説明

レーザ・アーク複合溶接用ソリッドワイヤ及びレーザ・アーク複合溶接方法

【課題】 本発明はかかる問題点に鑑みてなされたものであって、亜鉛めっき鋼板に対して高速ですみ肉溶接を行っても、ビード形状が良好であり、スパッタ、ピット及びブローホールの発生を抑制して健全な溶接部を形成することができるレーザ・アーク複合溶接用ソリッドワイヤ及びレーザ・アーク複合溶接方法を提供する。
【解決手段】 溶接ワイヤ5の組成を、炭素(C)を0.01乃至0.13質量%、シリコン(Si)を0.1乃至1.2質量%、マンガン(Mn)を0.5乃至2.5質量%含有し、更に、アルミニウム(Al)、チタン(Ti)及びジルコニウム(Zr)からなる群から選択された1種又は2種以上の成分を合計で0.3質量%以下含有し、残部がFe及び不可避的不純物からなる組成とする。そして、比(Si/Mn)の値を0.2より大きく1.5未満とし、下記数式を満足させる。
4.5<Si+2.3Mn+5(Ti+Al+Zr)<7.0

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、亜鉛めっき鋼板の溶接に使用するレーザ・アーク複合溶接用ソリッドワイヤ及びこのワイヤを使用するレーザ・アーク複合溶接方法に関する。
【背景技術】
【0002】
亜鉛めっき鋼板は防食性が優れているため、自動車部材に広く使用されている。この亜鉛めっき鋼板の接合方法には、アーク溶接による重ねすみ肉溶接が一般的に使用されている。アーク溶接方法における溶接速度は一般に60乃至120cm/分程度である。この範囲よりも速い溶接速度では、ハンピングビードと呼ばれる不連続ビードが発生する。図7は従来のアーク溶接方法を示す図である。
【0003】
図7に示すように、亜鉛めっき鋼板のアーク溶接では、亜鉛めっき鋼板101の溶接予定領域に対して、溶接ワイヤ102によりアーク103を照射して溶融部104を形成することにより、溶接を行っていく。しかしながら、溶接速度を120cm/分を超えるような高速とすると、溶接方向に沿ってビードを連続的に形成しようとしても、不連続なビード105が形成されてしまうことがある。また、アーク熱によって蒸発した亜鉛ガスが溶融部104の溶融金属中に入り、その溶融金属が凝固するときに外部に完全に放出されずに残留して、ピット及びブローホールが発生しやすくなる。更に、蒸発した亜鉛蒸気によってアークが乱れやすく、ワイヤ先端の溶滴の形状及び溶滴が落ちるときの軌跡が不規則になり、スッパタが大量に発生する。
【0004】
なお、ブローホールとは、溶接金属中に生じた球状の空洞であり、気孔ともいう。また、ピットとは、溶接金属の表面に生じる小さなくぼみであり、溶融金属が凝固する時に、ブローホール内の気体が溶融金属の外部に逃げ出した後、その痕跡が周囲から埋めきらないうちに溶融金属が凝固したためにできた穴である。
【0005】
このような亜鉛めっき鋼板の高速溶接時の問題を回避するために、レーザ溶接とアーク溶接とを複合したレーザ・アーク複合溶接方法が提案されている。以下、従来のレーザ・アーク複合溶接方法について説明する。例えば特許文献1には、亜鉛めっき鋼板の重ねすみ肉溶接において、溶接予定領域にレーザを照射し、そのレーザ照射の後にガスメタルアーク溶接を行う亜鉛めっき鋼板の溶接方法において、レーザ照射の狙い位置をガスメタルアーク溶接の狙い位置に対して溶接方向前方0乃至6mmの領域とする技術が開示されている。特許文献1には、これにより、アーク放電がレーザ照射部に安定的に集中して発生するため、高速溶接が可能となり、また、亜鉛めっき鋼板の重ねすみ肉溶接において、上板端部のみを溶接でき、重ね部の亜鉛めっき層を殆ど溶融させずに溶接できると記載されている。
【0006】
また、例えば特許文献2には、溶接予定部分にYAGレーザ(Yttrium Aluminium Garnet Laser)を照射して溶接し、この後にガスメタルアーク溶接を行う亜鉛めっき鋼板の重ね溶接において、ガスメタルアーク溶接後に形成されるビード幅が、YAGレーザ照射による溶接で形成されるビード幅の2.0倍以下になるようにし、また、レーザ溶接において、溶接部が重ねた鋼板を貫通するように、レーザ出力を設定する技術が開示されている。特許文献2には、これにより、重ね合わせた亜鉛系めっき鋼板間に隙間がなくても、ブローホールの発生をできるだけ防止し、良好なビードを得ることができると記載されている。
【0007】
更に、例えば特許文献3には、YAGレーザを照射し、その後にガスメタルアーク溶接を行うレーザ・アーク溶接方法において、ビードの幅を突き合わせる2枚の鋼板の板厚の差より大きくし、ガスメタルアーク溶接に使用する溶接ワイヤの化学組成を、C:0.001乃至0.03質量%、Si:0.02乃至1.5質量%、Mn:0.02乃至1.5質量%を含有し、残部が実質的にFeからなる組成とする溶接方法が開示されている。
【0008】
【特許文献1】特開2002−066774号公報
【特許文献2】特開2002−160082号公報
【特許文献3】特開2002−178176号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、上述の従来の技術には、以下に示すような問題点がある。特許文献1に記載された技術については、特許文献1に記載されているように、レーザ照射の狙い位置をガスメタルアーク溶接の狙い位置に対して溶接方向前方0乃至6mmの領域としても、必ずしもブローホール及びピットを低減できるとは限らない。例えば、レーザ照射の狙い位置がアーク溶接の狙い位置に対して溶接方向前方0乃至2mmである場合、亜鉛蒸気の影響でアーク及び溶融池が乱れやすく、大量のスパッタが発生しビード形状が劣化する。また、溶融状態にある溶接金属に亜鉛蒸気が侵入しやすく放出されにくいため、ピット及びブローホールが発生しやすくなる。即ち、ピット及びブローホールについての改善効果が小さい。一方、1.5m/分以上の溶接速度で、例えば板厚が1.4mm以下の薄板を溶接する場合は、溶落ち不良を防止するために溶接電流を低くする必要がある。このとき、レーザ照射の狙い位置をアークの狙い位置に対して溶接方向前方に4mm以上の領域とすると、ビードが不連続ビードになりやすい。
【0010】
また、特許文献2に記載された溶接方法では、ブローホールを抑制する条件として、ガスメタルアーク溶接のビード幅がYAGレーザ照射のビード幅の2.0倍以下である必要があり、例えばYAGレーザ照射のビード幅を1乃至2mmに設定した場合、ガスメタルアーク溶接のビード幅が最大でも2乃至4mmに限定される。この結果、重ねすみ肉溶接継手の板厚が2mmを超える場合には、要求される引張り強度及び疲労強度を得るための溶接部の脚長及びのど厚を形成することが困難になる。また、上述の溶接方法では、レーザ照射で溶接する工程においては、溶接部が重ねた鋼板を貫通するようにレーザ出力を設定する必要がある。このため、レーザ出力をかなり高く設定する必要があると共に、メタルアークの入熱も加わるため、重ねすみ肉継手を溶接する場合に、溶け落ち不良が起こりやすくなる。従って、特許文献2に記載された溶接方法は、重ねすみ肉溶接継手に適用することができない。
【0011】
更に、特許文献3に記載された技術についても、この溶接方法を亜鉛めっき鋼板の重ねすみ肉高速溶接に対して適用すると、やはりピット及びブローホールの大量に発生するという問題がある。
【0012】
このように、溶接速度が1.5m/分以上である亜鉛めっき鋼板の高速すみ肉溶接においては、上述の特許文献1乃至3に記載の方法では、レーザ照射位置、ビード幅、レーザエネルギー密度、ワイヤの組成等を最適に設定したとしても、ビード形状が良好で、スパッタ発生量が少なく、ピット及びブローホールの発生が抑制された健全な溶接部が得られるとは限らない。
【0013】
本発明はかかる問題点に鑑みてなされたものであって、亜鉛めっき鋼板に対して高速ですみ肉溶接を行っても、ビード形状が良好であり、スパッタ、ピット及びブローホールの発生を抑制して健全な溶接部を形成することができるレーザ・アーク複合溶接用ソリッドワイヤ及びレーザ・アーク複合溶接方法を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明に係るレーザ・アーク複合溶接用ソリッドワイヤは、片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板に対してレーザ・アーク複合溶接を行う際に、単独入熱が1.5kJ/cm未満であるアーク溶接の消耗式電極として使用されるレーザ・アーク複合溶接用ソリッドワイヤにおいて、その組成が、C:0.01乃至0.13質量%、Si:0.1乃至1.2質量%、Mn:0.5乃至2.5質量%、Al、Ti及びZrからなる群から選択された1種又は2種以上の成分:合計で0.3質量%以下、を含有し、残部がFe及び不可避的不純物からなり、(Si/Mn)の値が0.2より大きく1.5未満であり、下記数式1を満たすことを特徴とする。
【0015】
【数1】

