説明

X線回折測定装置及びX線回折測定方法

【課題】 イメージングプレートの取付け精度の良否によらず、測定対象物の残留応力を精度よく測定できるようにする。
【解決手段】 コントローラCTは、残留応力が0である基準物体BOB及び測定対象物OBに、X線出射器13からのX線をそれぞれ照射して、イメージングプレート28上に基準物体BOB及び測定対象物OBの回折環をそれぞれ撮像する。そして、コントローラCTは、前記撮像した両回折環の形状をそれぞれ検出し、測定対象物OBの回折環の形状を、基準物体BOBの回折環の形状を用いて補正して、イメージングプレート28のテーブル27に対する取付け誤差の影響を少なくする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定対象物の残留応力を測定するために、測定対象物にX線を照射し、測定対象物で回折したX線によりイメージングプレートの表面に形成された回折環の形状を測定するX線回折測定装置及びX線回折測定方法に関する。
【背景技術】
【0002】
従来から、測定対象物の残留応力をX線回折により測定することはよく行われている。X線回折測定装置において、装置が小型化できX線の照射時間を短くすることが可能な装置として、下記特許文献1に示されている装置がある。この装置は、X線を所定の角度で測定対象物に照射し、測定対象物で回折したX線(以下、回折X線という)を、感光性を有するイメージングプレートで受光し、イメージングプレートに形成された環状のX線回折像(以下、回折環という)の形状を測定する。そして、測定した回折環の形状をcosα法により分析して、測定対象物の残留応力を計算するようにしている。
【0003】
下記特許文献1では、イメージングプレートの代わりにX線CCDで回折X線を受光し、X線CCDの各画素が出力する信号から回折環の形状を得る方法も示されているが、X線CCDは高額であるため装置のコストを抑えるためイメージングプレートに回折環を形成し、この形成された回折環の形状を検出する方法が主に使用されている。この検出方法は、He−Neレーザなどの励起光でイメージングプレートを走査し、回折環から輝尽発光により発生する光の強度を光電子管によって増幅して検出し、回折環の画像を得る方法である。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−241308号公報
【発明の概要】
【0005】
イメージングプレートを特許文献1に示されているように法線方向がX線の照射方向と一致するように取付ければ、残留応力「0」の対象物(例えば、物体に鉄粉を糊塗することにより作成できる)にX線を照射したとき回折X線によって形成される回折環は真円であり、円の中心は出射X線の光軸がイメージングプレートと交差する点になる。そして、残留応力を有する測定対象物により形成される回折環は真円からずれるため、この回折環の形状から残留応力を計算できる。しかしながら、発明者はイメージングプレートの取付けと取外しを行いながら、残留応力「0」の対象物の回折環を何回か測定したところ、回折環が真円からずれており、そのずれの度合いが変動することが分かった。これは、図18(a)に誇張して示すように、イメージングプレートの法線方向がX線の照射方向と一致しない。すなわち、イメージングプレートが傾いて取付けられていることや、取付けられたイメージングプレートが歪んでいるためであると考えられる。
【0006】
すなわち、測定対象物のX線照射点から生じる回折X線は残留応力「0」であれば、どの方向も円錐の側面に沿って進むので、イメージングプレートの法線方向がX線の照射方向と一致していれば、円錐を底面と平行な面で切断したときの断面と同じ形状の回折環が形成され、図18(b)の実線X1のように真円となる。しかし、イメージングプレートが傾いて取付けられているときには、円錐を底面と平行ではない面で切断したときの断面と同じ形状の回折環が形成され、図18(b)の破線X2のように楕円になる。そして、イメージングプレートが歪んでいるときは、円錐を歪んだ面で切断したときの断面と同じ形状の回折環が形成され、図18(b)の点線X3のように歪んだ円になる。これにより、イメージングプレートが、その法線方向が精度よくX線の照射方向と一致するように取付けられていれば、測定した回折環に基づく残留応力の測定精度が良好となるが、そうでないときは測定精度が悪くなるという問題がある。また、イメージングプレートの回転中心が出射X線の光軸からずれている場合があり、このずれにより、測定した回折環に基づく残留応力の測定精度がさらに悪化する。
【0007】
本発明は上記問題を解決するためになされたもので、その目的は、イメージングプレートの取付け精度の良否によらず、精度よく残留応力の測定を行うことができるX線回折測定装置及びX線回折測定方法を提供することにある。なお、下記本発明の各構成要件の記載においては、本発明の理解を容易にするために、後述する実施形態の対応箇所の符号を括弧内に記載しているが、本発明の各構成要件は、この実施形態の符号によって示された対応箇所の構成に限定解釈されるべきものではない。
【0008】
上記目的を達成するために、本発明の特徴は、対象とする物体に向けてX線を出射するX線出射器(13)と、中央にX線を通過させる貫通孔が形成されたテーブル(27)と、テーブルに取付けられて、物体にて回折したX線の回折光を受光する受光面を有し、回折光の像である回折環を記録するイメージングプレート(28)と、レーザ光を出射するレーザ光源及びレーザ光を受光するフォトディテクタを有し、レーザ光をイメージングプレートの受光面に照射するとともに、レーザ光の照射によってイメージングプレートから出射された光を受光して受光強度に応じた受光信号を出力するレーザ検出装置(PUH)と、テーブルを、貫通孔の中心軸回りに回転させる回転手段(24,25)と、回転手段によるテーブルの回転における基準位置からの回転角度を検出する回転角度検出手段(26)と、テーブルを、イメージングプレートの受光面に平行な方向に、レーザ検出装置に対して相対的に移動させる移動手段(15,17,18,22)と、移動手段によるテーブルの移動位置を検出する移動位置検出手段(21)と、移動手段を制御してテーブルを移動し、X線出射器から残留応力が「0」である基準物体(BOB)に向けてX線を照射して、基準物体で回折したX線によってイメージングプレートに基準物体の回折環を撮像する第1回折環撮像手段(CT,S102,S110,S200〜S226,S600〜S614)と、回転手段及び移動手段を制御して基準物体の回折環が記録されたイメージングプレートを回転及び移動させて、レーザ検出装置から出射されるレーザ光のイメージングプレートにおける照射位置をイメージングプレートの中心周りに回転させるとともに半径方向に変化させながら、レーザ検出装置から出力される受光信号をそれぞれ入力して、前記入力した受光信号によって表された受光強度を表す受光強度データを、回転角度検出手段によって検出された回転位置及び移動位置検出手段によって検出された移動位置から取得されるレーザ光のイメージングプレートにおける照射位置と関連付けて順次読取り、前記読取った受光強度データに基づいてイメージングプレートに形成された基準物体の回折環の形状を検出する第1回折環形状検出手段(CT,S104,S112,S300〜S350,S400〜S420,S700〜S750)と、移動手段を制御してテーブルを移動し、X線出射器から測定対象物(OB)に向けてX線を照射して、測定対象物で回折したX線によってイメージングプレートに測定対象物の回折環を撮像する第2回折環撮像手段(CT,S802,S200〜S226)と、回転手段及び移動手段を制御して測定対象物の回折環が記録されたイメージングプレートを回転及び移動させて、レーザ検出装置から出射されるレーザ光のイメージングプレートにおける照射位置をイメージングプレートの中心周りに回転させるとともに半径方向に変化させながら、レーザ検出装置から出力される受光信号をそれぞれ入力して、前記入力した受光信号によって表された受光強度を表す受光強度データを、回転角度検出手段によって検出された回転位置及び移動位置検出手段によって検出された移動位置から取得されるレーザ光のイメージングプレートにおける照射位置と関連付けて順次読取り、前記読取った受光強度データに基づいてイメージングプレートに形成された測定対象物の回折環の形状を検出する第2回折環形状検出手段(CT,S804,S300〜S350,S400〜S420)と、第2回折環形状検出手段によって検出された測定対象物の回折環の形状を、第1回折環形状検出手段によって検出された基準物体の回折環の形状を用いて補正して、イメージングプレートのテーブルに対する取付け誤差の影響を少なくする補正手段(CT,S106,S114,S118,S302,S808,S810)とを備えたことにある。
【0009】
上記のように構成した本発明においては、第1回折環形状検出手段は、残留応力が「0」である基準物体に対してX線を照射することによってイメージングプレートに形成された基準物体の回折環の形状を検出する。一方、イメージングプレートの法線方向がX線出射方向と一致し、かつイメージングプレートの回転中心とX線出射点とが一致している状態で、残留応力が0である基準物体に対してX線を照射すれば、イメージングプレート上には、X線の出射位置であってイメージングプレートの回転中心を中心とする真円の回折環が形成されるはずである。したがって、前記真円の回折環に対する第1回折環形状検出手段によって検出された回折環の形状の差は、イメージングプレートの法線方向がX線出射方向と正確に一致していなかったり、取付けられたイメージングプレートが歪んでいる場合におけるずれ、すなわちイメージングプレートがテーブルに良好に取付けられていなかった場合のずれを表すことになる。そして、補正手段は、第2回折環形状検出手段によって検出された測定対象物の回折環の形状を、第1回折環形状検出手段によって検出された基準物体の回折環の形状を用いて補正して、イメージングプレートのテーブルに対する取付け誤差の影響を少なくする。これにより、本発明によれば、イメージングプレートがテーブルに良好に取付けられていなくても、測定対象物の回折環の形状が的確に補正され、測定対象物の残留応力を精度よく測定できるようになる。
【0010】
前記本発明の特徴においては、例えば、第1回折環撮像手段は、回転角度検出手段によって検出された回転角度を用いて回転手段を制御してテーブルを回転させ、イメージングプレートを所定角度位置に設定する第1角度位置設定手段(S102,S202)を有し、第2回折環撮像手段は、回転角度検出手段によって検出された回転角度を用いて回転手段を制御してテーブルを回転させ、イメージングプレートを第1角度位置設定手段による所定角度位置と同じ角度位置に設定する第2角度位置設定手段(S802,S202)を有し、第1回折環形状検出手段によって検出された基準物体の回折環の形状は、所定角度ごとのイメージングプレートの回転中心からの距離により表され、第2回折環形状検出手段によって検出された測定対象物の回折環の形状は、所定角度ごとのイメージングプレートの回転中心からの距離により表され、かつ補正手段は、イメージングプレートの法線方向がX線の出射方向と一致している場合にイメージングプレートに撮像される基準物体の真円からなる回折環の半径と、基準物体の回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離との比を用いて、測定対象物の回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離を補正して、イメージングプレートの法線方向がX線の出射方向と一致している場合にイメージングプレートに撮像される測定対象物の回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離を計算する第1補正手段(S810)を有する。
【0011】
この場合、イメージングプレートの法線方向がX線の出射方向と一致している場合にイメージングプレートに撮像される基準物体の真円からなる回折環の半径と、第1回折環撮像手段によって撮像された基準物体の回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離との比は、イメージングプレートの法線方向がX線の出射方向と一致している場合にイメージングプレートに撮像される測定対象物の回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離と、第2回折環撮像手段によって撮像された測定対象物の回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離との比にほぼ等しい。したがって、イメージングプレートの法線方向とX線の出射方向とが一致していなくても、第1補正手段によって計算されるイメージングプレートの回転中心からの距離は、イメージングプレートの法線方向がX線の出射方向と一致している場合のイメージングプレートの回転中心からの距離を精度よく表すものとなり、測定対象物の残留応力を精度よく測定できるようになる。なお、ここで回転中心からの距離とは、実際の回転中心からの距離を意味する場合と、実際の回転中心からの距離とほぼ一致しているが、イメージングプレートの法線方向がX線の出射方向と一致している場合にイメージングプレートに撮像される基準物体の真円からなる回折環の中心からの距離を意味する場合がある。
【0012】
