維持した後、自然冷却して負極活物質を製造した。
【0060】
前記製造された負極活物質、バインダとして製品名LSR7(製造社:Hitachi Chemical、PAI 23重量%、N−メチル−2−ピロリドン97重量%からなるバインダ)を、90:10の重量比で混合した混合物に、粘度を調節するために、N−メチルピロリドンを、固形分の含有量が30〜50重量%範囲になるように添加し、負極活物質スラリを製造した。製造したスラリを、厚みが10μmである銅ホイル集電体にコーティングして負極板を製造し、コーティングが完了した極板は、120℃で15分間乾燥させた後、圧延(pressing)して60μm厚の負極を製造した。相対電極としては、Li金属を使用し、厚み20μmのポリエチレン材質のセパレータ(製品名:STAR20、Asahi)を使用し、電解液を注入して圧縮した2016Rタイプのコインセルを製造した。このとき、電解質は、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、エチルプロパノエート(EP)及びフッ化エチレンカーボネート(FEC)の混合溶媒(EC:DEC:EP:FEC=25.3:30.7:38:8の体積比)に、LiPFが0.75Mの濃度になるように溶解させたものを使用した。コインセル溶接(welding)後、バインダ硬化及び水分除去のために、160℃で2時間真空乾燥を実施した。
【実施例2】
【0061】
前記実施例1で、負極活物質の製造時に、全体活物質100重量%を基準に、6重量%のコールタールピッチでピッチ・コーティングしたものを使用したことを除いては、前記実施例1と同じ過程で負極活物質及びコインセルを製造した。
【実施例3】
【0062】
前記実施例1で、負極活物質の製造時に、全体活物質100重量%を基準に、10重量%のコールタールピッチでピッチ・コーティングしたものを使用したことを除いては、前記実施例1と同じ過程で負極活物質及びコインセルを製造した。
【実施例4】
【0063】
前記実施例1で、負極活物質の製造時に、全体活物質100重量%を基準に、15重量%のコールタールピッチでピッチ・コーティングしたものを使用したことを除いては、前記実施例1と同じ過程で負極活物質及びコインセルを製造した。
【0064】
比較例1
前記実施例1で、負極活物質としてピッチ・コーティングをせずに、球状黒鉛にSiNWを成長させた一次粒子を使用したことを除いては、前記実施例1と同じ過程でコインセルを製造した。
【0065】
(負極活物質分析)
評価例1:負極活物質のFE−SEMイメージ分析
前記実施例1及び比較例1で製造した負極活物質に対して、電界放射走査電子顕微鏡( FE−SEM:field emission scanning electron microscope)を利用して拡大分析した。実施例1に使われた負極活物質断面に対するFE−SEM写真を、図3A及び図3Bに示した。比較例1に使われた負極活物質のFE−SEM写真を、図4A及び図4Bに示した。
図4A及び図4Bから分かるように、比較例1に使われた負極活物質は、球状黒鉛上に成長されたSiNWが露出された状態で形成されている一方、図3A及び図3Bの断面写真から分かるように、実施例1に使われた負極活物質は、SiNWが成長された球状黒鉛上に、約1.5ないし2μm厚にピッチ・コーティング層が形成され、前記ピッチ・コーティング層がSiNWを覆い包んでいる。
【0066】
評価例2:負極活物質のラマンスペクトル分析
前記実施例1で製造した負極活物質に対して、黒鉛コア及びピッチ・コーティング層のラマンスペクトル分析実験を行い、その結果を図5に示した。
黒鉛コア及びピッチ・コーティング層のラマンスペクトル分析を3回反復して実施し、下記数式1で定義されたD/G値を計算し、下記表1に整理した。
[数式1]
D/G=[Dバンドピークの強度面積]/[Gバンドピークの強度面積]
ここで、Dバンドピークは、ピークの中心がラマンスペクトルで、1340ないし1360cm−1の波数で現れ、Gバンドピークは、ピークの中心が1570ないし1590cm−1の波数で現れる。
【表1】