【0016】
本発明においては、レーザ・アーク複合溶接用ソリッドワイヤの組成を上述の如く規定することにより、亜鉛めっき鋼板を高速で溶接しても、溶融金属の粘性を調整して溶融金属中への亜鉛蒸気の浸入を抑制し、スパッタ、ピット及びブローホールの発生を抑制することができる。
【0017】
本発明に係る他のレーザ・アーク複合溶接用ソリッドワイヤは、片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板に対してレーザ・アーク複合溶接を行う際に、単独入熱が1.5kJ/cm以上であるアーク溶接の消耗式電極として使用されるレーザ・アーク複合溶接用ソリッドワイヤにおいて、その組成が、C:0.01乃至0.13質量%、Si:0.1乃至1.2質量%、Mn:0.5乃至2.5質量%、Al、Ti及びZrからなる群から選択された1種又は2種以上の成分:合計で0.3質量%以下、を含有し、残部がFe及び不可避的不純物からなり、(Si/Mn)の値が0.2より大きく1.5未満であり、下記数式2を満たすことを特徴とする。
【0018】
【数2】

【0019】
本発明においては、レーザ・アーク複合溶接用ソリッドワイヤの組成を上述の如く規定することにより、亜鉛めっき鋼板を高速で溶接しても、溶融金属の粘性を調整して溶融金属中に浸入した亜鉛蒸気を抜け易くし、スパッタ、ピット及びブローホールの発生を抑制することができる。
【0020】
本発明に係るレーザ・アーク複合溶接方法は、片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板を対象とし、溶接予定領域にレーザ光を照射しながら、レーザ光の照射後の領域にアークを照射するレーザ・アーク複合溶接方法において、前記亜鉛めっき鋼板の厚さをt(mm)とするとき、前記レーザ光のエネルギー密度を、このレーザ光の照射のみにより、前記亜鉛めっき鋼板に深さが0.3乃至(3×t/4)mmであり、幅が0.8mm以上である溶融部が形成されるような値に設定し、前記レーザ光の照射領域を、前記アークの照射により形成される溶融部に対して溶接方向前方に離隔し、且つ、前記レーザ光の照射により形成される溶融部が前記アークの照射により形成された溶融部につながるような位置とし、前記アーク溶接の消耗式電極として、その組成が、C:0.01乃至0.13質量%、Si:0.1乃至1.2質量%、Mn:0.5乃至2.5質量%、Al、Ti及びZrからなる群から選択された1種又は2種以上の成分:合計で0.3質量%以下、を含有し、残部がFe及び不可避的不純物からなり、(Si/Mn)の値が0.2より大きく1.5未満であり、上記数式1を満たすレーザ・アーク複合溶接用ソリッドワイヤを使用し、前記アークによる単独入熱を1.5kJ/cm未満とすることを特徴とする。
【0021】
本発明においては、レーザ・アーク複合溶接用ソリッドワイヤの組成を上述の如く規定することにより、亜鉛めっき鋼板を高速で溶接しても、溶融金属の粘性を調整して溶融金属中への亜鉛蒸気の浸入を抑制し、スパッタ、ピット及びブローホールの発生を抑制することができる。また、レーザ光のエネルギー密度及び照射領域を上述の如く設定することにより、アークの照射により形成された溶融部の溶融金属を溶接方向前方にも流動させ、良好な形状のビードを形成することができる。
【0022】
本発明に係る他のレーザ・アーク複合溶接方法は、片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板を対象とし、溶接予定領域にレーザ光を照射しながら、レーザ光の照射後の領域にアークを照射するレーザ・アーク複合溶接方法において、前記亜鉛めっき鋼板の厚さをt(mm)とするとき、前記レーザ光のエネルギー密度を、このレーザ光の照射のみにより、前記亜鉛めっき鋼板に深さが0.3乃至(3×t/4)mmであり、幅が0.8mm以上である溶融部が形成されるような値に設定し、前記レーザ光の照射領域を、前記アークの照射により形成される溶融部に対して溶接方向前方に離隔し、且つ、レーザ光の照射により形成される溶融部が前記アークの照射により形成された溶融部につながるような位置とし、前記アーク溶接の消耗式電極として、その組成が、C:0.01乃至0.13質量%、Si:0.1乃至1.2質量%、Mn:0.5乃至2.5質量%、Al、Ti及びZrからなる群から選択された1種又は2種以上の成分:合計で0.3質量%以下、を含有し、残部がFe及び不可避的不純物からなり、(Si/Mn)の値が0.2より大きく1.5未満であり、下記数式を満たすレーザ・アーク複合溶接用ソリッドワイヤを使用し、前記アークによる単独入熱を1.5kJ/cm以上とすることを特徴とする。
【0023】
本発明においては、レーザ・アーク複合溶接用ソリッドワイヤの組成を上述の如く規定することにより、亜鉛めっき鋼板を高速で溶接しても、溶融金属の粘性を調整して溶融金属中に浸入した亜鉛蒸気を抜け易くし、スパッタ、ピット及びブローホールの発生を抑制することができる。また、レーザ光のエネルギー密度及び照射領域を上述の如く設定することにより、アークの照射により形成された溶融部の溶融金属を溶接方向前方にも流動させ、良好な形状のビードを形成することができる。
【0024】
更にまた、溶接速度を1.5m/分以上とすることが好ましい。
【発明の効果】
【0025】
本発明によれば、レーザ・アーク複合溶接用ソリッドワイヤの組成を上述の如く規定することにより、亜鉛めっき鋼板に対して高速で溶接を行っても、良好なビードが得られ、ピット及びブローホール並びにスパッタの発生を抑制することができる。
【発明を実施するための最良の形態】
【0026】
以下、本発明の実施形態について添付の図面を参照して詳細に説明する。先ず、本発明の第1の実施形態に係るレーザ・アーク複合溶接用ソリッドワイヤ(以下、単に「溶接ワイヤ」ともいう)について説明する。本実施形態の溶接ワイヤは、片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板に対してレーザ・アーク複合溶接を行う際に、アーク溶接の消耗式電極として使用されるソリッドワイヤであり、アーク溶接による単独入熱が1.5kJ/cm未満である場合に使用するものである。また、溶接速度は例えば1.5m/分である。
【0027】
この溶接ワイヤの組成は、炭素(C)を0.01乃至0.13質量%、シリコン(Si)を0.1乃至1.2質量%、マンガン(Mn)を0.5乃至2.5質量%含有し、更に、アルミニウム(Al)、チタン(Ti)及びジルコニウム(Zr)からなる群から選択された1種又は2種以上の成分を合計で0.3質量%以下含有し、残部がFe及び不可避的不純物からなる。そして、各成分の含有量(質量%)を夫々各成分の元素記号で表すとき、比(Si/Mn)の値が0.2より大きく1.5未満である。また、上記各成分の含有量が、上記数式3を満たしている。なお、下記数式3は上記数式1と同じ数式である。
【0028】
【数3】