前記本発明の特徴においては、例えば、第1回折環撮像手段は、回転角度検出手段によって検出された回転角度を用いて回転手段を制御し、イメージングプレートの複数の異なる回転角度位置ごとに基準物体に向けてX線出射器からX線を照射して、基準物体で回折したX線によってイメージングプレートに基準物体の複数の回折環をそれぞれ撮像し、第1回折環形状検出手段は、イメージングプレートに撮像された基準物体の複数の回折環の形状をそれぞれ検出し、かつ補正手段は、第1回折環形状検出手段により検出された複数の回折環の形状からそれぞれ定まり、前記複数の回折環の位置にそれぞれ関係した複数の点又は軸をそれぞれ検出する定点軸検出手段と、前記検出された複数の点又は軸を用いて、X線出射器から出射されたX線の光軸がイメージングプレートと交差する点をX線出射点として検出するX線出射点検出手段(S118)と、基準物体の回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離、測定対象物の回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離、及び所定角度を、前記検出されたX線出射点を用いて補正する第2補正手段(S810)とを備え、第1補正手段による計算は第2補正手段による補正を行った後に行うことにある。
【0013】
この場合、より具体的には、第1回折環撮像手段は、イメージングプレートの180度異なる回転角度位置ごとにイメージングプレートに基準物体の2つ回折環をそれぞれ撮像し、定点軸検出手段は、前記検出された基準物体の2つ回折環の形状から、基準物体の2つ回折環の重心位置をそれぞれ検出し、X線出射点検出手段は、前記検出された2つ回折環の重心位置の中間点をX線出射点として検出する。また、定点軸検出手段は、前記検出された基準物体の複数の回折環の形状から、基準物体の複数の回折環の重心位置をそれぞれ検出し、X線出射点検出手段は、前記検出された複数の回折環の重心位置が円周上にある円の中心位置をX線出射点として検出する。
【0014】
これによれば、出射X線の光軸とイメージングプレートの回転軸とが一致していない場合でも、この一致していないことにより発生する誤差をなくす補正を行ったうえで、前記第1補正手段による計算を行うことができ、測定対象物の残留応力を精度よく測定できるようになる。
【0015】
さらに、本発明の実施にあたっては、本発明は、X線回折測定装置の発明に限定されることなく、X線回折測定方法の発明としても実施し得るものである。
【図面の簡単な説明】
【0016】
【図1】本発明の一実施形態に係るX線回折測定装置の全体概略図である。
【図2】図1のX線回折測定装置の本体部分を拡大した拡大図である。
【図3】図1のコントローラによって実行される基準物体回折環測定プログラムを示すフローチャートである。
【図4】図3及び図10の第1回折環撮像ルーチンを詳細に示すフローチャートである。
【図5A】図3及び図10の第1回折環読取りルーチンの前半部分を詳細に示すフローチャートである。
【図5B】前記第1回折環読取りルーチンの後半部分を詳細に示すフローチャートである。
【図6】図3及び図10の回折環形状検出ルーチンを詳細に示すフローチャートである。
【図7】図3及び図10の回折環消去ルーチンを詳細に示すフローチャートである。
【図8】図3の第2回折環撮像ルーチンを詳細に示すフローチャートである。
【図9A】図3の第2回折環読取りルーチンの前半部分を詳細に示すフローチャートである。
【図9B】前記第2回折環読取りルーチンの後半部分を詳細に示すフローチャートである。
【図10】図1のコントローラによって実行される測定対象物回折環測定プログラムを示すフローチャートである。
【図11】イメージングプレートの取付けが良好でなくても正確に残留応力を計算できることを説明するための説明図である。
【図12】テーブルの回転位置により回折環の重心がX線出射点を中心に変化することを説明するための説明図である。
【図13】複数の残留応力「0」の回折環からX線出射点を計算する方法を説明するための説明図である。
【図14】X線出射点とイメージングプレートの回転中心とのずれによる補正を説明するための説明である。
【図15】イメージングプレートの移動限界位置からの移動距離と、イメージングプレートにおけるレーザ光の照射位置の半径方向距離(半径)との関係を説明するための図である。
【図16】読取りポイントの軌跡を説明する説明図である。
【図17】信号強度のピークを説明するための受光曲線の一例を示すグラフである。
【図18】イメージングプレートの取付けの仕方により残留応力「0」の回折環が真円にならないことがあることを説明するための説明図である。
【発明を実施するための形態】
【0017】
本発明の一実施形態に係るX線回折測定装置の構成について図1及び図2を用いて説明する。このX線回折測定装置は、測定対象物OBの残留応力を評価するために、X線を測定対象物OBに照射するとともに、同照射による測定対象物OBからの回折X線により形成される回折環の形状を検出する。このX線回折測定装置は、箱状に形成されたフレームFRを有し、フレームFRの底面の角部から下方へ支持脚11が延設されている。すなわち、フレームFRの底面は、X線回折測定装置の設置面FLよりも上方に位置する。フレームFRの下方には、昇降機12が設けられている。昇降機12は、測定対象物OBを固定するための昇降ステージ12aを有する。昇降ステージ12aは、上下に昇降可能となっている。フレームFRの底面であって、昇降機12の上方に位置する部分には開口部が設けられていて、昇降ステージ12aを上昇させることにより、固定した測定対象物OBをフレームFRの内部へ搬入することができる。
【0018】
フレームFR内の上部には、X線制御回路14によって制御されて、X線を出射するX線出射器13が固定されている。X線出射器13から出射されたX線の光軸と、測定対象物OBの法線とが所定の角度θ(例えば、30度)をなすように、X線出射器13の出射口の向きが設定されている。
【0019】
X線制御回路14は、後述するコントローラCTによって制御され、X線出射器13から一定の強度のX線が出射されるように、X線出射器13に供給する駆動電流及び駆動電圧を制御する。また、X線出射器13は、図示しない冷却装置を備えていて、X線制御回路14は、この冷却装置に供給する駆動信号も制御する。これにより、X線出射器13の温度が一定に保たれる。
【0020】
X線出射器13の下方には、移動ステージ15が設けられている。移動ステージ15は、ステージ送り装置16により、X線出射器13から出射されたX線の光軸に垂直な方向に移動可能となっている。ステージ送り装置16は、移動ステージ15に固定された図示しないナットに螺合するスクリューロッド17と、スクリューロッド17を回転させるフィードモータ18とを備えている。スクリューロッド17は、X線出射器13から出射されたX線の光軸に垂直な方向に延設されている。そして、スクリューロッド17の一端部が、フレームFRに固定されたフィードモータ18の出力軸に連結され、他端部が、フレームFRに固定された軸受部19に回転可能に支持される。また、移動ステージ15は、それぞれフレームFRに固定された、対向する1対の板状のガイド20,20により挟まれていて、スクリューロッド17の軸線方向に沿って移動可能となっている。すなわち、フィードモータ18を正転又は逆転駆動すると、フィードモータ18の回転運動が移動ステージ15の直線運動に変換される。フィードモータ18内には、エンコーダ18aが組み込まれている。エンコーダ18aは、フィードモータ18が所定の微小回転角度だけ回転するたびに、ハイレベルとローレベルとに交互に切り替わるパルス列信号を位置検出回路21及びフィードモータ制御回路22へ出力する。
【0021】
位置検出回路21及びフィードモータ制御回路22は、コントローラCTからの指令により作動開始する。測定開始直後において、フィードモータ制御回路22は、フィードモータ18を駆動して移動ステージ15をフィードモータ18側へ移動させる。位置検出回路21は、エンコーダ18aから出力されるパルス信号が入力されなくなると移動ステージ15が移動限界位置に達したことを表す信号をフィードモータ制御回路22に出力し、カウント値を「0」に設定する。フィードモータ制御回路22は、位置検出回路21から移動限界位置に達したことを表す信号を入力するとフィードモータ18への駆動信号の出力を停止する。上記の移動限界位置を移動ステージ15の原点位置とする。したがって、位置検出回路21は、移動ステージ15が図1及び図2にて左上方向に移動して移動限界位置に達したとき「0」を表す位置信号を出力し、移動ステージ15が移動限界位置から右下方向へ移動するとき、移動限界位置からの移動距離xを表す信号を位置信号として出力する。
【0022】
フィードモータ制御回路22は、コントローラCTから移動ステージ15の移動先の位置を表す設定値を入力すると、その設定値に応じてフィードモータ18を正転又は逆転駆動する。位置検出回路21は、エンコーダ18aが出力するパルス信号のパルス数をカウントする。そして、位置検出回路21は、カウントしたパルス数を用いて移動ステージ15の現在の位置(移動限界位置からの移動距離x)を計算し、コントローラCT及びフィードモータ制御回路22に出力する。フィードモータ制御回路22は、位置検出回路21から入力した移動ステージ15の現在の位置が、コントローラCTから入力した移動先の位置と一致するまでフィードモータ18を駆動する。
【0023】
また、フィードモータ制御回路22は、移動ステージ15の移動速度を表す設定値をコントローラCTから入力する。そして、エンコーダ18aから入力したパルス信号の単位時間当たりのパルス数を用いて、移動ステージ15の移動速度を計算し、前記計算した移動ステージ15の移動速度がコントローラCTから入力した移動速度になるようにフィードモータ18を駆動する。
【0024】
一対のガイド20,20の上端は、板状の上壁23によって連結されている。上壁23には、貫通孔23aが設けられていて、貫通孔23aには、X線出射器13の出射口の先端部が挿入されている。なお、X線出射器13の出射口の先端が移動ステージ15に当接しないように、X線出射器13及び移動ステージ15の位置が設定されている。
【0025】
また、移動ステージ15には、スピンドルモータ24が組み付けられている。スピンドルモータ24内には、エンコーダ18aと同様のエンコーダ24aが組み込まれている。すなわち、エンコーダ24aは、スピンドルモータ24が所定の微小回転角度だけ回転する度に、ハイレベルとローレベルとに交互に切り替わるパルス列信号を、スピンドルモータ制御回路25及び回転角度検出回路26へ出力する。さらに、エンコーダ24aは、スピンドルモータ24が1回転するごとに、所定の短い期間だけローレベルからハイレベルに切り替わるインデックス信号を、コントローラCT及び回転角度検出回路26へ出力する。
【0026】
スピンドルモータ制御回路25及び回転角度検出回路26は、コントローラCTからの指令により作動開始する。スピンドルモータ制御回路25は、コントローラCTから、スピンドルモータ24の回転速度を表す設定値を入力する。そして、エンコーダ24aから入力したパルス信号の単位時間当たりのパルス数を用いてスピンドルモータ24の回転速度を計算し、計算した回転速度がコントローラCTから入力した回転速度になるように、駆動信号をスピンドルモータ24に供給する。回転角度検出回路26は、エンコーダ24aから出力されたパルス列信号のパルス数をカウントし、そのカウント値を用いてスピンドルモータ24の回転角度すなわちイメージングプレート28の回転角度θpを計算して、コントローラCTに出力する。そして、回転角度検出回路26は、エンコーダ24aから出力されたインデックス信号を入力すると、カウント値を「0」に設定する。すなわち、インデックス信号を入力した位置が回転角度0度の基準位置である。
【0027】
スピンドルモータ24の出力軸の先端部には、円板状のテーブル27が固定されている。テーブル27の中心軸と、スピンドルモータ24の出力軸の中心軸とは一致している。テーブル27は、下面中央部から下方へ突出した突出部27aを有していて、突出部27aの外周面には、ねじ山が形成されている。突出部27aの中心軸は、スピンドルモータ24の出力軸の中心軸と一致している。テーブル27の下面には、イメージングプレート28が取付けられている。イメージングプレート28は、表面に蛍光体が塗布された円形のプラスチックフィルムである。イメージングプレート28の中心部には、貫通孔28aが設けられていて、この貫通孔28aに突出部27aを通し、突出部27aにナット状の固定具29をねじ込むことにより、イメージングプレート28が、固定具29とテーブル27の間に挟まれて固定される。固定具29は、円筒状の部材で、内周面に、突出部27aのねじ山に対応するねじ山が形成されている。イメージングプレート28は、フィードモータ18によって駆動されて、移動ステージ15、スピンドルモータ24及びテーブル27と共に原点位置から回折環を撮像する回折環撮像位置へ移動する。また、イメージングプレート28は、スピンドルモータ24によって駆動されて回転しながら、フィードモータ18によって駆動されて、移動ステージ15、スピンドルモータ24及びテーブル27と共に撮像した回折環を読み取る回折環読取り領域内、回折環を消去する回折環消去領域内を移動する。
【0028】
また、移動ステージ15、スピンドルモータ24の出力軸、テーブル27及び固定具29には、X線出射器13から出射されたX線を通過させる貫通孔がそれぞれ設けられている。これらの貫通孔の中心軸と、テーブル27の回転軸は一致している。すなわち、これらの貫通孔の中心軸と、X線出射器13から出射されるX線の光軸とが一致するとき、X線が測定対象物OBに照射されるようになっている。このように、X線を測定対象物OBに照射するときのイメージングプレート28の位置が、回折環撮像位置である。
【0029】
フィードモータ18の下方には、測定対象物OBにて反射したX線を受光する複数の受光素子からなる受光センサ31(例えば、X線CCD)が組み付けられている。受光センサ31は、測定対象物OB及びイメージングプレート28からフィードモータ18側に十分離れている。これにより、イメージングプレート28が回折環撮像位置にあるとき、受光センサ31は、測定対象物OBにて反射したX線を直接受光できる。受光センサ31の受光面は、測定対象物OBの上面と平行である。受光センサ31の受光面におけるX線の受光位置は、測定対象物OBの高さに対応している。言い換えれば、イメージングプレート28と測定対象物OBとの距離に対応している。受光センサ31は、それぞれの受光素子が受光した受光信号をセンサ信号取り出し回路32へ出力する。