【0067】
前記表1から分かるように、黒鉛コアのD/G値は、約0.1であり、ピッチ・コーティング層は、D/G値が、3.1ないし3.2の範囲を示した。かようなD/G値の差は、黒鉛コアとピッチ・コーティング層との結晶性差によるものである。
【0068】
評価例3:負極活物質の粒度分布分析
前記実施例1及び比較例1で製造した負極活物質に対して、Beckmann culter counter粒度分析機を利用して粒度分布を測定し、その結果を下記表2及び図6に示した。
【表2】

【0069】
前記表2及び図6から分かるように、ピッチ・コーティングを行っていない比較例1の負極活物質は、1μm以下の領域にピークが認められ、SiNWが脱離している。ピッチ・コーティングされた実施例1ないし3の場合、1μm以下領域の脱離されたSiNWが消え、ピッチ・コーティングされたほど粒度(particle size)が増大していることが分かる。
【0070】
評価例4:負極活物質の電気伝導度測定
前記実施例1及び比較例1で製造した負極活物質の電気伝導度(electric conductivity)を測定するために、電気伝導度測定機(MCP−PD51、三菱化学)を利用し、前記粉体の圧縮密度による電気伝導度を測定した。
前記実施例1及び比較例1で製造した負極活物質を、それぞれホルダに一定量充填した後、圧力を加えてペレットを製造した。ペレットの質量は、2.040gであった。電極間の距離は、3mm、電極の半径は、0.7mm、ペレットの半径は、10mmである。各圧力別に、4ポイントプローブ法(four-point probe)を利用し、パターンの抵抗値(R)を計算した。パターンの厚み及び形状などの形状を考慮した補正係数と、前記で得た抵抗値とを利用し、比抵抗及び電気伝導度を計算した。
比抵抗計算公式:ρ=G×R、G=3.575×t
(ρ:比抵抗、R:抵抗値、G:形状補正係数、t:パターン厚)
【数1】

σ:電気伝導度、ρ:比抵抗
電気伝導度測定結果を図7に示した。図7から分かるように、ピッチ・コーティング量が増加するほど、電気伝導度が上昇するということが分かる。電気伝導度の上昇は、効率及び寿命特性の改善可能性を有しているということである。
【0071】
評価例5:負極活物質のpH測定
前記実施例1ないし4及び比較例1で製造した負極活物質のpHを測定するために、脱イオン水(DI water)に、5重量%の負極活物質溶液を作って撹拌した後、30分放置した。前記溶液は、黒鉛が下に沈み、上には脱離したSiNWが主に浮遊した溶液のpHを測定した。pH測定結果を図8に図示した。
図8から分かるように、ピッチ・コーティング量が増加するほど、pHが上昇するということが分かる。SiNWは、酸性を帯びるために、スラリ製作時に、ゲル化が発生するという問題があるが、実施例のように、ピッチ・コーティングを行う場合、SiNW素材を中和させてスラリのゲル化を防止し、工程性能を向上させることができる。
【0072】
(セル特性評価)
評価例6:電極の体積膨張率測定
前記実施例1ないし4及び比較例1で製造されたコインセルを、0.05Cで充電(formation)させた後でコインセルを解体し、負極板の充電前/後の厚みを比較し、体積膨張率(volumetric expansion ratio)を測定した。体積膨張率の測定結果を図9に図示した。
図9から分かるように、ピッチ・コーティング量が増加するほどピッチ・コーティングが膨張率が減少することが分かる。これはSiNWの膨脹を抑制する役割をするためである。かような膨張率減少によって充放電効率及び寿命改善に寄与できる。
【0073】
評価例7:充放電実験
前記実施例1ないし4及び比較例1で製造されたコインセルに対して、負極活物質1g当たり40mAの電流で、電圧が0.001V(vs.Li)に至るまで充電し、また同じ電流で、電圧が3V(vs.Li)に至るまで放電した。次に、同じ電流及び電圧の区間で、充電及び放電を50回反復した。
前記充放電実験は、常温25℃で行った。充放電効率(CDE:charge-discharge efficiency)は、下記数式2で定義される。容量維持率(CRR:capacity retention ratio)は、下記数式3で定義になる。
[数式2]
充放電効率[%]=[各サイクルでの放電容量/各サイクルでの充電容量]×100
[数式3]
容量維持率[%]=[各サイクルでの放電容量/最初のサイクルでの放電容量]×100
【0074】
実施例1ないし4及び比較例1のコインセルに係わる充放電効率(CDE)の測定結果を図10Aに示し、図10Aのx軸を拡大したグラフを図10Bに示した。
図10A及び図10Bから分かるように、ピッチ・コーティング量が増加するほど、充放電効率が上昇するということが分かる。ピッチがコーティングされつつ、極板の伝導性が上昇し、膨張率が制御されつつ、極板安定性が確保される効果があるためである。また、ピッチ・コーティング時に、非可逆容量比率が低下しつつ、サイクルの初期効率が改善されたということが分かる。
【0075】
また、実施例1ないし4及び比較例1のコインセルに係わる容量維持率(CRR)の測定結果を図11Aに示し、図11Aのx軸を拡大したグラフを図11Bに示した。図11A及び図11Bから分かるように、ピッチ・コーティング量が増加するほど、容量維持率が上昇するということが分かる。
【0076】
前記充放電実験の結果から分かるように、球状黒鉛を基材として使用したSiNW負極活物質に、ピッチ・コーティングを実施することにより、極板の電気伝導度が上昇し、膨張率が制御されつつ、極板の安定性が確保され、率特性及び寿命特性を向上させることができるということが分かる。
【0077】
以上、図面及び実施例を参照しつつ、本た発明による望ましい具現例について説明したが、それらは例示的なものに過ぎず、当技術分野で当業者であるならば、それらから多様な変形及び均等な他の具現例が可能であるという点を理解することができるであろう。従って、本発明の保護範囲は、特許請求の範囲によって決まるものである。
【産業上の利用可能性】
【0078】
本発明の負極活物質及び該物質を採用したリチウム電池は、例えば、リチウム二次電池関連の技術分野に効果的に適用可能である。
【符号の説明】
【0079】
22 負極
23 正極
24 セパレータ
25 電池容器
26 封入部材
30 リチウム電池
100 一次粒子
110 結晶質炭素系コア
120 シリコン系ナノワイヤ
130 非晶質炭素系コーティング層