【0029】
亜鉛めっき鋼板のすみ肉溶接を行う場合、鋼板表面にめっきされた亜鉛めっき層は、母材である鋼と比較して融点及び沸点が低いため、溶接により亜鉛めっき層が激しく蒸発する。これにより、アーク及び溶融池(溶融部)が乱れ、スパッタが大量に発生する。また、亜鉛の蒸気が溶融部中に侵入して、ピット及びブローホールを発生させる。特に、溶接速度が1.5m/分以上と高速になると、スパッタ、ピット及びブローホールが急増し、連続ビードを形成することさえ難しくなる。そこで、本発明者らは、大量の溶接実験を重ねると共に理論的な検証を行い、溶接速度を1.5乃至3.0m/分程度と高速にしても、良好ビードが得られると共に、スパッタの発生が少なく、またピット及びブローホールの発生を抑制することができる溶接ワイヤを開発し、また、この溶接ワイヤを使用する溶接方法を確立した。
【0030】
以下、本発明の各構成要件における数値限定理由について説明する。
【0031】
Cの含有量:0.01乃至0.13質量%
Cは溶接金属部の強度を得る上で重要な成分であり、その含有量が0.01質量%未満であると、溶接金属部の強度が低下するため、0.01質量%以上含有させる。一方、Cの含有量が0.13質量%を超えると、溶接部の靭性が低下し、割れが発生しやすくなるため、0.13質量%以下とする。従って、Cの含有量は0.01乃至0.13質量%とする。
【0032】
Siの含有量:0.1乃至1.2質量%
Siは脱酸剤として作用する元素であり、その含有量が0.1質量%より少ないと、脱酸が不十分になり、酸素による気孔(ブローホール)が発生する虞がある。また、Siが少なすぎると、溶融金属部の表面に集まる酸素の量が増え、溶融金属の粘性が低くなりすぎて、溶滴移行が不安定になる。一方、Siの含有量が1.2質量%を超えると、溶融金属の粘性が高くなりすぎて、やはり溶滴移行が不安定になる。また、溶接ワイヤの製造コスト及び溶接金属部の靭性を考慮すると、Siの含有量を1.2質量%以下に抑える必要がある。従って、Si含有量を0.1乃至1.2質量%とする。
【0033】
Mnの含有量:0.5〜2.5%
MnはSiと同じく脱酸剤として作用すると共に、溶融金属の粘性に影響する元素である。脱酸を十分に行い、溶融金属の粘性が低くなり過ぎないようにするためには、Mnを0.5質量%以上含有させる必要がある。一方、Mnの含有量が2.5質量%を超えると、溶融金属の粘性が高くなりすぎて、溶滴移行が不安定になる。また、溶接ワイヤの製造コストが高くなり、溶接金属の靭性が低下する。従って、Mnの含有量は、0.5乃至2.5質量%とする。
【0034】
Al、Ti、Zrの含有量:合計で0.3質量%以下
Al、Ti、ZrはSi、Mnよりも強い脱酸作用があり、溶接ワイヤに少量含有させても、溶融金属の粘性が大きくなる。本発明では、溶融金属の粘性を調整するために、ワイヤにAl、Ti、Zrを少し添加してもよいが、添加しすぎると、溶滴の粘性が高くなり過ぎて溶滴移行が不安定になり、また、溶接金属部の靭性も低下するため、Al、Ti、Zrの含有量は合計で0.3質量%以下とする。
【0035】
比(Si/Mn):0.2より大きく1.5未満
溶融金属部には、主としてFeO、SiO、MnOの3種類の酸化物が生成する。これらの酸化物は殆どスラグとして溶融金属の表面に浮かぶ。SiOは酸性スラグで、MnOは塩基性スラグである。そして、良好な溶接ビードを得るためには、酸性スラグと塩基性スラグとのバランスを取る必要がある。溶接ワイヤ中のSi含有量がMn含有量と比較して多すぎると、酸性スラグであるSiOが塩基性スラグであるMnOと比較して多くなる。一方、溶接ワイヤ中のMn含有量がSi含有量と比較して多すぎると、塩基性スラグであるMnOが酸性スラグであるSiOと比較して多くなる。このバランスをコントロールするために、比(Si/Mn)が0.2より大きく1.5未満の範囲に入るように、Si及びMnの含有量を調整する。
【0036】
アーク熱による単独入熱が1.5kJ/cm未満である場合、{Si+2.3Mn+5(Ti+Al+Zr)}の値:4.5より大きく7.0未満
溶接ワイヤにおける各成分の単独の含有量の値を上述の如く制御し、また、比(Si/Mn)の値を制御することによって、ブローホール及びピットの発生をある程度抑制することができる。しかしながら、ピット及びブローホールの発生状況は、溶接入熱と溶融金属の粘性との関係にも大きく依存する。即ち、溶接入熱が大きい場合は、亜鉛めっき層の蒸発量が増え、溶融金属中に侵入する亜鉛蒸気量が多くなるが、溶融金属の冷却速度は遅くなる。換言すれば、溶接入熱が増えれば、溶融金属中への亜鉛蒸気の侵入量及び溶融金属からの亜鉛蒸気の放出量が共に増加する。逆に、溶接入熱が小さい場合は、溶融金属中への亜鉛蒸気の侵入量及び溶融金属からの亜鉛蒸気の放出量が共に減少する。そして、ピットが発生するか否かは、溶融金属中の亜鉛蒸気の侵入量と放出量とのバランスがうまく取れるかどうかによって決まり、溶融金属の粘性が極めて重要な役割を果たす。
【0037】
溶接入熱が小さい場合は、溶融金属中への亜鉛蒸気の侵入量が少なく、溶融金属が速く凝固するので、ピットの発生を抑制するためには、溶融金属の粘性を増加させて、亜鉛蒸気の溶融金属中への侵入をできるだけ阻止すると共に、一旦生成されたブローホールを溶融金属の表面まで浮上させないことが有効である。一方、溶接入熱が大きい場合は、亜鉛の蒸発が激しいので、いかに溶融金属の粘性を増加させても、溶融金属中への亜鉛蒸気の侵入を阻止することができない。この場合、ピットの発生を抑制するためには、溶融金属の粘性を低下させて、一旦溶融金属中に侵入した亜鉛蒸気を可及的に速やかに溶融金属外に放出させる必要がある。このように、溶接入熱に合わせて、相応しい成分系の溶接ワイヤを使う必要がある。
【0038】
なお、被溶接材の表面では、レーザ光による入熱の影響範囲はアークのそれと比べて極めて小さいため、亜鉛めっき層の蒸発量及び溶融金属の冷却速度は、ほとんどアークによる入熱によって決まる。従って、亜鉛めっき層の蒸発量及び溶融金属の冷却速度については、アークによる入熱のみで考えることができる。
【0039】
次に、アーク熱による単独入熱量を、1.5kJ/cmを境として区別する理由について説明する。溶融金属部の近傍である熱影響部の一部は、亜鉛の沸点である908℃より高い温度となるため、亜鉛めっき層が蒸発し、溶融金属に侵入して、ブローホール及びピットの原因となる。アーク入熱の増加に伴い、熱影響部の幅が広くなると、亜鉛めっき層の蒸発量が増え、亜鉛蒸気圧も高くなる。溶融金属への亜鉛蒸気の侵入量を調べるために、スラグ発生量が多いタイプのフラックス入りワイヤを用いて溶接実験を行う。形成されたビードの表面に浮いているスラグは、溶接中に浸入した亜鉛蒸気が溶融金属外に逃げることを阻止するため、亜鉛蒸気の大部分は溶融金属内に封入され、ブローホールになる。このとき、溶接部分を上方から見て、ブローホールが最も集中している25mmの溶接ビード長におけるブローホールの面積をS(mm)とし、溶接幅をB(mm)とし、ブローホール率をRbとすると、ブローホール率Rbが下記数式4により定義される。なお、ブローホール面積Sの計測方法は後述の本発明の実施例において詳細に説明する。図1は、横軸にアークによる単独入熱量をとり、縦軸にブローホール率をとって、アーク入熱量とブローホール率との関係を示すグラフ図である。
【0040】
【数4】