【0030】
センサ信号取り出し回路32は、コントローラCTからの指令により作動開始し、受光センサ31から入力した受光信号を用いて受光センサ31の受光面における受光信号のピーク位置を算出して受光位置を表す受光位置信号としてコントローラCTへ出力する。
【0031】
また、受光センサ31の下方には、レーザ検出装置PUHが組み付けられている。レーザ検出装置PUHは、回折環を撮像したイメージングプレート28にレーザ光を照射して、イメージングプレート28から入射した光の強度を検出する。レーザ検出装置PUHは、測定対象物OB及びイメージングプレート28からフィードモータ18側に十分離れている。すなわち、イメージングプレート28が回折環撮像位置にあるとき、測定対象物OBにて回折したX線がレーザ検出装置PUHによって遮られないようになっている。レーザ検出装置PUHは、レーザ光源33と、コリメートレンズ35、反射鏡36、偏光ビームスプリッタ37、1/4波長板38及び対物レンズ39を備えている。
【0032】
レーザ光源33は、レーザ駆動回路34によって制御されて、イメージングプレート28に照射するレーザ光を出射する。レーザ駆動回路34は、コントローラCTによって制御され、レーザ光源33から所定の強度のレーザ光が出射されるように、駆動信号を制御して供給する。レーザ駆動回路34は、後述するフォトディテクタ51から出力された受光信号を入力して、受光信号の強度が所定の強度になるようにレーザ光源33に出力する駆動信号を制御する。これにより、イメージングプレート28に照射されるレーザ光の強度が一定に維持される。
【0033】
コリメートレンズ35は、レーザ光源33から出射されたレーザ光を平行光に変換する。反射鏡36は、コリメートレンズ35にて平行光に変換されたレーザ光を、偏光ビームスプリッタ37に向けて反射する。偏光ビームスプリッタ37は、反射鏡36から入射したレーザ光の大半(例えば、95%)をそのまま透過させる。1/4波長板38は、偏光ビームスプリッタ37から入射したレーザ光を直線偏光から円偏光に変換する。対物レンズ39は、1/4波長板38から入射したレーザ光をイメージングプレート28の表面に集光させる。
【0034】
対物レンズ39には、フォーカスアクチュエータ40が組み付けられている。フォーカスアクチュエータ40は、対物レンズ39をレーザ光の光軸方向に移動させるアクチュエータである。なお、対物レンズ39は、フォーカスアクチュエータ40が通電されていないときに、その可動範囲の中心に位置する。
【0035】
対物レンズ39によって集光されたレーザ光を、イメージングプレート28の表面であって、回折環が撮像されている部分に照射すると、輝尽発光(Photo−Stimulated Luminesence)現象が生じる。すなわち、回折環を撮像した後、イメージングプレート28にレーザ光を照射すると、イメージングプレート28の蛍光体が回折X線の強度に応じた光であって、レーザ光の波長よりも波長が短い光を発する。イメージングプレート28に照射されて反射したレーザ光の反射光及び蛍光体から発せられた光は、対物レンズ39及び1/4波長板38を通過して、偏光ビームスプリッタ37にて反射する。偏光ビームスプリッタ37の反射方向には、集光レンズ41、シリンドリカルレンズ42及びフォトディテクタ43が設けられている。集光レンズ41は、偏光ビームスプリッタ37から入射した光を、シリンドリカルレンズ42に集光する。シリンドリカルレンズ42は、透過した光に非点収差を生じさせる。フォトディテクタ43は、分割線で区切られた4つの同一正方形状の受光素子からなる4分割受光素子によって構成されており、時計回りに配置された受光領域A,B,C,Dに入射した光の強度に比例した大きさの検出信号を受光信号(a,b,c,d)として、増幅回路44へ出力する。
【0036】
増幅回路44は、フォトディテクタ43から出力された受光信号(a,b,c,d)をそれぞれ同じ増幅率で増幅して受光信号(a’,b’,c’,d’)を生成して、フォーカスエラー信号生成回路45及びSUM信号生成回路48へ出力する。本実施形態においては、非点収差法によるフォーカスサーボ制御を用いる。フォーカスエラー信号生成回路45は、増幅された受光信号(a’,b’,c’,d’)を用いて、演算によりフォーカスエラー信号を生成する。すなわち、フォーカスエラー信号生成回路45は、(a’+c’)−(b’+d’)の演算を行い、この演算結果をフォーカスエラー信号としてフォーカスサーボ回路46へ出力する。フォーカスエラー信号(a’+c’)−(b’+d’)は、レーザ光の焦点位置のイメージングプレート28の表面からのずれ量を表している。
【0037】
フォーカスサーボ回路46は、コントローラCTにより制御され、フォーカスエラー信号に基づいて、フォーカスサーボ信号を生成してドライブ回路47に出力する。ドライブ回路47は、このフォーカスサーボ信号に応じてフォーカスアクチュエータ40を駆動して、対物レンズ39をレーザ光の光軸方向に変位させる。この場合、フォーカスエラー信号(a’+c’)−(b’+d’)の値が常に一定値(例えば、ゼロ)となるようにフォーカスサーボ信号を生成することにより、イメージングプレート28の表面にレーザ光を集光させ続けることができる。
【0038】
SUM信号生成回路48は、受光信号(a’,b’,c’,d’)を合算してSUM信号(a’+b’+c’+d’)を生成し、A/D変換回路49に出力する。SUM信号の強度は、イメージングプレート28にて反射したレーザ光の強度と輝尽発光により発生した光の強度を合わせた強度に相当するが、イメージングプレート28にて反射したレーザ光の強度はほぼ一定であるので、SUM信号の強度は、輝尽発光により発生した光の強度に相当する。すなわち、SUM信号の強度は、イメージングプレート28に入射した回折X線の強度に相当する。A/D変換回路49は、コントローラCTによって制御され、SUM信号生成回路48からSUM信号を入力し、入力したSUM信号の瞬時値をディジタルデータに変換してコントローラCTに出力する。
【0039】
また、レーザ検出装置PUHは、集光レンズ50及びフォトディテクタ51を備えている。集光レンズ50は、レーザ光源33から出射されたレーザ光の一部であって、偏光ビームスプリッタ37を透過せずに反射したレーザ光をフォトディテクタ51の受光面に集光する。フォトディテクタ51は、受光面に集光された光の強度に応じた受光信号を出力する受光素子である。従って、フォトディテクタ51は、レーザ光源33が出射したレーザ光の強度に対応した受光信号をレーザ駆動回路34へ出力する。
【0040】
また、対物レンズ39に隣接して、LED52が設けられている。LED52は、LED駆動回路53によって制御されて、可視光を発して、イメージングプレート28に撮像された回折環を消去する。LED駆動回路53は、コントローラCTによって制御され、LED52に、所定の強度の可視光を発生させるための駆動信号を供給する。
【0041】
コントローラCTは、CPU、ROM、RAM、大容量記憶装置などを備えたマイクロコンピュータを主要部とした電子制御装置であり、大容量記憶装置に記憶された図4乃至図9Bのサブルーチンを含む図3に示す基準物体回折環測定プログラム及び図10に示す測定対象物回折環測定プログラムを実行する。コントローラCTには、作業者が各種パラメータ、作業指示などを入力するための入力装置55と、作業者に対して各種の設定状況、作動状況、測定結果などを視覚的に知らせるための表示装置54とが接続されている。コントローラCTは、A/D変換回路49から出力されたSUM信号のディジタルデータを処理することによりイメージングプレート28の蛍光体が発した光の強度を検出する。
【0042】
以下に、上記のように構成したX線回折測定装置を用いて、測定対象物OBの回折環の形状を測定することについて説明する。この場合、イメージングプレート28がテーブル27に適切に取付けられていなくて、イメージングプレート28の法線方向がX線出射方向と正確に一致していなかったり、イメージングプレート28が歪んでいたりするために、測定された測定対象物OBの回折環の形状に誤差が生じる。また、イメージングプレート28の回転中心とX線出射点とが正確に一致していないために、更に誤差が加わることがある。この誤差をなくすために、測定対象物OBと同一物質の残留応力「0」の基準物体BOBを用意して、X線による基準物体BOBの回折環の形状を測定する。そして、基準物体BOBの回折環の測定による半径用補正データ及びX線出射点データを取得し、その後に、残留応力の検出のためにX線による測定対象物OBの回折環の形状を測定するとともに、その測定値を前記半径用補正データ及びX線出射点データで補正するようにしている。このような動作について具体的に説明する前に、前記半径用補正データ及びX線出射点データについて説明しておくとともに、前記データを得ることで、イメージングプレート28が良好にテーブル27に取付けられていなくても、測定対象物OBの回折環の形状を補正することで精度よく残留応力を計算することができる理由について説明しておく。
【0043】
図11(a)に示すように、イメージングプレート28がテーブル27に良好に取付けられている状態で、残留応力「0」の物体(以下、基準物体BOBという)によってイメージングプレート28に形成される回折環(基準回折環)の半径をR0とし、残留応力が測定される測定対象物OBによってイメージングプレート28に形成される回折環(測定対象物OBの回折環)の半径をR1とする。そして、イメージングプレート28がテーブル27に斜めに取付けられた状態で、前記基準物体BOBによってイメージングプレート28に形成される回折環の半径をR0’とし、前記測定対象物OBによってイメージングプレート28に形成される回折環の半径をR1'とする。これらの半径は一定回転位置のものとする。回折環で示すと、図11(b)のようになる。
【0044】
基準回折環が撮像される場合の回折X線の方向(一点鎖線)と、測定対象物OBによる回折環が撮像される場合の回折X線の方向(破線)のずれは微量であるので、イメージングプレート28に回折X線が照射される付近では、これらの2つの方向は平行であるとみなすことができる。そして、イメージングプレート28が斜めに取付けられていても、中心付近では正常な位置にあるとすれば、半径R0,R1,R0’R1’は、図11(c)に示す関係になり、R0/R1=R0’/R1’の関係が成り立つ。イメージングプレート28から測定対象物OBまでの距離Lが既知であれば、基準回折環の半径R0も既知であるので、回折環の全ての回転角度において、基準物体BOBの半径R0’を取得しておけば、測定対象物OBの回折環の半径R1’から、良好に取付けられているイメージングプレート28での測定対象物OBの回折環の半径R1を得ることができ、全ての回転位置で回折環の半径R1を得れば、良好に取付けられているイメージングプレート28での回折環(測定対象物OBの正規回折環)の形状を得ることができる。そして、この測定対象物OBの正規回折環の形状を用いれば、測定対象物OBの精度のよい残留応力を計算することができる。
【0045】
上記説明では、イメージングプレート28がテーブル27に対して斜めに取付けられていても、中心付近では正常な位置にあるとした。しかし、イメージングプレート28がテーブル27に対して斜めに取付けられていて中心付近でも正常な位置にない場合は、図11(d)に示す関係になるが、半径R0’R1’に比べて、出射X線の光軸方向と回折X線の方向の角度により中心付近で生じる半径方向の距離は微量であるので、この場合も、R0/R1=R0’/R1’の関係が成り立つとみなしてもよい。同様に、イメージングプレート28が歪んでいても、個々の回転角度で半径方向に見た歪みは直線とみなしてよいレベルであれば、R0/R1=R0’/R1’の関係が成り立つとみなしてもよい。よって、この測定対象物OBの正規回折環の半径を得る計算方法は、イメージングプレート28の取付け全てにおいて当てはめることができる。
【0046】
上記説明から分かるように、測定対象物OBの正規回折環を得るには、基準物体BOBによる回折環と測定対象物OBによる回折環の各回転位置での半径をそれぞれ用いればよいが、半径を求めるには中心位置が必要である。この中心位置は、出射X線の光軸とイメージングプレート28とが交差する点(X線出射点)である。
【0047】
テーブル27の回転軸と出射X線の光軸とが一致していれば、光ヘッドPUHからのレーザ照射において回転角度と半径からレーザ照射点を検出する際に、テーブル27の回転軸で半径「0」になるように調整しておけば、イメージングプレート28の取付けの良否によらず、出射X線の光軸とイメージングプレート28とが交差する点(X線出射点)は常に原点である。しかし、テーブル27の回転軸と出射X線の光軸とは微妙にずれていることが多く、そのような場合はイメージングプレート28の取付けの仕方により、出射X線の光軸とイメージングプレート28とが交差する点(X線出射点)は異なるため、X線出射点を検出し、そのX線出射点を中心にして回折環の各回転位置での半径及び回転角度を求める必要がある。以下に、X線出射点を検出する方法について説明する。
【0048】