【特許請求の範囲】
【請求項1】
表面にシリコン系ナノワイヤが配置された結晶質炭素系コアと、
前記シリコン系ナノワイヤの少なくとも一部が埋め込まれるように、前記結晶質炭素系コア上にコーティングされた非晶質炭素系コーティング層と、を含む一次粒子を含む負極活物質。
【請求項2】
前記シリコン系ナノワイヤの少なくとも50体積%が、前記非晶質炭素系コーティング層に埋め込まれていることを特徴とする請求項1に記載の負極活物質。
【請求項3】
前記非晶質炭素系コーティング層の厚みが0.1ないし10μmであることを特徴とする請求項1又は2に記載の負極活物質。
【請求項4】
前記非晶質炭素系コーティング層は、ラマンスペクトルで、Gバンドピークの強度面積に対するDバンドピークの強度面積の比率で表示されるD/G値が、0.31以上であることを特徴とする請求項1〜3のいずれか1項に記載の負極活物質。
【請求項5】
前記非晶質炭素系コーティング層は、ソフトカーボン、ハードカーボン、メゾ相ピッチ炭化物、焼成されたコークス、及びそれらの組み合わせから選択される非晶質炭素を含むことを特徴とする請求項1〜4のいずれか1項に記載の負極活物質。
【請求項6】
前記非晶質炭素系コーティング層の含有量は、前記一次粒子を基準に、0.1ないし30重量%であることを特徴とする請求項1〜5のいずれか1項に記載の負極活物質。
【請求項7】
前記結晶質炭素系コアが0.2ないし1の範囲の円形度を有する球状であることを特徴とする請求項1〜6のいずれか1項に記載の負極活物質。
【請求項8】
前記結晶質炭素系コアは、ラマンスペクトルで、Gバンドピークの強度面積に対するDバンドピークの強度面積の比率で表示されるD/G値が、0.3以下であることを特徴とする請求項1〜7のいずれか1項に記載の負極活物質。
【請求項9】
前記結晶質炭素系コアは、天然黒鉛、人造黒鉛、膨脹黒鉛、グラフェン、カーボンブラック、フラーレンスート、及びそれらの組み合わせのうち少なくとも一つを含むことを特徴とする請求項1〜8のいずれか1項に記載の負極活物質。
【請求項10】
前記結晶質炭素系コアの平均粒径が、1ないし30μmであることを特徴とする請求項1〜9のいずれか1項に記載の負極活物質。
【請求項11】
前記シリコン系ナノワイヤは、Si、SiO(0<x≦2)、Si−Z合金(ここで、前記Zは、アルカリ金属、アルカリ土類金属、13族元素、14族元素、遷移金属、希土類元素、またはそれらの組み合わせであり、但し、Siを除く)、及びそれらの組み合わせのうち少なくとも1つの物質を含むことを特徴とする請求項1〜10のいずれか1項に記載の負極活物質。
【請求項12】
前記シリコン系ナノワイヤは、Siナノワイヤであることを特徴とする請求項1〜11のいずれか1項に記載の負極活物質。
【請求項13】
前記シリコン系ナノワイヤは、直径が10ないし500nmであり、長さが0.1ないし100μmであることを特徴とする請求項1〜12のいずれか1項に記載の負極活物質。
【請求項14】
前記シリコン系ナノワイヤは、前記結晶質炭素系コア上で直接成長されたものであることを特徴とする請求項1〜13のいずれか1項に記載の負極活物質。
【請求項15】
前記シリコン系ナノワイヤは、Pt、Fe、Ni、Co、Au、Ag、Cu、Zn及びCdのうち少なくとも1つの金属触媒の存在下で成長されたものであることを特徴とする請求項14に記載の負極活物質。
【請求項16】