【0041】
ブローホール率が30%未満であれば、溶接金属部の強度は問題がない。このため、ブローホール率が30%未満である場合は、ピットの発生を抑制するために、溶融金属の粘性を高めて、亜鉛蒸気を封入すればよい。一方、ブローホール率が30%以上である場合は、溶接継手の強度に問題があるため、溶融金属の粘性を低めて、亜鉛蒸気を放出する必要がある。図1から、ブローホール率が30%になるときのアーク入熱は1.5kJ/cmであるため、アーク熱による単独入熱が1.5kJ/cm未満である場合と、1.5kJ/cm以上である場合とで、溶接ワイヤの好適な成分範囲が区別される。
【0042】
アーク熱による単独入熱が1.5kJ/cm未満である場合、ワイヤの化学組成が上記数式3を満たすようにすると、ピットの密度を5個/m以下まで抑制できる。上記数式3は、後述する表3及び表4に示す溶接ワイヤの化学成分と、各溶接ワイヤを使用してアーク単独入熱が1.5kJ/cm未満となる条件で溶接を行ったときのピット個数とを、重回帰分析方法で統計して得られたものである。上記数式3を満たさないような組成の溶接ワイヤを使用すると、上記数式3を満たす組成の溶接ワイヤを使用する場合と比較して、ピットの密度がやや増加する。従って、アーク熱による単独入熱が1.5kJ/cm未満である場合は、{Si+2.3Mn+5(Ti+Al+Zr)}の値が4.5より大きく7.0未満であることが必要である。
【0043】
以下に、本実施形態の効果について説明する。ピット及びブローホールの発生状況は溶接入熱及び溶融金属の粘性に大きく依存する。そして、溶接ワイヤの成分は溶融金属の粘性を支配する。本実施形態に係る溶接ワイヤを使用して、亜鉛めっき鋼板の重ねすみ肉溶接を行うと、アーク熱による単独入熱が1.5kJ/cm未満であるため、ブローホールの発生を抑制することができる。また、溶融金属の粘性を高めることにより、発生したブローホールが溶融金属の表面から外部に放出されることを抑制でき、ピットの発生を抑制することができる。
【0044】
次に、本発明の第2の本実施形態に係る溶接ワイヤについて説明する。本実施形態の溶接ワイヤは、片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板に対してレーザ・アーク複合溶接を行う際に、アーク溶接の消耗式電極として使用されるソリッドワイヤであり、アーク溶接による単独入熱が1.5kJ/cm以上である場合に使用するものである。また、溶接速度は例えば1.5m/分である。
【0045】
この溶接ワイヤの組成は、炭素(C)を0.01乃至0.13質量%、シリコン(Si)を0.1乃至1.2質量%、マンガン(Mn)を0.5乃至2.5質量%含有し、更に、アルミニウム(Al)、チタン(Ti)及びジルコニウム(Zr)からなる群から選択された1種又は2種以上の成分を合計で0.3質量%以下含有し、残部がFe及び不可避的不純物からなる。そして、各成分の含有量(質量%)を夫々各成分の元素記号で表すとき、比(Si/Mn)の値が0.2より大きく1.5未満である。また、上記各成分の含有量が、下記数式5を満たしている。なお、下記数式5は上記数式2と同じ数式である。
【0046】
【数5】