テーブル27の回転軸と出射X線の光軸とがずれており、イメージングプレート28が良好に取付けられていない場合、撮像される回折環は真円でなくなるとともに、テーブル27の回転位置を変化させると、図12に実線Aと破線Bで示すように、イメージングプレート28の位置が変化し、撮像される回折環の位置も変化する。イメージングプレート28が傾いて取付けられている場合、撮像される回折環は楕円になるが、この楕円の中心(すなわち重心)は、テーブル27の回転軸に対する出射X線の光軸の傾きが微量であれば、図12に示されたA,Bの中心(重心)のようにほぼX線出射点を中心に位置が変化する。これは、撮像される回折環が楕円でない場合であっても、テーブル27の回転軸と出射X線の光軸とのずれが微量であれば、テーブル27の回転位置を変化させると、回折環はほぼX線出射点を中心に回転したように位置が変化するので、回折環の重心は、ほぼX線出射点を中心に位置が変化する。すなわち、テーブル27(イメージングプレート28)の複数の回転位置で撮像される回折環の重心が円周上にある円の中心を求めればX線出射点を求めることができる。
【0049】
具体的には、図13(a)に示すように、180度の異なる回転角度で回折環を作成して、それぞれの重心(×印)を求めれば、X線出射点は2つの重心(×印)の中間点(黒丸印)として求めることができる。また、図13(b)に示すように、3つの異なる回転角度で回折環を撮像して、それぞれの重心を求めれば、X線出射点は3つの重心(×印)が円周上にある円の中心(黒丸印)として求めることができる。もちろん、4つ以上の異なる回転角度で回折環を撮像して、4つ以上の重心(×印)が円周上にある円の中心(黒丸印)として求めることができる。この重心は、以下のようにして求めることができる。
【0050】
回折環の形状は、半径R0’及び回転角度θにより表されるデータの集合として得ることができる。なお、後述する具体的実施形態では、回折環の重心位置を求めるための回折環の半径として、残留応力「0」の基準物体BOBによる回折環の半径として半径R0’を用いているので、それに合わせるための半径としてR0’を採用した。そして、半径R0’及び回転角度θを用いて回折環をXY座標で表すと、回折環の形状は、(R0’・cosθ,R0’・sinθ)のデータの集合として表される。そして、重心位置のX座標値は(ΣR0’・cosθ)/(データ数)として表され、重心位置のY座標値は(ΣR0’・sinθ)/(データ数)として表される。
【0051】
そして、これらの重心位置を複数(本実施形態では180度の異なる回転角度の2個)を求めて、それらの中間点をX線出射点と定めることができる。具体的には、複数の重心位置のX座標値の平均値がX線出射点のX座標X1として計算され、複数の重心位置のY座標値の平均値がX線出射点のY座標Y1として計算される。
【0052】
このようにして、X線出射点(X1,Y1)を求めた後、測定対象物OBによる回折環の形状すなわちイメージングプレート28の回転中心を中心として、回転角度θに応じて変化する回折環の半径R1を測定し、測定した回折環の半径R1及びそのときの回転角度θを、X線出射点(X1,Y1)を用いて、X線出射点(X1,Y1)を中心とする回折環の半径Ra及びそのときの回転角度θaに補正する。図14に示すように、測定対象物OBによってイメージングプレート28に形成された回折環の形状を測定する際のイメージングプレート28の回転中心をOとし、前記回転中心Oを原点としてX線出射点のXY座標の原点をOa(X1,Y1)とする。そして、測定対象物OBによる回折環の測定により、測定対象物OBの回折環の回転角度θに対応した半径がR1’であれば、このときの回転中心位置はOで表された位置であるので、X線出射点を中心Oaとする半径R1a’及び回転角度θaは下記数1,2のように表される。
【0053】
【数1】

【数2】

【0054】
また、基準物体BOBによる回折環の測定により、基準物体BOBの回折環の回転角θに対応した半径がR0’であれば、このときの回転中心位置もOで表された位置であるので、X線出射点を中心Oaとする半径R0a’及び回転角度θ0aは下記数3,4のように表される。
【数3】

【数4】

そして、R0’とR1’のずれが微量であるので、θaとθ0aは同じ値とみなすことができる。よって、回転角度θaごとに、このように補正した半径R1a’及び半径R0a’を前記式R0/R1=R0’/R1’のR1’及びR0’として用いれば、測定対象物OBの正規回折環の半径R1を全ての回転角度において得ることができ、正規回折環の形状を得ることができる。そして、この正規回折環の形状から、cosα法により、測定対象物OBの残留応力を精度よく求めることができるようになる。次に、測定対象物OBの残留応力を求めるために、上記回折環の半径R1a’,R0a’及び回転角度θaの補正演算を用いて回折環の形状を計算する具体的方法について説明する。
【0055】
まず、作業者は、基準物体BOB(残留応力「0」の物体)を昇降機12の昇降ステージ12aに取り付け、昇降ステージ12aを上昇させて、基準物体BOBをフレームFR内にセットする。なお、この場合、残留応力「0」の基準物体BOBとは、物体に鉄粉を糊塗した残留応力「0」の鉄材である。作業者が、入力装置55を用いて、基準物体BOBの材質(例えば、鉄)を入力し、基準回折環の測定開始を指示する。これにより、コントローラCTは、図3に示す基準物体回折環測定プログラムの実行をステップS100にて開始する。
【0056】
この基準物体回折環測定プログラムの実行開始後、コントローラCTは、ステップS102にて第1回折環撮像ルーチンを実行する。この第1回折環撮像ルーチンは図4のステップS200にて開始され、コントローラCTは、ステップS202にて、スピンドルモータ制御回路25に対して、イメージングプレート28を低速回転させ、エンコーダ24aからインデックス信号を入力した時点で、イメージングプレート28の回転を停止させる。これにより、測定開始時において、イメージングプレート28の回転角度が0度に設定される。次に、コントローラCTは、ステップS204にて、フィードモータ制御回路22及び位置検出回路21を制御することにより、フィードモータ18を作動させて、位置検出回路21との協働によりイメージングプレート28を回折環撮像位置へ移動させる。
【0057】
次に、コントローラCTは、ステップS206にて、センサ信号取り出し回路32の作動を開始させる。次に、コントローラCTは、ステップS208にて、X線制御回路14を制御してX線出射器13にX線の出射を開始させる。これにより、X線が測定対象物OBに照射され、測定対象物OBの表面にて反射したX線が受光センサ31に受光される。次に、コントローラCTは、ステップS210にて、センサ信号取り出し回路32から受光位置信号を入力し、前記入力した受光位置信号を用いてイメージングプレート28と測定対象物OBとの距離Lを算出する。なお、この算出した距離Lは、後述する処理によって利用されるので、メモリに記憶しておく。そして、コントローラCTは、ステップS212にて、前記算出した距離Lが所定の基準範囲内にあるか否か判定する。距離Lが基準範囲内になければ、「No」と判定して、ステップS214にて、X線制御回路14を制御して測定対象物OBへのX線の照射を停止させる。
【0058】
そして、コントローラCTは、ステップS216にて、表示装置54に、測定対象物OBの高さ方向の位置が不適切である旨を表示するとともに、昇降機12の昇降ステージ12aの高さ調整に関する情報を表示する。すなわち、昇降ステージ12aを、どの程度上昇又は下降させるべきかを表示する。そして、後述のステップS226にて、第1回折環撮像ルーチンの実行を終了する。この場合、作業者は、昇降ステージ12aの高さを調整した後、入力装置55を用いて、再度、測定開始を指示する。上記のステップS208〜S214までの所要時間は僅かなので、イメージングプレート28には回折環が撮像されない。また、受光センサ31が測定対象物OBにて反射したX線を受光しない場合は、ステップS216にて、測定対象物OBの高さ方向の位置が不適切である旨の表示がなされるのみであって、昇降ステージ12aの高さ調整に関する情報は表示されない。この場合、測定対象物OBの位置は、極めて不適切な位置にあると考えられ、昇降ステージ12aの高さ調整の方向を目視で判断できる。前記測定開始の指示により、前述したステップS202〜S212の処理が再度実行され、距離Lが所定の基準範囲内になるまで前記処理が繰り返される。ただし、ステップS202〜S206の処理は、実質的には不要である。
【0059】
一方、ステップS212の判定処理時に、距離Lが所定の基準範囲内である場合には、コントローラCTは、ステップS212にて「Yes」と判定して、ステップS218に処理を進め、センサ信号取り出し回路32の作動を停止させる。そして、コントローラCTは、ステップS220にて時間計測を開始し、ステップS222にて所定の設定時間を経過したか否かを判定する。時間計測開始から所定の設定時間を経過していなければ、ステップS222にて「No」と判定して判定処理を実行し続ける。すなわち、コントローラCTは、時間計測開始から所定の設定時間を経過するまで待機する。そして、時間計測開始から所定の設定時間を経過すると、コントローラCTは、ステップS222にて「Yes」と判定して、ステップS224にてX線制御回路14を制御してX線出射器13によるX線の照射を停止させ、ステップS226にて第1回折環撮像ルーチンの実行を終了する。
【0060】
これにより、残留応力「0」である基準物体BOBによる回折環がイメージングプレート28に撮像される。
【0061】
前記第1回折環撮像ルーチンの実行後、コントローラCTは、図3のステップS104にて、図5A及び図5Bの第1回折環読取りルーチンの実行を開始する。この場合、コントローラCTは、この第1回折環読取りルーチンの実行に並行して、図6の回折環形状検出ルーチンの実行をも開始する。第1回折環読取りルーチンの実行は図5AのステップS300にて開始され、コントローラCTは、ステップS302にて回折環基準半径R0を計算する。回折環基準半径R0は、測定対象物OBの残留応力が「0」である場合の回折環の半径すなわち基準物体BOBの回折環の基準半径である。回折環基準半径R0は、測定対象物OBの材質及びイメージングプレート28から測定対象物OBまでの距離Lに依存する。すなわち、残留応力が「0」であるので、回折角θxは材質(本実施形態では、鉄である)によって決定される。距離Lと回折環基準半径R0とは比例関係にあるので、予め材質ごとに、回折角θxを記憶しておけば、回折環基準半径R0を、R0=L・tan(θx)の演算によって算出できる。この計算された回折環基準半径R0はメモリに記憶される。
【0062】
前記ステップS302の処理後、コントローラCTは、ステップS304にて、位置検出回路21の作動を開始させる。そして、ステップS306にて、フィードモータ制御回路22に、イメージングプレート28を回折環読取り領域内の読取り開始位置へ移動させることを指示する。フィードモータ制御回路22は、位置検出回路21と協働してフィードモータ18を駆動制御して、イメージングプレート28を読取り開始位置へ移動させる。このイメージングプレート28が読取り開始位置にある状態では、対物レンズ39の中心すなわちレーザ光の照射位置が前記計算した回折環基準半径R0よりも所定距離αだけ小さい位置に位置する。なお、所定距離αは、撮像した回折環の半径が回折環基準半径R0からずれる可能性のある距離よりもやや大きい距離である。これにより、後述の処理により、回折環の測定が十分に内側から開始されて、回折環が確実に検出される。
【0063】
ここで、移動ステージ15の移動限界位置から図1及び図2の右下方向への移動距離xを表す位置検出回路21からの位置信号と、イメージングプレート28の中心からレーザ光の照射位置(対物レンズ39の中心位置)までの距離(すわちレーザ光の照射位置の半径r)との関係について説明しておく。移動ステージ15すなわちイメージングプレート28が移動限界位置にある状態において、図15(a)に示すように、イメージングプレート28の中心から対物レンズ39の中心位置までの距離をRxとする。なお、この場合、対物レンズ39は前記イメージングプレート28の中心位置から図1及び図2にて左上方向にあり、また前記距離Rxは予め測定されてコントローラCTに記憶されている。一方、図15(b)に示すように、イメージングプレート28を移動限界位置から図1及び図2の右下方向へ距離xだけ移動させると、レーザ光の照射位置の半径rは、r=x+Rxで表される。この場合、距離xは、前述のように位置検出回路21から出力される位置信号によって示されるので、今後の処理において、レーザ光の照射位置の半径rは、位置検出回路21から出力される位置信号によって表された距離xに予め記憶されている値Rxを加算することになる。
【0064】
そして、前記のように、イメージングプレート28を読取り開始位置へ移動させる場合には、図15(c)に示すように、レーザ光の照射位置は、回折環基準半径R0よりも所定距離αだけ内側に位置するので、この場合の半径rは距離R0−αに等しくなるはずである。したがって、イメージングプレート28を駆動限界位置から図1及び図2の右下方向へ移動させる距離xは、x=R0−α−Rxに等しくなる。すなわち、前記ステップS306における読取り開始位置への移動処理においては、位置検出回路21から出力される位置信号により表される距離x(=R0−α−Rx)だけ、テーブル27を図1及び図2の右下方向へ移動させればよい。
【0065】
次に、コントローラCTは、ステップS308にて、スピンドルモータ制御回路25に対して、所定の一定回転速度でイメージングプレート28を回転させることを指示する。スピンドルモータ制御回路25は、エンコーダ24aからのパルス信号を用いて回転速度を計算しながら、前記指示された一定回転速度でイメージングプレート28が回転するようにスピンドルモータ24の回転を制御する。したがって、イメージングプレート28は前記所定の一定回転速度で回転し始める。次に、コントローラCTは、ステップS310にて、レーザ駆動回路34を制御してレーザ光源33によるレーザ光のイメージングプレート28に対する照射を開始させる。
【0066】