前記結晶質炭素系コア及びシリコン系ナノワイヤの合計を基準に、前記結晶質炭素系コアの含有量は、60ないし99重量%であり、前記シリコン系ナノワイヤの含有量は、1ないし40重量%であることを特徴とする請求項1〜15のいずれか1項に記載の負極活物質。
【請求項17】
前記負極活物質は、天然黒鉛、人造黒鉛、膨脹黒鉛、グラフェン、カーボンブラック、フラーレンスート、炭素ナノチューブ、炭素ファイバ、及びそれらの組み合わせのうち少なくとも一つを含む炭素系粒子をさらに含むことを特徴とする請求項1〜16のいずれか1項に記載の負極活物質。
【請求項18】
前記炭素系粒子が、球状、板状、ファイバ状、チューブ状または粉末状の形態で含まれることを特徴とする請求項17に記載の負極活物質。
【請求項19】
請求項1ないし請求項18のうち、いずれか1項に記載の負極活物質を含む負極と、
前記負極に対向して配置される正極と、
前記負極及び正極間に配置される電解質と、を含むリチウム電池。
【請求項20】
前記負極が、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ベンズイミダゾール、ポリイミド、ポリ酢酸ビニル、ポリアクリロニトリル、ポリビニルアルコール、カルボキシメチルセルロース(CMC)、澱粉、ヒドロキシプロピルセルロース、再生セルロース、ポリビニルピロリドン、テトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、ポリアニリン、アクリロニトリルブタジエンスチレン、フェノール樹脂、エポキシ樹脂、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリフェニルスルフィド、ポリアミドイミド、ポリエーテルイミド、ポリエチレンスルホン、ポリアミド、ポリアセタル、ポリフェニレンオキシド、ポリブチレンテレフタレート、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、フッ化ゴム、及びそれらの組み合わせのうち少なくとも1つのバインダをさらに含むことを特徴とする請求項19に記載のリチウム電池。
【請求項21】
前記バインダの含有量は、前記負極活物質100重量部に対して、1ないし50重量部であることを特徴とする請求項19又は20に記載のリチウム電池。
【請求項22】
前記負極が、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素ファイバ、銅、ニッケル、アルミニウム、銀、導電性ポリマー、及びそれらの組み合わせのうち少なくとも1つの導電剤をさらに含むことを特徴とする請求項19〜21のいずれか1項に記載のリチウム電池。

【図1】
image rotate

【図2】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4A】
image rotate

【図4B】
image rotate


【公開番号】特開2013−84601(P2013−84601A)
【公開日】平成25年5月9日(2013.5.9)
【国際特許分類】
【出願番号】特願2012−222277(P2012−222277)
【出願日】平成24年10月4日(2012.10.4)
【出願人】(590002817)三星エスディアイ株式会社 (2,784)
【Fターム(参考)】