【0047】
アーク熱による単独入熱が1.5kJ/cm以上である場合、{Si+1.7Mn+6(Ti+Al+Zr)}の値:1.2より大きく3.0未満
本実施形態においては、アークによる単独入熱を1.5kJ/cm以上としている。この場合、図1に示すように、ブローホールが大量に発生して溶接金属部の強度が低下する。このため、前述の第1の実施形態と比較して溶融金属の粘性をやや低下させ、ブローホールを溶融金属外に放出させ、ブローホール自体の密度を低減する必要がある。この場合、組成が上記数式5を満たすような溶接ワイヤを使用すると、単位溶接長さ当たりのピットの密度を5個/m以下まで抑制できる。上記数式5は、後述する表5及び表6に示す溶接ワイヤの化学成分と、各溶接ワイヤを使用してアーク単独入熱が1.5kJ/cm以上となる条件で溶接を行ったときのピット個数とを、重回帰分析方法で統計して得られたものである。上記数式5を満たさないような組成の溶接ワイヤを使用すると、上記数式5を満たす組成の溶接ワイヤを使用する場合と比較して、ピットの密度が増加する。従って、アーク熱による単独入熱が1.5kJ/cm以上である場合は、{Si+1.7Mn+6(Ti+Al+Zr)}の値が1.2より大きく3.0未満であることが必要である。
【0048】
次に、本発明の第3の本実施形態に係るレーザ・アーク複合溶接方法(以下、単に「溶接方法」ともいう)について説明する。図2は本実施形態に係る溶接方法を示す図である。本実施形態に係る溶接方法は、片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板を重ねすみ肉溶接する方法である。図2に示すように、先ず、亜鉛めっき鋼板1の溶接予定領域に対して、レーザ光2を照射する。このとき、亜鉛めっき鋼板1の厚さをt(mm)とするとき、レーザ光2のエネルギー密度は、このレーザ光2の照射のみにより、亜鉛めっき鋼板1に深さが0.3乃至(3×t/4)mmであり、幅が0.8mm以上である溶融部4が形成されるような値に設定する。また、亜鉛めっき鋼板1の表面におけるレーザ光2の照射領域3を、溶接方向に1.5m/分以上の一定速度で移動させる。これにより、亜鉛めっき鋼板1が溶融し、レーザ照射による溶融部4が形成される。
【0049】
そして、亜鉛めっき鋼板1に対して相対的に移動しているレーザ光2の照射領域3を追うように、溶接ワイヤ5によりアーク6を照射する。溶接ワイヤ5には、前述の第1の実施形態に係る溶接ワイヤを使用する。また、亜鉛めっき鋼板1の表面におけるアーク6による溶融部8は、レーザ光2の照射領域3に対して溶接方向後方に離隔しており、且つ、アーク溶接による溶融部8が、レーザ照射による溶融部4につながるようにする。更に、アーク6の照射による単独入熱を1.5kJ/cm未満とする。更にまた、アークのシールドガスとして、アルゴンガス中に炭酸ガスを5乃至30体積%の範囲で混合させたガス、又は、アルゴンガス中に酸素を2乃至10体積%の範囲で混合させたガスを使用する。これにより、スパッタがより一層低減し、ビード外観がより一層きれいになる。更にまた、アークの溶接電源にはパルス電源を使用する。これにより、ビード外観が美しくなり、スパッタ及びピットが少なくなる。そして、溶融部4及び8が冷却することにより、ビード11が形成され、溶接が完了する。これにより、2枚の亜鉛めっき鋼板が重ねすみ肉溶接される。
【0050】
次に、本実施形態の効果について説明する。図7に示すように、高速溶接においては、溶融金属は溶接方向に対して、表面張力の影響で後方への流れが著しく、極端の場合には、周期的に1ヶ所に集ってハンピングビードを形成する。これを解消するために、本実施形態においては、図2に示すように、亜鉛めっき鋼板1の表面におけるアーク6の溶融部8を、レーザ光2の照射領域3に対して溶接方向後方に離隔しており、且つ、アーク溶接による溶融部8が、レーザ照射による溶融部4につながるようにしている。換言すれば、レーザ光2の照射領域3の位置を、アーク6による溶融部8に対して溶接方向前方に離隔させ、且つ、レーザ照射による溶融部4がアーク溶接による溶融部8につながるように調整している。
【0051】
これにより、レーザ光による溶融部4は、後方のアークによる溶融部8と接触して、表面張力でアークの溶融金属を溶接方向の前方へも流動させ、良好なビードを形成することができる。また、レーザ光の照射領域とアーク溶接による溶融部との位置関係を上述の如く設定すれば、ビードの余盛が低く、ビード幅が広く、なじみの良いビードを得ることができる。更に、アークの溶融部がレーザの溶融部とつながって、一つの長い溶融部を形成できる。この長い溶融部によって、以下の2つの効果を得ることができる。即ち、(1)レーザ光により溶融部を形成することにより、溶接の主体であるアーク溶接が行われる前に、亜鉛めっき層を除去することができる。(2)亜鉛蒸気が溶融金属に侵入したとしても、溶融部が長いので、溶融部が凝固するまでに、侵入した亜鉛蒸気の大部分を溶融金属の外部に放出させることができる。この2つの効果によってピットの発生を抑制できる。
【0052】
上述の如く、レーザ光の照射領域とアークの溶融部との位置関係の規定には、2つの要件がある。1つ目の要件は、レーザ光の照射領域はアーク溶接による溶融部の外部に位置することである。以下、この理由を説明する。図3は、レーザ光の照射領域をアークの溶融部の内部に位置させた場合の溶接方法を示す図である。図3に示すように、レーザ光2をアーク6による溶融部8の内部に照射すると、アーク6によって形成された溶融金属を溶接方向前方に流動させる作用は働かず、溶融金属は溶接方向後方へ流動する。この場合、図7に示すアーク単独溶接の場合と比較して溶融金属の量が多いため、ハンピングビードにはならないが、ビードの余盛が高くなり、ビード幅が狭くなり、アンダーカット不良が起こりやすい。また、溶融部が短くなるため、亜鉛蒸気がアークの溶融部に侵入しやすくなり、また、侵入した亜鉛蒸気が放出する時間も少ないため、ピットが発生しやすくなる。更に、ピット9が発生しやすくなる。従って、レーザ光2の照射領域3はアーク6の溶融部8の外部であることが必要である。
【0053】
レーザ光の照射領域とアークの溶融部との位置関係の規定における2つ目の要件は、レーザ光による溶融部が、アークによる溶融部と接触できることである。以下、この理由を説明する。図4は、レーザ光2の照射領域3がアーク6の溶融部8から過度に離隔しており、レーザ光2による溶融部4がアーク6による溶融部8と接触できない場合の溶接方法を示す図である。図4に示すように、レーザ光2による溶融部4がアーク6による溶融部8と接触できないような位置にレーザ光を照射すると、アークに先立ってレーザ光を照射する効果が薄れ、図7に示すアーク単独溶接の場合と同様に、アーク溶接により形成された溶融金属は溶接方向後方へ流れ、ハンピングビードになりやすい。
【0054】
従って、レーザ光の照射領域は、アークの溶融部の外部であり、且つ、レーザ光による溶融部がアークによる溶融部と接触できるような位置とすることが必要である。但し、レーザ照射の適正な位置は、溶接電流、電圧、溶接速度、レーザ照射エネルギー等の溶接条件の変化に伴い、アークの溶融部とレーザ溶融部のサイズを確認して、調整する必要があり、具体的な数字で規定することができない。
【0055】
また、本実施形態においては、亜鉛めっき鋼板1の厚さをt(mm)とするとき、レーザ光2のエネルギー密度は、このレーザ光2の照射のみにより、亜鉛めっき鋼板1に深さが0.3乃至(3×t/4)mmであり、幅が0.8mm以上である溶融部4が形成されるような値に設定している。
【0056】
上述の如く、良好なビードを形成させるためには、レーザ光の照射により溶融部を形成し、この溶接部により、アークによる溶融部の溶接金属を溶接方向前方へ流動させることが好ましい。このためには、レーザ光による溶融部に、この機能を果たすための最小限容量の溶融金属を形成する必要がある。この最小限容量の溶融金属は溶融幅及び溶融深度を規定することにより、確保することができる。本発明者等は、多くの実験を行うことにより、レーザ光により形成される溶融部の幅が0.8mm以上であり、深さが0.3mm以上であれば、アークにより形成される溶接金属を溶接方向前方へ流動させることができることを見出した。一方、溶融部の深度が被溶接材の板厚の3/4を超えると、アークの入熱も加わって、溶落ち不良が発生しやすくなる。このため、溶融部の深さの上限値は(3t/4)と規定する。
【0057】
上述のレーザの溶融幅及び溶融深度を保証するために、レーザの被溶接材の表面上における照射エネルギー密度E(kW/cm)を規定する。レーザ光の出力をP(kW)とし、被溶接材の表面におけるレーザ光のスポットの直径をR(cm)とすると、レーザエネルギー密度Eは、下記数式6により計算することができる。実際に溶接を行う場合は、溶融幅及び溶融深さが本実施形態の溶接方法を満足するように、溶接速度、被溶接材の板厚、レーザ装置の能力等によって、レーザ出力P及びレーザスポットの直径Rを調整する必要がある。
【0058】
【数6】