次に、コントローラCTは、ステップS312にて、フォーカスサーボ回路46に対して、フォーカスサーボ制御の開始を指示する。これにより、フォーカスサーボ回路46は、増幅回路44及びフォーカスエラー信号生成回路45からのフォーカスエラー信号を用いて、ドライブ回路47を介してフォーカスアクチュエータ40を駆動制御することにより、フォーカスサーボ制御を開始する。その結果、対物レンズ39が、レーザ光の焦点がイメージングプレート28の表面に合うように光軸方向に駆動制御される。ステップS312の処理後、コントローラCTは、ステップS314にて、回転角度検出回路26及びA/D変換回路49の作動を開始させる。これにより、回転角度検出回路26は、スピンドルモータ24(イメージングプレート28)の基準位置からの回転角度θpをコントローラCTに出力し始め、A/D変換回路49は、SUM信号の瞬時値のディジタルデータをコントローラCTに出力し始める。
【0067】
次に、コントローラCTは、ステップS316にて、フィードモータ制御回路22に対して、イメージングプレート28の移動開始及び移動速度を指示する。フィードモータ制御回路22は、フィードモータ18を駆動制御して、イメージングプレート28を読取り開始位置から軸受部19側(図1及び図2の右下方向)へ一定速度で移動させる。これにより、レーザ光の照射位置が、イメージングプレート28において、回折環基準半径R0から所定距離αだけ内側から外側方向に一定速度で相対移動し始める。なお、この状態では、レーザ光の照射位置は、前記ステップS308,S316の処理により、相対的にイメージングプレート28上を螺旋状に回転している。
【0068】
前記ステップS316の処理後、コントローラCTは、ステップS318にて、周方向番号n及び半径方向番号mの値をそれぞれ「1」に初期設定する。周方向番号nは、イメージングプレート28における1回転をN個(所定の大きな値)で等分した周方向位置をそれぞれ表す「1」から最大値Nまで変化する整数である。半径方向番号mは、イメージングプレート28の内側から外側に向かう径方向位置をそれぞれ表し、イメージングプレート28が1回転するごとに「1」から「1」ずつ増加する値である。そして、これらの周方向番号n及び半径方向番号mにより、図16に示すように、イメージングプレート28上を螺旋状に移動する読取りポイントP(n,m)が示される。
【0069】
次に、コントローラCTは、ステップS320にて、回転角度検出回路26がエンコーダ24aからのインデックス信号を入力したか否かを判定する。回転角度検出回路26がインデックス信号を入力していなければ、コントローラCTはステップS320にて「No」と判定して、ステップS320の判定処理を繰り返し実行し続ける。回転角度検出回路26がインデックス信号を入力すると、コントローラCTは、ステップS320にて「Yes」と判定して、ステップS322にて、回転角度検出回路26からイメージングプレート28の現在の回転角度θpを取り込む。そして、コントローラCTは、ステップS324にて、現在の回転角度θpと変数nによって指定される回転角度(n−1)・θo(この場合、n=1であるので「0」)との差の絶対値|θp−(n−1)・θo|が所定の許容値未満であるか否か判定する。この場合、θoは、360度を周方向番号nの最大値Nで除した予め記憶されている所定値である。前記絶対値|θp−(n−1)・θo|が所定の許容値未満でなければ、コントローラCTは、ステップS324にて「No」と判定してステップS322,S324の処理を繰り返し実行する。すなわち、コントローラCTは、現在の回転角度θpが所定の回転角度(n−1)・θoにほぼ一致するまで待機する。そして、現在の回転角度θpが所定の回転角度(n−1)・θoにほぼ一致すると、コントローラCTは、ステップS324にて「Yes」すなわち前記絶対値|θp−(n−1)・θo|が所定の許容値未満であると判定して、ステップS326に進む。
【0070】
ステップS326においては、コントローラCTは、A/D変換回路49からSUM信号を取り込んで、読取りポイントP(n,m)の信号強度S(n,m)としてメモリにそれぞれ記憶する。また、このステップS326においては、位置検出回路21からの位置信号を取り込んで、位置信号によって表される距離xに所定距離Rxを加算して半径rを計算して、読取りポイントP(n,m)の半径r(n,m)として前記信号強度S(n,m)に対応させてメモリに記憶する。これにより、イメージングプレート28の読取りポイントP(n,m)からの輝尽発光の強度すなわち読取りポイントP(n,m)に対するX線回折光の強度を表す信号強度S(n,m)が、読取りポイントP(n,m)の半径を表す半径r(n,m)と共にメモリに記憶される。
【0071】
次に、コントローラCTは、ステップS328にて、前記記憶した信号強度S(n,m)が、所定の基準値以上であるか否か判定する。信号強度S(n,m)が所定の基準値以上であれば、コントローラCTは、ステップS328にて「Yes」と判定して、ステップS332に進む。一方、信号強度S(n,m)が、所定の基準値より小さければ、コントローラCTは、ステップS328にて「No」と判定して、ステップS330にて、前記記憶した信号強度S(n,m)及び半径r(n,m)を消去した後、ステップS332に進む。この信号強度S(n,m)及び半径r(n,m)の消去は、所定の基準値より小さな信号強度S(n,m)は回折X線強度の回折環半径方向のピーク位置の検出に不要であるからである。
【0072】
ステップS332においては、コントローラCTは、周方向番号nに「1」を加算する。そして、コントローラCTは、ステップS334にて、変数nが1周当たりの読取りポイントP(n,m)の数を表す値Nより大きいか、すなわちイメージングプレート28が1回転したか否かを判定する。この場合、n=2であり、周方向番号nは値N以下であるので、コントローラCTは、ステップS334にて「No」と判定して、ステップS322に戻る。
【0073】
そして、前述したステップS322〜S334の処理を、周方向番号nが値Nよりも大きくなるまで繰り返す。このステップS322〜S334の繰り返し処理により、回転角度0,θo,2・θo・・・(N−1) ・θoにそれぞれ対応した所定角度θoごとの信号強度S(n,m)及び半径r(n,m)がメモリに記憶される。ただし、この場合も、ステップS328,S330の処理により、信号強度S(n,m)が所定の基準値より小さければ、メモリに記憶された信号強度S(n,m)及び半径r(n,m)は消去される。
【0074】
このようなステップS322〜S334の循環処理により、周方向番号nが値Nよりも大きくなると、コントローラCTは、ステップS334にて「Yes」と判定して、ステップS336にて、後述の回折環形状検出ルーチンによる終了指令の有無を判定する。未だ終了指令がないときは、コントローラCTは、ステップS336にて「No」と判定し、ステップS338にて半径方向番号mに「1」を加算し(この場合、m=2になる)、ステップS340にて周方向番号nを「1」に戻す。そして、コントローラCTは、前述したステップS320〜S340の処理を実行して、次の半径方向位置の回転角度0,θo,2・θo・・・(N−1) ・θoに対応した読取りポイントP(n,m)に関する信号強度S(n,m)及び半径r(n,m)をメモリに記憶する。そして、終了指令の指示があるまで、このようなステップS320〜S340の処理により、「1」ずつ順次大きくなる半径方向番号m(=1,2,3・・)と、各半径方向番号mごとに回転角度0,θo,2・θo・・・(N−1) ・θoにそれぞれ対応した周方向番号n(=1〜N)とにより指定される読取りポイントP(n,m)に対応する信号強度S(n,m)及び半径r(n,m)がメモリに順次記憶される。なお、この場合も、信号強度S(n,m)が所定の基準値より小さければ、メモリに記憶された信号強度S(n,m)及び半径r(n,m)は消去される。
【0075】
そして、前記回折環形状検出ルーチンによる終了指令の指示があると、コントローラCTは、ステップS336にて「Yes」と判定し、図5BのステップS342に進む。ここで、この第1回折環読取りルーチンと並行して実行されている回折環形状検出ルーチンについて説明する。
【0076】
回折環形状検出ルーチンの実行は図6のステップS400にて開始され、コントローラCTは、ステップS402にて周方向番号nを「1」に初期設定する。なお、この周方向番号nは、第1回折環読取りルーチンの場合と同様に所定角度θoごとの周方向位置を示すものであるが、第1回折環読取りルーチンで用いられる周方向番号nとは独立したものである。
【0077】
前記ステップS402の処理後、コントローラCTは、ステップS404にて、詳しくは後述するピーク半径rp(n)が存在するか、すなわちピーク半径rp(n)が検出済みであるかを判定する。この場合、ピーク半径rp(n)においては、検出されたピーク半径の回転角度が変数nによって表される。ピーク半径rp(n)が検出済みであれば、コントローラCTは、ステップS404にて「Yes」と判定して、ステップS406にて周方向番号nに「1」を加算し、ステップS408にて周方向番号nが所定数より大きいか否かを判定する。この場合の所定数も、1周の測定位置数を表す値Nである。周方向番号nが所定数以下であれば、コントローラCTは、ステップS408にて「No」と判定してステップS404に戻る。周方向番号nが所定数より大きければ、コントローラCTはステップS408にて「Yes」と判定して、周方向番号nを「1」に戻すためにステップS402に戻る。
【0078】
一方、ピーク半径rp(n)が未検出であれば、コントローラCTは、ステップS404にて「No」と判定して、ステップS410にて前記図5AのステップS326の処理によって記憶した信号強度S(n,m)の数が所定数以上であるか否か判定する。信号強度S(n,m)の数が所定数以上でなければ、コントローラCTは、ステップS410にて「No」と判定して、前述したステップS406,S408の処理を実行してステップS404又はステップS402に戻る。このステップS410の判定処理は、信号強度S(n,m)の数が少ない場合には後述するピーク検出処理を実行しても無駄であるからである。なお、前記図5AのステップS330の処理によって消去された信号強度S(n,m)は、記憶した信号強度S(n,m)としてカウントされない。
【0079】
一方、前記記憶した信号強度S(n,m)の数が所定数以上であるときは、コントローラCTは、ステップS410にて「Yes」と判定して、ステップS412にて、ピークの有無を判定する。すなわち、周方向番号nによって指定される周方向位置の全ての半径r(n,m)及び信号強度S(n,m)を用いて、SUM信号の値のピークの有無を判定する。具体的には、図17に示すように、周方向番号nによって指定される周方向位置の全ての半径r(n,m)を横軸に取り、その半径r(n,m)に対応させて信号強度S(n,m)を縦軸に取った受光曲線において、信号強度S(n,m)にピークが存在するか、すなわち信号強度S(n,m)が増加した後に減少したかを判定するとよい。そして、ピークが存在しなければ、コントローラCTは、ステップS412にて「No」と判定して、前述したステップS406,S408の処理を実行してステップS404又はステップS402に戻る。
【0080】
このように、ステップS402〜S412を繰り返し実行している間に、並行して実行されている第1回折環読取りルーチンの処理により、さらに半径r(n,m)及び信号強度S(n,m)が取り込まれてメモリに次々に記憶されていく。このため、ステップS412にてピークが検出されるようになり、検出されると、コントローラCTは、ステップS412にて「Yes」と判定して、ステップS414にて、ピークの半径r(n,m)をピーク半径rp(n)としてメモリに記憶する。次に、コントローラCTは、ステップS416にて、取得したピーク半径rp(n)の数が所定数以上であるか否かを判定する。この場合の所定数も、1周の測定位置数を表す値Nである。そして、取得したピーク半径rp(n)の数が所定数より小さければ、コントローラCTは、ステップS416にて「No」と判定し、前述したステップS406,S408の処理を実行してステップS404又はステップS402に戻る。
【0081】
このようにステップS402〜S416の処理を繰り返すことで、取得したピーク半径rp(n)の数が増えていき所定数に達すると、すなわち周方向の全ての読取りポイントP(n,m)にてピーク半径rp(n)が取得されると、コントローラCTは、ステップS416にて「Yes」と判定し、ステップS418にて回折環形状検出の終了を示す終了指令を出力する。そして、コントローラCTは、ステップS420にて回折環形状検出ルーチンの実行を終了する。
【0082】
ここで、図5A及び図5Bの第1回折環読取りルーチンの説明にふたたび戻る。前述のように終了指令が出力されると、コントローラCTは、図5AのステップS336にて「Yes」と判定し、図5BのステップS342にて、フォーカスサーボ回路46に対してフォーカスサーボ制御の停止を指示することにより、フォーカスサーボ制御を停止させる。次に、コントローラCTは、ステップS344にて、レーザ駆動回路34を制御して、レーザ光源33によるレーザ光の照射を停止させる。さらに、コントローラCTは、ステップS346にて、A/D変換回路49及び回転角度検出回路26の作動を停止させ、ステップS348にて、フィードモータ制御回路22を制御してフィードモータ18の作動を停止させることにより、イメージングプレート28を停止させて、ステップS350にて回折環形状検出ルーチンの実行を終了する。なお、位置検出回路21の作動及びイメージングプレート28の回転は、以前と同様のまま継続されている。
【0083】