【0059】
具体的には、レーザ溶融部の溶融深さが0.3mm以上となることを保証するために、下記数式7を満足させる。なお、溶接速度をV(cm/分)とする。また、溶融深さが(3t/4)以下となることを保証するために、下記数式8を満足させる。更に、溶融幅が0.8mm以上となることを保証するために、下記数式9を満足させる。なお、X1、X2及びX3は係数である。
【0060】
【数7】

【0061】
【数8】

【0062】
【数9】

【0063】
更に、本実施形態においては、亜鉛メッキ鋼板の重ねすみ肉のレーザ・アーク複合溶接方法において、溶接速度を1.5m/分以上としている。これは、溶接速度が1.5m/分以上であると、従来の溶接方法では欠陥が少ない溶接継手を得ることができないため、本発明を適用する効果が大きいためである。
【0064】
次に、本発明の第4の本実施形態に係る溶接方法について説明する。本実施形態に係る溶接方法においては、溶接ワイヤとして、前述の第2の実施形態に係る溶接ワイヤを使用する。また、アーク6の照射による単独入熱を1.5kJ/cm以上とする。本実施形態における上記以外の構成及び効果は、前述の第3の実施形態と同様である。
【0065】
なお、前述の各実施形態において、溶接ワイヤ中に、Nb、Ni、Crのうちの1種又は2種以上の成分を2質量%以下含有させると、ピットの発生個数が減る場合もある。
【実施例1】
【0066】
溶接ワイヤの組成の決定
以下、本発明の実施例の効果について、その特許請求の範囲から外れる比較例と比較して具体的に説明する。先ず、亜鉛めっき鋼板を2枚用意した。この亜鉛めっき鋼板の組成を表1に示す。なお、表1に示す数値の単位は「質量%」であり、「−」はその成分の含有量が検出限界以下であることを示す。この亜鉛めっき鋼板の板厚は2枚とも1.4mmであり、両面に目付量が夫々45g/mの亜鉛めっき層が形成されている。この2枚の亜鉛めっき鋼板を重ね合わせて、両鋼板の隙間を0mmとし、重ねすみ肉溶接をレーザ・アーク複合溶接方法により行った。このとき、アーク溶接による単独入熱量を、1.5kJ/cm未満及び1.5kJ/cm以上の複数の値に設定した。また、実験毎に、溶接ワイヤの組成を相互に異ならせた。溶接ワイヤの組成を表2に示す。表2に示す「値1」とは、{Si+2.3Mn+5(Ti+Al+Zr)}の値をいう。また、「値2」とは、{Si+1.7Mn+6(Ti+Al+Zr)}の値をいう。レーザ光の照射位置及びレーザ光の照射エネルギー密度は、前述の第3の実施形態と同様に調整した。
【0067】
【表1】

【0068】
【表2】

【0069】
そして、溶接後の各試験片について、ピット個数及びブローホール率を計測した。ピット個数は、溶接金属部に発生したピットの個数を計測し、溶接長さ1m当たりの値に換算した。以下、ブローホール率の計測方法を説明する。図5(a)乃至(c)は、ブローホール率の計測方法を示す平面図であり、(a)は溶接後の試験片を示し、(b)はこの試験片をX線透過法により撮影したX線写真を示し、(c)はこのX線写真をスキャナで読み込んで得られたデジタル画像を示す。
【0070】
図5(a)に示すように、2枚の亜鉛めっき鋼板2を重ねすみ肉溶接して、ビード11が形成された試験片を作製する。次に、この試験片をX線透過法により写真撮影し、図5(b)に示すようなネガのX線写真12を得る。X線写真12においては、ビード11内に複数のブローホール13が形成されていることが示されている。次に、このX線写真12をスキャナで読込み、読み込んだデータをパーソナルコンピュータに取り込む。この結果、図5(c)に示すようなデジタル画像14が得られる。次に、図5(c)に示すデジタル画像14において、ビード11においてブローホール13が最も集中して存在している領域であって、溶接方向の長さが25mmである領域Lを選択する。そして、画像解析ソフトウエア(例えば、Photoshop(商品名))を使用して、この領域L内を画像解析し、ビード11の面積に対するブローホール13の面積の比率を算出し、ブローホール率とする。
【0071】
表3乃至表6に、実験条件並びにピット及びブローホールの発生状況を示す。表3は、溶接電流(I)を140Aとし、電圧(U)を23Vとし、溶接速度を160cm/分とした例である。この場合、アーク溶接による入熱量(Q)は、Q=60×U×I/V=1.2kJ/cmとなる。表4は、溶接電流(I)を180Aとし、電圧(U)を25Vとし、溶接速度を200cm/分とした例である。この場合、アーク溶接による入熱量(Q)は、Q=60×U×I/V=1.35kJ/cmとなる。表5は、溶接電流(I)を220Aとし、電圧(U)を27Vとし、溶接速度を200cm/分とした例である。この場合、アーク溶接による入熱量(Q)は、Q=60×U×I/V=1.8kJ/cmとなる。表6は、溶接電流(I)を180Aとし、電圧(U)を30Vとし、溶接速度を280cm/分とした例である。この場合、アーク溶接による入熱量(Q)は、Q=60×U×I/V=2.0kJ/cmとなる。
【0072】
評価基準としては、高速溶接を行ったときのピット発生個数及びブローホール率が、現在の製造現場で実際に行っている低速溶接におけるピット発生個数及びブローホール率以下であれば、高速溶接が可能であると判定し、その溶接方法は有効であると判断した。具体的には、単位溶接長さ当たりのピットの個数が5個/m以下であり、且つ、ブローホール率が30%以下であれば、評価を「○(良好)」とし、高速溶接が可能であると判断した。一方、ピット個数が6個/m以上であるか、又はブローホール率が30%以上であれば、「×(不良)」とし、高速溶接が困難であると判断した。
【0073】
【表3】

【0074】
【表4】

【0075】
【表5】

【0076】
【表6】

【0077】
各種ワイヤの成分とそのワイヤによるピット個数を、表3及び表4に示すアーク単独入熱が1.5kJ/cm未満である場合と、表5及び表6に示すアーク単独入熱が1.5kJ/cm以上である場合とに分けて、ワイヤ中の脱酸元素(Si、Mn、Ti+Zr+Al)の含有量とピットの発生個数及びブローホール率との関係を重回帰分析方法により計算し、下記数式10及び下記数式11を得た。なお、下記数式10は上記数式1及び3と同じ数式であり、下記数式11は上記数式2及び5と同じ数式である。アーク単独入熱が1.5kJ/cm未満である場合に下記数式10を満足し、アーク単独入熱が1.5kJ/cm以上である場合に及び下記数式11を満足すれば、ピット個数が5個/m以下になり、ブローホール率が30%以下になる。
【0078】
【数10】

【0079】
【数11】

【実施例2】
【0080】
溶接ワイヤの組成の確認
上記数式10及び数式11の正確さを更に検証するために、更に多くのワイヤ及び溶接条件でレーザ・アーク複合溶接実験を行った。実験方法は、前述の実施例1と同様である。レーザ照射位置及びレーザの照射エネルギー密度は、本発明に記載する規定の通りに調整した。亜鉛めっき鋼板は、前述の実施例1(表1参照)と同様なものを使用した。また、溶接ワイヤには、表7に示す組成のワイヤを使用した。各溶接条件及び評価結果を表8及び表9に示す。表8は、溶接電流(I)を160Aとし、電圧(U)を23Vとし、溶接速度を200cm/分とした例である。この場合、アーク溶接による入熱量(Q)は、Q=60×U×I/V=1.1kJ/cmとなる。表9は、溶接電流(I)を260Aとし、電圧(U)を28Vとし、溶接速度を250cm/分とした例である。この場合、アーク溶接による入熱量(Q)は、Q=60×U×I/V=1.7kJ/cmとなる。
【0081】
【表7】

【0082】
【表8】

【0083】
【表9】

【0084】
表8に示すNo.102、104、105、107、109、112は、請求項1及び4に係る発明の実施例である。実施例No.102、104、105、107、109、112は、溶接ワイヤの組成が請求項1及び4に係る発明の範囲を満たしているため、アーク単独入熱が1.5kJ/cm未満の場合において、ピット及びブローホールの発生が少なく、高速溶接が可能であった。また、表9に示すNo.114、116、119、121、123は、請求項2及び5に係る発明の実施例である。実施例No.114、116、119、121、123は、溶接ワイヤの組成が請求項2及び5に係る発明の範囲を満たしているため、アーク単独入熱が1.5kJ/cm以上の場合において、ピット及びブローホールの発生が少なく、高速溶接が可能であった。一方、表8及び表9に示すNo.101、103、106、108、110、111、113、115、117、118、120、122、124、125、126は比較例である。これらの比較例は、溶接ワイヤの組成が請求項1及び4並びに2及び5に係る発明の範囲を満たしていないため、高速溶接を行うと、ピット又はブローホールが多量に発生した。このように、本実施例2により、本発明の溶接ワイヤを使ったレーザ・アーク複合溶接方法は、高速溶接が可能であることが証明できた。
【実施例3】
【0085】
適正なレーザ照射エネルギー密度の確認
本発明の溶接ワイヤを使い、レーザ照射エネルギー密度を相互に異ならせて、ビードの形成状態を確認した。本実施例3においては、レーザ照射位置を前述の第3の実施形態と同様に調整して、平板状の亜鉛めっき鋼板に対してレーザ・アーク複合溶接を行った。そして、レーザ照射のみにより形成される溶融幅及び溶融深さを測定し、レーザ・アーク複合溶接により形成されたビード形状を評価した。亜鉛めっき鋼板は、前述の実施例1(表1参照)と同様なものを使用した。また、溶接ワイヤには、表10に示す組成のワイヤを使用した。実験条件を表11に示し、実験結果を表12に示す。表11に示す係数X1乃至X3は、夫々上記数式7乃至9により与えられる係数である。また、表12に示す「3t/4」は、表11に示す亜鉛めっき鋼板の板厚の(3/4)倍の値を示す。更に、ビード形状の評価標準としては、高速溶接を行っても、現在のものづくり現場で実際に行っている低速溶接におけるビード以上のレベルのビードが得られれば、高速溶接が可能であると判定し、その溶接方法は有効であると判断した。具体的には、ビードは全長に渡り中断した部分が無く、且つ、溶け落ち及びアンダーカット等の不良が無ければ「○(良好)」とし、高速溶接が可能であると判断した。また、そうでなければ、「×(不良)」とし、高速溶接が不可能であると判断した。
【0086】
【表10】

【0087】
【表11】

【0088】
【表12】

【0089】
表11及び表12に示すNo.201乃至204、206、208、210、211、213乃至216、219、220、222、223、225、227は、請求項4又は5に係る発明の実施例である。これらの実施例は、レーザ光のエネルギー密度E[kW/cm]を、レーザ単独で、平板上において、溶融深さが0.3mm乃至3t/4(t:被溶接材の板厚)、溶融幅が0.8mm以上となるような値に規定しているため、150乃至500cm/分の高速溶接を行っても、ビード形状を、現状の低速溶接におけるビード形状と同レベルにすることができた。
【0090】
これに対して、表12に示す比較例No.205においては、レーザ単独の溶融深さが0.2mmと小さかったため、ビード形状が不良であった。比較例No.207、224、226においては、レーザ単独の溶融幅が0.8mmよりも小さく、溶融深さが0.2mmと小さかったため、ビード形状が不良であった。比較例No.221においては、レーザ単独の溶融幅が0.6mmと小さかったため、ビード形状が不良であった。比較例No.209、212、217、218、228においては、レーザ単独により溶落ちが発生した。これは、溶融深さが板厚tよりも大きかったことを示している。このため、ビード形状が不良であった。
【実施例4】
【0091】
適正なレーザ照射位置の確認
本発明の溶接ワイヤを使い、レーザ照射位置を相互に異ならせて、ビード形成、ピット及びブローホールの発生状況、スパッタの発生状況を確認した。本実施例4においては、レーザ照射エネルギー密度を前述の第3の実施形態と同様に調整した。そして、被溶接材として、前述の実施例1(表1参照)と同様な亜鉛めっき鋼板を使用した。また、溶接ワイヤは表13に示すワイヤを使用した。ビード形成の評価標準は前述の実施例3と同様とした。また、ピット及びブローホールの発生状況の評価基準は前述の実施例1と同様とした。スパッタの発生状況の評価基準としては、高速溶接を行っても、現在のものづくり現場で実際に行っている低速溶接におけるスパッタの発生量以下であれば、高速溶接が可能であると判定し、その溶接方法は有効であると判断した。具体的には、単位溶接長さ当たりのスパッタの発生量が0.5g/m以下であれば、「○(良好)」とし、0.5g/m以上であれば、「×(不良)」とした。実験結果を表14に示す。
【0092】
なお、表14に示す「レーザ照射領域とアーク溶融部との位置関係」の欄に示す符号の意味は、以下のとおりである。「●」は、レーザ光照射領域はアーク溶融部の前方にあり、且つ2つの溶融部がつながっていることを示す。「★」は、レーザ光がアーク溶融部の内部に照射していることを示す。「■」は、レーザ光照射領域はアーク溶融部の前方にあり、且つ、2つの溶融部が相互に分離していることを示す。「○」は、ビード形状は連続で、アンダーカットが発生せず、且つ、溶接部の幅Bと溶接部の高さHとの比(B/H)が1.2以上であることを示す。なお、図6は、重ねすみ肉溶接における溶接部の形状を示す断面図である。図6に示すように、2枚の亜鉛めっき鋼板1を重ねすみ肉溶接し、溶接部10を形成した。表14の「ビード形状」の欄に示す「△」は、ビードが連続だが、比(B/H)が1.2未満であることを示す。「×」は、不連続ビードであることを示す。
【0093】
【表13】