なお、今後の処理においては、上記図5Aの第1回折環読取りルーチンのステップS302の処理により算出記憶された半径R0は、テーブル27に良好に取付けられた残留応力「0」である基準物体BOBの回折環の半径R0を表すデータとして扱われる。また、図6の回折環形状検出ルーチンのステップS414の処理により検出記憶された周方向番号n(1〜N)すなわち回転角度0,θo,2・θo・・・(N−1) ・θoに対応した基準物体BOBの回転角度ごとの回折環のピーク半径rp(n)(1〜N)は、イメージングプレート28がテーブル27に良好でない状態で取付けられた、残留応力「0」である基準物体BOBによる回折環の形状すなわち半径R0’を表す回転角度θoごとのデータとして扱われる。したがって、今後の処理においては、前記ピーク半径rp(n)(1〜N)を、テーブル27に良好でない状態で取付けられた残留応力「0」である基準物体BOBによる回折環の半径R0’(1),R0’(2)・・・R0’(N)という。
【0084】
ふたたび、図3の説明に戻ると、コントローラCTは、前記ステップS104の処理後、ステップS106にて、前記テーブル27に良好でない状態で取付けられた基準物体BOBの回転角度ごとの回折環の重心位置を計算する。上述したように、重心位置のX座標値は(ΣR0’・cosθ)/(データ数)として表されるとともに、重心位置のY座標値は(ΣR0’・sinθ)/(データ数)で表される。そして、前記R0’は、前記メモリに記憶されている回折環の半径R0’(1),R0’(2)・・・R0’(N)に対応し、前記θは回転角度0,θo,2・θo・・・(N−1) ・θoに対応するので、これらの半径R0’(1),R0’(2)・・・R0’(N)及び回転角度0,θo,2・θo・・・(N−1) ・θoを用いて重心位置のX及びY座標値を下記数5,6の演算式により計算できる。
【0085】
【数5】

【数6】

【0086】
前記ステップS106の処理後、コントローラCTは、ステップS108にて図7の回折環消去ルーチンを実行する。回折環消去ルーチンの実行は、ステップS500にて開始され、コントローラCTは、ステップS502にて、フィードモータ制御回路22に、イメージングプレート28を回折環消去領域内の消去開始位置へ移動させることを指示する。フィードモータ制御回路22は、位置検出回路21と協働してフィードモータ18を駆動制御して、イメージングプレート28を消去開始位置へ移動させる。このイメージングプレート28が消去開始位置にある状態では、LED52から出力される可視光の中心が前記計算した回折環基準半径R0よりも所定距離γだけ小さい位置に位置する。具体的には、この位置は、イメージングプレート28が駆動限界位置にある状態において、イメージングプレート28の中心からLEDの可視光の中心までの距離をRy’とすると、位置検出回路21から出力される位置がR0−γ−Ry’になる位置である。なお、所定距離γは、前記所定距離αよりも若干大きく、前記撮像された回折環の半径よりは余裕をもってずれた位置である。これにより、後述の処理により、前記撮像された回折環が確実に消去される。
【0087】
次に、コントローラCTは、ステップS504にて、LED駆動回路53を制御してLED52による可視光のイメージングプレート28に対する照射を開始させる。次に、コントローラCTは、ステップS506にて、フィードモータ制御回路22に対して、イメージングプレート28の移動開始及び移動速度を指示する。フィードモータ制御回路22は、フィードモータ18を駆動制御して、イメージングプレート28を消去開始位置から軸受部19側(図1及び図2の右下方向)へ一定速度で移動させる。これにより、LED52による可視光が、イメージングプレート28において、回転しながら、回折環基準半径R0から所定距離γ(γ>α)だけ内側から外側方向に一定速度で移動し始める。
【0088】
前記ステップS506の処理後、コントローラCTは、ステップS508にて位置検出回路21からイメージングプレート28の位置を表す位置信号を入力し、ステップS510にて、イメージングプレート28の現在の位置が消去終了位置を超えているか否かを判定する。この終了位置は、回折環基準半径R0よりも所定距離γだけ大きな位置である。具体的には、位置検出回路21から出力される位置がR0+γ−Ry’になる位置である。そして、イメージングプレート28の現在の位置が消去終了位置を超えるまで、コントローラCTは、ステップS510にて「No」と判定して、ステップS508,S510の処理を繰り返し実行する。これにより、回転するイメージングプレート28に対し、前記回折環基準半径R0から所定距離γだけ内側から所定距離γだけ外側まで、LED52による可視光が照射されるので、前記回折X線によって形成された回折環は内側から徐々に消去されていく。
【0089】
そして、イメージングプレート28の現在の位置が消去終了位置を超えると、コントローラCTは、ステップS510にて「Yes」と判定して、ステップS512にてフィードモータ制御回路22にイメージングプレート28の移動停止を指示し、ステップS514にてLED駆動回路53にLED52による可視光の照射停止を指示する。これにより、フィードモータ制御回路22は、フィードモータ18の作動を停止させることによりイメージングプレート28の移動を停止させる。LED駆動回路53は、LED52による可視光の照射を停止させる。この状態では、前記撮像された回折環は完全に消去されている。
【0090】
前記ステップS514の処理後、コントローラCTは、ステップS516にて位置検出回路21の作動を停止させ、ステップS518にてスピンドルモータ制御回路25に対してイメージングプレート28の回転停止を指示する。この指示に応答して、スピンドルモータ制御回路25は、スピンドルモータ24の作動を停止させて、イメージングプレート28の回転を停止させる。前記イメージングプレート28の回転停止後、コントローラCTは、ステップS520にて回折環消去ルーチンの実行を終了する。
【0091】
ふたたび、図3の説明に戻ると、コントローラCTは、前記ステップS108の処理後、ステップS110にて図8の第2回折環撮像ルーチンを実行する。この第2回折環撮像ルーチンは図8のステップS600にて開始され、コントローラCTは、ステップS602にて、回転角度検出回路26を作動させるとともに、スピンドルモータ制御回路25を作動させてイメージングプレート28を低速回転させ、回転角度検出回路26の検出回転角度θpが180度になった時点で、スピンドルモータ制御回路25を制御してイメージングプレート28の回転を停止させる。これにより、イメージングプレート28は、第1回折環撮像時よりも180度ずれた回転角度に設定される。次に、コントローラCTは、ステップS604にて、上述した図4の第1回折環撮像ルーチンのステップS204の処理と同様に、フィードモータ18を作動させてイメージングプレート28を回折環撮像位置へ移動させる。
【0092】
次に、コントローラCTは、上述した図4の第1回折環撮像ルーチンのステップS208,S220〜S224と同様なステップS606〜S612の処理により、測定対象物OBにX線を所定の設定時間だけ照射して、ステップS614にてこの第2回折環撮像ルーチンの実行を終了する。この場合、昇降ステージ12aの高さ調節は前記第1回折環撮像ルーチンの実行により終了しているので、図4の第1回折環撮像ルーチンにおける前記昇降ステージ12aの高さ調節のためのステップS206,S210〜S218の処理は省略されている。これにより、前記第1回折環読取りルーチンの場合から180度だけイメージングプレート28を回転した状態において、残留応力「0」である基準物体BOBの基準回折環がイメージングプレート28に撮像される。
【0093】
前記第2回折環撮像ルーチンの実行後、コントローラCTは、図3のステップS112にて、図9A及び図9Bの第2回折環読取りルーチンの実行を開始する。この場合、コントローラCTは、この第2回折環読取りルーチンの実行に並行して、図6の回折環形状検出ルーチンの実行をも開始する。第2回折環読取りルーチンはステップS700〜S750からなり、ステップS700〜S720及びステップS724〜S750は、図5Aの第1回折環読取りルーチンのステップS300,S304〜S322及びS324〜S350の処理と同じである。異なる点は、図5AのステップS302の回折環基準半径R0の計算処理が省略されている点と、図9AのステップS722の回転角度θpを180度ずらす処理が追加されているのみである。ステップS722の具体的な処理においては、ステップS720の処理によって検出された回転角度θpが0〜180度の範囲にあれば、この回転角度θpに180度を加算し、またステップS720の処理によって検出された回転角度θpが180〜360度の範囲にあれば、この回転角度θpから180度を減算する。前者の相違点は、回折環基準半径R0を重複して計算する必要がないためである。後者の相違点は、前記ステップS110の第2回折環撮像ルーチンにおいては、前記ステップS102の第1回折環撮像ルーチンに場合に比べて、イメージングプレート28を180度回転させて回折環を撮像しており、この撮像した回折環を撮像したときの状態で第1回折環読取りルーチンの場合と同一の座標軸で検出するためである(図12及び図13参照)。
【0094】
この第2回折環読取りルーチン及び回折環形状検出ルーチンの実行により、前述した第1回折環読取りルーチン及び回折環形状検出の場合と同様に、周方向番号n(1〜N)すなわち回転角度0,θo,2・θo・・・(N−1) ・θoに対応した基準物体BOBの回転角度ごとの回折環のピーク半径rp(n)(1〜N)が検出記憶される。そして、このピーク半径rp(n)(1〜N)は、イメージングプレート28がテーブル27に斜めに取付けられた状態において残留応力「0」である基準物体BOBによる回折環の半径R0’(1),R0’(2)・・・R0’(N)であって、イメージングプレート28を前記第1回折環読取りルーチンの場合に比べて180度だけ回転させた状態の回折環の半径R0’(1),R0’(2)・・・R0’(N)に対応する。
【0095】
ふたたび、図3の説明に戻ると、コントローラCTは、前記ステップS112の処理後、ステップS114にて、テーブル27に良好でない状態で取付けられたイメージングプレート28を180度回転させた状態で、残留応力「0」である基準物体BOBの回転角度ごとのイメージングプレート28に形成された回折環の重心位置を計算する。上述したように、この場合、重心位置のX座標値は(ΣR0’・cosθ)/(データ数)として表されるとともに、重心位置のY座標値は(ΣR0’・sinθ)/(データ数)で表されるので、この場合の重心位置のX座標及びY座標は、前記ステップS112の第2回折環読取りルーチン及び回折環形状検出ルーチンの処理よって入手した回転角度ごとの半径R0’(1),R0’(2)・・・R0’(N)を用いて上記数5,6の演算式により計算する。
【0096】
前記ステップS114の処理後、コントローラCTは、ステップS116にて図7の回折環消去ルーチンを実行する。この回折環消去ルーチンの実行により、上述した場合と同様にして、前記ステップS110の第2回折環撮像ルーチンの実行によりイメージングプレート28に撮像された回折環が消去される。
【0097】
前記ステップS116の処理後、コントローラCTは、ステップS118にて、前記ステップS106にて計算した回折環の重心位置と、前記ステップS114に計算した重心位置とを用いて、X線出射点X1,Y1を計算する。このX線出射点X1,Y1の計算に関しては、上述したとおりであり、前記計算した2つの重心位置の中間位置がX線出射点X1,Y1として計算される。具体的には、ステップS106,S114にて前記数3の演算によりそれぞれ計算した重心位置の2つのX座標値の中央値(すなわち平均値)がX線出射点のX座標値X1として計算され、ステップS106,S114にて前記数4の演算によりそれぞれ計算した重心位置の2つのY座標値の中央値(すなわち平均値)がX線出射点のX座標値X1として計算される。前記ステップS118の処理後、コントローラCTはステップS120にて基準物体回折環測定プログラムの実行を終了する。
【0098】
次に、作業者は、残留応力を測定しようとする測定対象物OBを昇降機12の昇降ステージ12aに取り付け、昇降ステージ12aを上昇させて、測定対象物OBをフレームFR内にセットする。そして、作業者は、入力装置55を用いて、測定対象物OBの回折環の測定開始を指示する。これにより、コントローラCTは、図10に示す測定対象物回折環測定プログラムの実行をステップS800にて開始する。
【0099】
この測定対象物回折環測定プログラムの実行開始後、コントローラCTは、ステップS802にて上述した図4の第1回折環撮像ルーチンを実行する。この第1回折環撮像ルーチンの実行により、イメージングプレート28が基準回転位置にある状態すなわち回転角度0度の状態で、イメージングプレート28上に回折環が撮像される。次に、コントローラCTは、ステップS804にて、上述した図5A及び図5Bの第1回折環読取りルーチンの実行を開始する。この場合も、コントローラCTは、この第1回折環読取りルーチンの実行に並行して、図6の回折環形状検出ルーチンの実行を開始する。この第1回折環読取りルーチンの実行により、周方向番号n(1〜N)すなわち回転角度0,θo,2・θo・・・(N−1) ・θoに対応した測定対象物OBの回転角度ごとの回折環のピーク半径rp(n)(1〜N)が検出記憶される。なお、今後の処理においては、前記検出記憶された周方向番号n(1〜N)すなわち回転角度0,θo,2・θo・・・(N−1) ・θoに対応した測定対象物OBの回転角度ごとの回折環のピーク半径rp(n)(1〜N)は、イメージングプレート28がテーブル27に良好でない状態で取付けられた測定対象物OBによる回折環の形状すなわち半径R1’を表す回転角度θoごとのデータとして扱われる。したがって、今後の処理においては、ピーク半径rp(n)(1〜N)を、テーブル27に良好でない状態で取付けられた測定対象物OBによる回折環の半径R1’(1),R1’(2)・・・R1’(N)という。なお、この場合、図5AのステップS302の回折環基準半径R0の計算は実行されるが、この計算は前記残留応力「0」である場合の前記図5AのステップS302にて実行されているので、実際にはこの処理は不要である。