【0094】
【表14】

【0095】
表14に示すNo.302、303、305、306、309、310、314、316、317は、請求項4又は5に係る発明の実施例である。これらの実施例においては、レーザの照射位置が「●」、即ち、アークによる形成された溶融部の前方であり、且つ、レーザによる溶融部とアークによる溶融部とが相互につながるように調整されているため、ビード形状が良好であり、ピット及びスパッタの発生量が少なかった。これに対して、比較例No.301、307、308、315のように位置関係が「★」であると、即ち、レーザ光照射領域がアーク単独による溶融部に入ると、スパッタ及びピットは多くなる。また、比較例No.304、311、312、313のように位置関係が「■」であると、即ち、レーザ照射位置がアーク溶融部から離れすぎて、レーザ溶融部とアーク溶融部とつながられなければ、ピットが多くなるか、不連続ビードになる。従って、高速溶接を達成するためには、レーザの照射位置をアークによる形成された溶融部の前方とし、且つ、レーザによる溶融部とアークによる溶融部はつながるように調整する必要がある。
【産業上の利用可能性】
【0096】
本発明は、亜鉛めっき鋼板の重ねすみ肉溶接に好適に利用することができる。
【図面の簡単な説明】
【0097】
【図1】横軸にアークによる単独入熱量をとり、縦軸にブローホール率をとって、アーク入熱量とブローホール率との関係を示すグラフ図である。
【図2】本発明の第3の実施形態に係る溶接方法を示す図である。
【図3】レーザ光の照射領域をアークの溶融部の内部に位置させた場合の溶接方法を示す図である。
【図4】レーザ光の照射領域がアークの溶融部から過度に離隔しておりレーザ光による溶融部がアークによる溶融部と接触できない場合の溶接方法を示す図である。
【図5】(a)乃至(c)は、ブローホール率の計測方法を示す平面図であり、(a)は溶接後の試験片を示し、(b)はこの試験片をX線透過法により撮影したX線写真を示し、(c)はこのX線写真をスキャナで読み込んで得られたデジタル画像を示す。
【図6】重ねすみ肉溶接における溶接部の形状を示す断面図である。
【図7】従来のアーク溶接方法を示す図である。
【符号の説明】
【0098】
1;亜鉛めっき鋼板
2;レーザ光
3;レーザ光2の照射領域
4;レーザ照射による溶融部
5;溶接ワイヤ
6;アーク
7;アーク6の照射領域
8;アーク溶接による溶融部
9;ピット
10;溶接部
11;ビード
12;X線写真
13;ブローホール
14;デジタル画像
101;亜鉛めっき鋼板
102;溶接ワイヤ
103;アーク
104;溶融池
105;ビード
L;領域

【特許請求の範囲】
【請求項1】
片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板に対してレーザ・アーク複合溶接を行う際に、単独入熱が1.5kJ/cm未満であるアーク溶接の消耗式電極として使用されるレーザ・アーク複合溶接用ソリッドワイヤにおいて、その組成が、C:0.01乃至0.13質量%、Si:0.1乃至1.2質量%、Mn:0.5乃至2.5質量%、Al、Ti及びZrからなる群から選択された1種又は2種以上の成分:合計で0.3質量%以下、を含有し、残部がFe及び不可避的不純物からなり、(Si/Mn)の値が0.2より大きく1.5未満であり、下記数式を満たすことを特徴とするレーザ・アーク複合溶接用ソリッドワイヤ。
4.5<Si+2.3Mn+5(Ti+Al+Zr)<7.0
【請求項2】
片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板に対してレーザ・アーク複合溶接を行う際に、単独入熱が1.5kJ/cm以上であるアーク溶接の消耗式電極として使用されるレーザ・アーク複合溶接用ソリッドワイヤにおいて、その組成が、C:0.01乃至0.13質量%、Si:0.1乃至1.2質量%、Mn:0.5乃至2.5質量%、Al、Ti及びZrからなる群から選択された1種又は2種以上の成分:合計で0.3質量%以下、を含有し、残部がFe及び不可避的不純物からなり、(Si/Mn)の値が0.2より大きく1.5未満であり、下記数式を満たすことを特徴とするレーザ・アーク複合溶接用ソリッドワイヤ。
1.2<Si+1.7Mn+6(Ti+Al+Zr)<3.0
【請求項3】
前記レーザ・アーク複合溶接の溶接速度が1.5m/分以上であることを特徴とする請求項1又は2に記載のレーザ・アーク複合溶接用ソリッドワイヤ。
【請求項4】
片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板を対象とし、溶接予定領域にレーザ光を照射しながら、レーザ光の照射後の領域にアークを照射するレーザ・アーク複合溶接方法において、前記亜鉛めっき鋼板の厚さをt(mm)とするとき、前記レーザ光のエネルギー密度を、このレーザ光の照射のみにより、前記亜鉛めっき鋼板に深さが0.3乃至(3×t/4)mmであり、幅が0.8mm以上である溶融部が形成されるような値に設定し、前記レーザ光の照射領域を、前記アークの照射により形成される溶融部に対して溶接方向前方に離隔し、且つ、前記レーザ光の照射により形成される溶融部が前記アークの照射により形成された溶融部につながるような位置とし、前記アーク溶接の消耗式電極として、その組成が、C:0.01乃至0.13質量%、Si:0.1乃至1.2質量%、Mn:0.5乃至2.5質量%、Al、Ti及びZrからなる群から選択された1種又は2種以上の成分:合計で0.3質量%以下、を含有し、残部がFe及び不可避的不純物からなり、(Si/Mn)の値が0.2より大きく1.5未満であり、下記数式を満たすレーザ・アーク複合溶接用ソリッドワイヤを使用し、前記アークによる単独入熱を1.5kJ/cm未満とすることを特徴とするレーザ・アーク複合溶接方法。
4.5<Si+2.3Mn+5(Ti+Al+Zr)<7.0
【請求項5】
片面当たりのめっき付着量が亜鉛量で10乃至120g/mである亜鉛めっき鋼板を対象とし、溶接予定領域にレーザ光を照射しながら、レーザ光の照射後の領域にアークを照射するレーザ・アーク複合溶接方法において、前記亜鉛めっき鋼板の厚さをt(mm)とするとき、前記レーザ光のエネルギー密度を、このレーザ光の照射のみにより、前記亜鉛めっき鋼板に深さが0.3乃至(3×t/4)mmであり、幅が0.8mm以上である溶融部が形成されるような値に設定し、前記レーザ光の照射領域を、前記アークの照射により形成される溶融部に対して溶接方向前方に離隔し、且つ、レーザ光の照射により形成される溶融部が前記アークの照射により形成された溶融部につながるような位置とし、前記アーク溶接の消耗式電極として、その組成が、C:0.01乃至0.13質量%、Si:0.1乃至1.2質量%、Mn:0.5乃至2.5質量%、Al、Ti及びZrからなる群から選択された1種又は2種以上の成分:合計で0.3質量%以下、を含有し、残部がFe及び不可避的不純物からなり、(Si/Mn)の値が0.2より大きく1.5未満であり、下記数式を満たすレーザ・アーク複合溶接用ソリッドワイヤを使用し、前記アークによる単独入熱を1.5kJ/cm以上とすることを特徴とするレーザ・アーク複合溶接方法。
1.2<Si+1.7Mn+6(Ti+Al+Zr)<3.0
【請求項6】
溶接速度を1.5m/分以上とすることを特徴とする請求項4又は5に記載のレーザ・アーク複合溶接方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2006−21224(P2006−21224A)
【公開日】平成18年1月26日(2006.1.26)
【国際特許分類】
【出願番号】特願2004−201004(P2004−201004)
【出願日】平成16年7月7日(2004.7.7)
【出願人】(000001199)株式会社神戸製鋼所 (5,860)
【出願人】(000000262)株式会社ダイヘン (990)
【Fターム(参考)】