【0100】
前記ステップS804の処理後、コントローラCTは、ステップS806にて図7の回折環消去ルーチンを実行する。この回折環消去ルーチンの実行により、上述した場合と同様にして、前記ステップS802の第1回折環撮像ルーチンの実行によりイメージングプレート28に撮像された測定対象物OBに関する回折環が消去される。
【0101】
前記ステップS806の処理後、コントローラCTは、ステップS808にて、イメージングプレート28の回転中心とX線出射点とが正確に一致していないための回折環の半径の測定誤差を補正するとともに、前記測定半径に対応した回転角度を補正する。すなわち、測定対象物OBによる回折環の半径R1’(n)(n=1〜N)及びそれらに対応した回転角θ(n)(=(n−1)・θo)(n=1〜N)を、前記図3のステップS118の処理によって計算したX線出射点のXY座標値X1,Y1を用いて補正することにより、X線出射点を原点とする回折環の各点の半径R1a’(n)(n=1〜N)及びそれに対応した回転角度θa(n) (n=1〜N)を計算する。そして、基準物体BOBによる回折環の半径R0’(n)(n=1〜N)を同様にX線出射点のXY座標値X1,Y1を用いて補正することにより、X線出射点を原点とする回折環の各点の半径R0a’(n)(n=1〜N)を計算する。この場合、R1’(n), θ(n) ,R0’, X1,Y1 , R1a’(n), R0a’(n), θa(n)は、上述した数1〜3の関係にあるので、測定対象物OBの回折環の半径R1a’(n)(n=1〜N)、それに対応した回転角度θa(n) (n=1〜N)及び基準物体BOBの回折環の半径R0a’(n)(n=1〜N)は、下記数7〜9の演算により計算される。
【0102】
【数7】

【数8】

【数9】

【0103】
前記ステップS808の処理後、コントローラCTは、ステップS810にて、イメージングプレート28の法線方向がX線出射方向と正確に一致していないために発生する回折環の半径の測定誤差を補正する。すなわち、前記ステップS808にて計算された測定対象物OBによる回折環の半径の補正値R1a’(n)(n=1〜N)と、基準物体BOBによる回折環の半径の補正値R0a’(n)(n=1〜N)と、回折環基準半径R0とを用いて、イメージングプレート28がテーブル27に良好に取付けられた状態における測定対象物OBによる回折環(すなわち、測定対象物OBによる正規回折環)の半径R1(n)(n=1〜N)を計算する。これらの半径R0,R1,R1a’R0a’において成り立つ式は、上述のように、R0/R1=R0’/R1’をR0/R1=R0a’/R1a’とした式であるので、下記数10の演算の実行により正規回折環の半径R1(1)(n=1〜N)を計算する。
【0104】
【数10】

【0105】
前記ステップS810の処理後、コントローラCTは、ステップS812にてこの測定対象物回折環測定プログラムの実行を終了する。そして、正規回折環の半径R1(n)(n=1〜N)及びそれに対応した回転角度θa(n) (n=1〜N)を用いて、測定対象物OBの残留応力がcosα法によって計算される。
【0106】
上記動作説明からも理解できるように、上記実施形態によれば、図5AのステップS302の処理により、イメージングプレート28の法線方向がX線の出射方向と一致している場合にイメージングプレート28に撮像される基準物体BOBの真円からなる回折環の半径が計算される。図3のステップS102,S104の処理により、基準物体BOBの回折環の形状を表す所定角度ごとのイメージングプレート28の回転中心からの距離が検出される。また、図10のステップS802,S804の処理により、測定対象物OBの回折環の形状を表す所定角度ごとのイメージングプレート28の回転中心からの距離が検出される。そして、図10のステップS810の処理により、前記基準物体BOBの真円からなる回折環の半径と、前記基準物体BOBの回折環の形状を表す所定角度ごとのイメージングプレート28の回転中心からの距離との比を用いて、測定対象物OBの回折環の形状を表す所定角度ごとのイメージングプレート28の回転中心からの距離が補正されて、イメージングプレート28が法線方向がX線の出射方向と一致している場合にイメージングプレート28に撮像される測定対象物OBの回折環の形状を表す所定角度ごとのイメージングプレートの回転中心からの距離(正規回折環の半径)が計算される。その結果、イメージングプレート28の法線方向とX線の出射方向とが一致していなくても、測定対象物OBによる正規回折環の半径が精度よく検出されるので、測定対象物OBの残留応力を精度よく測定できるようになる。
【0107】
また、図3のステップS102,S110により、イメージングプレート28の180度異なる回転角度位置ごとにイメージングプレート28に基準物体BOBの2つ回折環がそれぞれ撮像される。図3のステップS104,S112の処理により、前記撮像された基準物体BOBの2つ回折環の形状が検出され、図3のステップS106,S114,S118の処理により、前記基準物体BOBの2つ回折環の重心位置がそれぞれ検出されるとともに、前記検出された2つ回折環の重心位置の中間点がX線出射点として検出される。そして、図10のステップS808の処理により、前記検出されたX線出射点を用いて、測定対象物OB及び基準物体BOBの回折環の形状を表す所定角度ごとのイメージングプレート28の回転中心からの距離及び所定角度が補正される。その結果、出射X線の光軸と回転軸とが一致していない場合でも、この一致していないことにより発生する誤差をなくす補正を行ったうえで、上述した正規回折環の半径が計算されるので、さらに精度よく測定対象物OBの残留応力を測定できるようになる。
【0108】
さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
【0109】
上記実施形態においては、基準物体BOBの回折環を撮像したときのイメージングプレート28から基準物体BOBまでの距離と、測定対象物OBの回折環を撮像したときのイメージングプレート28から測定対象物OBまでの距離とがほぼ等しいとして、前記両距離の違いによる誤差について問題視しなかった。しかし、両者の距離が大きく異なる場合、基準物体BOBの回折環が撮像されるイメージングプレート28の半径方向位置と、測定対象物OBの回折環が撮像されるイメージングプレート28の半径方向位置とが大きく異なり、イメージングプレート28が歪んでいる場合には、誤差が大きくなる可能性がある。また、回転中心とX線出射点のずれが大きき場合には、上述した測定対象物OBの回折環に対応する補正された回転角度θa(n)(n=1〜N)と、基準回折環に対応する補正された回転角度θ0a(n)(n=1〜N)(上記実施形態ではθa(n)(n=1〜N)に等しいとした)とのずれが大きくなり、誤差が大きくなる可能性がある。よって、測定対象物OBの回折環を撮像するときには、昇降機12を上下動させて距離を基準物体BOBの回折環を撮像したときの距離に等しくなるように調整するようにするとよい。
【0110】
また、上記実施形態では、テーブル27を180度の異なる回転位置にしてそれぞれの回転位置で基準物体BOBの回折環を撮像し、2つの重心位置の中間点(円周上の180度離れた点)としてX線出射点を求めるようにした。しかし、図13(b)に示すように、3つの異なる回転位置で回折環を撮像し、3つの重心位置が円周上にある円の中心をX線出射点として求めるようにしてもよい。また、4つ以上の異なる回転位置で回折環を撮像し、4つ以上の重心位置が円周上にある円の中心をX線出射点として求めるようにしてもよい。これらの3つの回折環及び4つ以上の回折環の撮像の場合、各回転位置は等角度間隔でもよいし、異なる角度間隔でもよい。さらに、2つの異なる回転位置で基準回折環を撮像してX線出射点を求める場合、2つの異なる回転位置は必ずしも180度である必要はない。この場合、2つの重心位置を円周上の2点とし、かつ2つの重心位置と円の中心とを結ぶ角度が回折環を撮像する際のイメージングプレート28の回転位置間の角度と等しければよい。
【0111】
また、上記実施形態においては、基準物体BOBの回折環の重心位置を求めてX線出射点を求めるようにした。しかし、イメージングプレート28をテーブル27に取付ける際に、イメージングプレート28が歪む可能性がなく、傾く可能性のみがある場合には、回折環は必ず楕円になる。したがって、上記実施形態の重心位置に代えて、楕円の焦点位置を用いるようにしもよい。さらに、楕円の長軸が交差する点をX線出射点としてもよい。なお、これらの重心位置、焦点位置及び長軸は、回折環の形状でそれぞれ定まり、回折環の位置にそれぞれ関係した情報を示す。
【0112】
また、上記実施形態においては、イメージングプレート28の回転角度が所定の回転角度になるごとに、信号強度S(n,m)及び半径r(n,m)を記憶するようにした。しかし、これに代えて、所定の時間間隔で、イメージングプレート28の回転角度θ(n,m)、信号強度S(n,m)及び半径r(n,m)を取得して記憶してもよい。この場合は、回折環形状検出処理においては、所定の回転角度における半径方向の信号強度Sの変化を補間法により算出すればよい。これによっても、上記実施形態と同様の効果が得られる。
【0113】
また、上記実施形態においては、受光センサ31によって受光した反射光の受光位置を用いて、基準物体BOB及び測定対象物OBの高さ方向の位置が、所定の範囲内にあるか否かを判定し、所定の範囲内になければ、作業者が昇降ステージ12aの高さを調整するようにした。しかし、受光センサ31の受光位置が表す基準物体BOB及び測定対象物OBの高さ方向の位置が所定の範囲内にあるように、昇降ステージ12aの高さが自動的に調整されるように構成してもよい。これによれば、作業者がセットした基準物体BOB及び測定対象物OBの高さ方向の位置が、受光センサ31が反射光を受光できる範囲にありさえすれば、作業者が昇降ステージ12aの高さを調整する必要が無いので、作業効率を向上させることができる。なお、例えば上記従来のX線回折装置のように、イメージングプレート28と基準物体BOB及び測定対象物OBとの距離が常に一定になるように構成されていれば、受光センサ31は不要である。
【0114】
また、上記実施形態においては、受光センサ31の受光位置を用いて、撮像した回折環の半径が回折環基準半径R0からずれる可能性のある領域を想定して、読取り開始位置を決定するようにした。しかし、回折環基準半径R0を用いることなく、常に一定の領域にレーザ光を照射するようにしてもよい。例えば、イメージングプレート28の全領域にレーザ光を照射するようにしてもよい。また、LED52による可視光の照射についても同様に、常に一定の領域にLED52から発せられた可視光を照射するようにしてもよい。例えば、イメージングプレート28の全領域にLED52からの可視光を照射するようにしてもよい。ただし、この場合、上記実施形態よりも測定時間が長くなる。
【0115】
また、上記実施形態においては、レーザ検出装置PUHは、フォーカスサーボ制御されるようにしたが、イメージングプレート28を回転させた際のイメージングプレート28の受光面と対物レンズ39との距離の変動が微小であれば、フォーカスサーボ制御は不要である。
【0116】
また、上記実施形態においては、イメージングプレート28に照射されるレーザ光は、一定強度のレーザ光としたが、これに代えて、予め設定されたハイレベルの強度と、予め設定されたローレベルの強度が繰り返されるパルス状のレーザ光とし、ハイレベルの強度になるタイミングでSUM信号の瞬時値を取得するようにしてもよい。この場合、イメージングプレート28のSUM信号の瞬時値を取得するポイントに瞬間的にハイレベルの強度のレーザ光を照射する。すなわち、SUM信号の瞬時値を取得するポイントにレーザ光が向かう状態では、レーザ光の強度はローレベルであり、輝尽発光により発生する光はほとんど無い。そして、SUM信号の瞬時値を取得するポイントに近づいたとき、レーザ光の強度がハイレベルになって輝尽発光による光が発生する。常にハイレベルの強度のレーザ光を照射した場合は、輝尽発光による光が生じ続けることで光の強度が減少するが、上記のように構成すれば、輝尽発光によって大きな強度の光が発生したタイミングで、SUM信号の瞬時値を取得することができる。
【符号の説明】
【0117】
13…X線出射器、15…移動ステージ、18…フィードモータ、21…位置検出回路、24…スピンドルモータ、26…回転角度検出回路、27…テーブル、28…イメージングプレート、31…受光センサ、33…レーザ光源、34…レーザ駆動回路、39…対物レンズ、43…フォトディテクタ、44…増幅回路、48…SUM信号生成回路、49…変換回路、52…LED、54…表示装置、55…入力装置、CT…コントローラ

【特許請求の範囲】
【請求項1】
対象とする物体に向けてX線を出射するX線出射器と、
中央に前記X線を通過させる貫通孔が形成されたテーブルと、
前記テーブルに取付けられて、前記物体にて回折した前記X線の回折光を受光する受光面を有し、前記回折光の像である回折環を記録するイメージングプレートと、
レーザ光を出射するレーザ光源及びレーザ光を受光するフォトディテクタを有し、前記レーザ光を前記イメージングプレートの受光面に照射するとともに、前記レーザ光の照射によって前記イメージングプレートから出射された光を受光して受光強度に応じた受光信号を出力するレーザ検出装置と、
前記テーブルを、前記貫通孔の中心軸回りに回転させる回転手段と、
前記回転手段によるテーブルの回転における基準位置からの回転角度を検出する回転角度検出手段と、
前記テーブルを、前記イメージングプレートの受光面に平行な方向に、前記レーザ検出装置に対して相対的に移動させる移動手段と、
前記移動手段によるテーブルの移動位置を検出する移動位置検出手段と、
前記移動手段を制御して前記テーブルを移動し、前記X線出射器から残留応力が「0」である基準物体に向けてX線を照射して、前記基準物体で回折したX線によって前記イメージングプレートに基準物体の回折環を撮像する第1回折環撮像手段と、
前記回転手段及び移動手段を制御して前記基準物体の回折環が記録された前記イメージングプレートを回転及び移動させて、前記レーザ検出装置から出射されるレーザ光の前記イメージングプレートにおける照射位置を前記イメージングプレートの中心周りに回転させるとともに半径方向に変化させながら、前記レーザ検出装置から出力される受光信号をそれぞれ入力して、前記入力した受光信号によって表された受光強度を表す受光強度データを、前記回転角度検出手段によって検出された回転位置及び前記移動位置検出手段によって検出された移動位置から取得されるレーザ光のイメージングプレートにおける照射位置と関連付けて順次読取り、前記読取った受光強度データに基づいて前記イメージングプレートに形成された基準物体の回折環の形状を検出する第1回折環形状検出手段と、
前記移動手段を制御して前記テーブルを移動し、前記X線出射器から測定対象物に向けてX線を照射して、前記測定対象物で回折したX線によって前記イメージングプレートに測定対象物の回折環を撮像する第2回折環撮像手段と、
前記回転手段及び移動手段を制御して前記測定対象物の回折環が記録された前記イメージングプレートを回転及び移動させて、前記レーザ検出装置から出射されるレーザ光の前記イメージングプレートにおける照射位置を前記イメージングプレートの中心周りに回転させるとともに半径方向に変化させながら、前記レーザ検出装置から出力される受光信号をそれぞれ入力して、前記入力した受光信号によって表された受光強度を表す受光強度データを、前記回転角度検出手段によって検出された回転位置及び前記移動位置検出手段によって検出された移動位置から取得されるレーザ光のイメージングプレートにおける照射位置と関連付けて順次読取り、前記読取った受光強度データに基づいて前記イメージングプレートに形成された測定対象物の回折環の形状を検出する第2回折環形状検出手段と、
前記第2回折環形状検出手段によって検出された測定対象物の回折環の形状を、前記第1回折環形状検出手段によって検出された基準物体の回折環の形状を用いて補正して、前記イメージングプレートの前記テーブルに対する取付け誤差の影響を少なくする補正手段とを備えたことを特徴とするX線回折測定装置。
【請求項2】
請求項1に記載のX線回折測定装置において、
前記第1回折環撮像手段は、前記回転角度検出手段によって検出された回転角度を用いて前記回転手段を制御して前記テーブルを回転させ、前記イメージングプレートを所定角度位置に設定する第1角度位置設定手段を有し、
前記第2回折環撮像手段は、前記回転角度検出手段によって検出された回転角度を用いて前記回転手段を制御して前記テーブルを回転させ、前記イメージングプレートを前記第1角度位置設定手段による所定角度位置と同じ角度位置に設定する第2角度位置設定手段を有し、
前記第1回折環形状検出手段によって検出された基準物体の回折環の形状は、所定角度ごとの前記イメージングプレートの回転中心からの距離により表され、
前記第2回折環形状検出手段によって検出された測定対象物の回折環の形状は、前記所定角度ごとの前記イメージングプレートの回転中心からの距離により表され、かつ
前記補正手段は、前記イメージングプレートの法線方向がX線の出射方向と一致している場合に前記イメージングプレートに撮像される基準物体の真円からなる回折環の半径と、前記基準物体の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離との比を用いて、前記測定対象物の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離を補正して、前記イメージングプレートの法線方向がX線の出射方向と一致している場合に前記イメージングプレートに撮像される測定対象物の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離を計算する第1補正手段を有することを特徴とするX線回折測定装置。
【請求項3】
請求項2に記載のX線回折測定装置において、
前記第1回折環撮像手段は、前記回転角度検出手段によって検出された回転角度を用いて前記回転手段を制御し、前記イメージングプレートの複数の異なる回転角度位置ごとに前記基準物体に向けて前記X線出射器からX線を照射して、前記基準物体で回折したX線によって前記イメージングプレートに基準物体の複数の回折環をそれぞれ撮像し、
前記第1回折環形状検出手段は、前記イメージングプレートに撮像された基準物体の複数の回折環の形状をそれぞれ検出し、かつ
前記補正手段は、
前記第1回折環形状検出手段により検出された複数の回折環の形状からそれぞれ定まり、前記複数の回折環の位置にそれぞれ関係した複数の点又は軸をそれぞれ検出する定点軸検出手段と、
前記検出された複数の点又は軸を用いて、前記X線出射器から出射されたX線の光軸が前記イメージングプレートと交差する点をX線出射点として検出するX線出射点検出手段と、
前記基準物体の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離、前記測定対象物の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離、及び前記所定角度を、前記検出されたX線出射点を用いて補正する第2補正手段とを備え、
前記第1補正手段による計算は、前記第2補正手段による補正を行った後に行うことを特徴とするX線回折測定装置。
【請求項4】
請求項3に記載のX線回折測定装置において、
前記第1回折環撮像手段は、前記イメージングプレートの180度異なる回転角度位置ごとに前記イメージングプレートに基準物体の2つ回折環をそれぞれ撮像し、
前記定点軸検出手段は、前記検出された基準物体の2つ回折環の形状から、前記基準物体の2つ回折環の重心位置をそれぞれ検出し、
前記X線出射点検出手段は、前記検出された2つ回折環の重心位置の中間点をX線出射点として検出することを特徴とするX線回折測定装置。
【請求項5】
請求項3に記載のX線回折測定装置において、
前記定点軸検出手段は、前記検出された基準物体の複数の回折環の形状から、前記基準物体の複数の回折環の重心位置をそれぞれ検出し、
前記X線出射点検出手段は、前記検出された複数の回折環の重心位置が円周上にある円の中心位置をX線出射点として検出することを特徴とするX線回折測定装置。
【請求項6】
対象とする物体に向けてX線を出射するX線出射器と、
中央に前記X線を通過させる貫通孔が形成されたテーブルと、
前記テーブルに取付けられて、前記物体にて回折した前記X線の回折光を受光する受光面を有し、前記回折光の像である回折環を記録するイメージングプレートと、
レーザ光を出射するレーザ光源及びレーザ光を受光するフォトディテクタを有し、前記レーザ光を前記イメージングプレートの受光面に照射するとともに、前記レーザ光の照射によって前記イメージングプレートから出射された光を受光して受光強度に応じた受光信号を出力するレーザ検出装置と、
前記テーブルを、前記貫通孔の中心軸回りに回転させる回転手段と、
前記回転手段によるテーブルの回転における基準位置からの回転角度を検出する回転角度検出手段と、
前記テーブルを、前記イメージングプレートの受光面に平行な方向に、前記レーザ検出装置に対して相対的に移動させる移動手段と、
前記移動手段によるテーブルの移動位置を検出する移動位置検出手段とを備えたX線回折測定装置に適用され、
前記移動手段を制御して前記テーブルを移動し、前記X線出射器から残留応力が「0」である基準物体に向けてX線を照射して、前記基準物体で回折したX線によって前記イメージングプレートに基準物体の回折環を撮像する第1回折環撮像工程と、
前記回転手段及び移動手段を制御して前記基準物体の回折環が記録された前記イメージングプレートを回転及び移動させて、前記レーザ検出装置から出射されるレーザ光の前記イメージングプレートにおける照射位置を前記イメージングプレートの中心周りに回転させるとともに半径方向に変化させながら、前記レーザ検出装置から出力される受光信号をそれぞれ入力して、前記入力した受光信号によって表された受光強度を表す受光強度データを、前記回転角度検出手段によって検出された回転位置及び前記移動位置検出手段によって検出された移動位置から取得されるレーザ光のイメージングプレートにおける照射位置と関連付けて順次読取り、前記読取った受光強度データに基づいて前記イメージングプレートに形成された基準物体の回折環の形状を検出する第1回折環形状検出工程と、
前記移動手段を制御して前記テーブルを移動し、前記X線出射器から測定対象物に向けてX線を照射して、前記測定対象物で回折したX線によって前記イメージングプレートに測定対象物の回折環を撮像する第2回折環撮像工程と、
前記回転手段及び移動手段を制御して前記測定対象物の回折環が記録された前記イメージングプレートを回転及び移動させて、前記レーザ検出装置から出射されるレーザ光の前記イメージングプレートにおける照射位置を前記イメージングプレートの中心周りに回転させるとともに半径方向に変化させながら、前記レーザ検出装置から出力される受光信号をそれぞれ入力して、前記入力した受光信号によって表された受光強度を表す受光強度データを、前記回転角度検出手段によって検出された回転位置及び前記移動位置検出手段によって検出された移動位置から取得されるレーザ光のイメージングプレートにおける照射位置と関連付けて順次読取り、前記読取った受光強度データに基づいて前記イメージングプレートに形成された測定対象物の回折環の形状を検出する第2回折環形状検出工程と、
前記第2回折環形状検出工程によって検出された測定対象物の回折環の形状を、前記第1回折環形状検出工程によって検出された基準物体の回折環の形状を用いて補正して、前記イメージングプレートの前記テーブルに対する取付け誤差の影響を少なくする補正工程とを含むことを特徴とするX線回折測定方法。
【請求項7】
請求項6に記載のX線回折測定方法において、
前記第1回折環撮像工程は、前記回転角度検出手段によって検出された回転角度を用いて前記回転手段を制御して前記テーブルを回転させ、前記イメージングプレートを所定角度位置に設定する第1角度位置設定ステップを有し、
前記第2回折環撮像工程は、前記回転角度検出回手段によって検出された回転角度を用いて前記回転手段を制御して前記テーブルを回転させ、前記イメージングプレートを前記第1角度位置設定手段による所定角度位置と同じ角度位置に設定する第2角度位置設定ステップを有し、
前記第1回折環形状検出工程によって検出された基準物体の回折環の形状は、所定角度ごとの前記イメージングプレートの回転中心からの距離により表され、
前記第2回折環形状検出工程によって検出された測定対象物の回折環の形状は、前記所定角度ごとの前記イメージングプレートの回転中心からの距離により表され、かつ
前記補正工程は、前記イメージングプレートの法線方向がX線の出射方向と一致している場合に前記イメージングプレートに撮像される基準物体の真円からなる回折環の半径と、前記基準物体の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離との比を用いて、前記測定対象物の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離を補正して、前記イメージングプレートの法線方向がX線の出射方向と一致している場合に前記イメージングプレートに撮像される測定対象物の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離を計算する第1補正ステップを有することを特徴とするX線回折測定方法。
【請求項8】
請求項7に記載のX線回折測定方法において、
前記第1回折環撮像工程は、前記回転角度検出手段によって検出された回転角度を用いて前記回転手段を制御し、前記イメージングプレートの複数の異なる回転角度位置ごとに前記基準物体に向けて前記X線出射器からX線を照射して、前記基準物体で回折したX線によって前記イメージングプレートに基準物体の複数の回折環をそれぞれ撮像し、
前記第1回折環形状検出工程は、前記イメージングプレートに撮像された基準物体の複数の回折環の形状をそれぞれ検出し、かつ
前記補正工程は、
前記第1回折環形状検出工程により検出された複数の回折環の形状からそれぞれ定まり、前記複数の回折環の位置をそれぞれ特定する複数の点又は軸をそれぞれ検出する定点軸検出ステップと、
前記検出された複数の点又は軸を用いて、前記X線出射器から出射されたX線の光軸が前記イメージングプレートと交差する点をX線出射点として検出するX線出射点検出ステップと、
前記基準物体の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離、前記測定対象物の回折環の形状を表す前記所定角度ごとの前記イメージングプレートの回転中心からの距離、及び前記所定角度を、前記検出されたX線出射点を用いて補正する第2補正ステップとを含み、
前記第1補正ステップによる計算は、前記第2補正ステップによる補正を行った後に行うことを特徴とするX線回折測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2013−104673(P2013−104673A)
【公開日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2011−246443(P2011−246443)
【出願日】平成23年11月10日(2011.11.10)
【出願人】(000112004)パルステック工業株式会社 (179)
【Fターム(参考)】