説明

光伝送モジュール

【課題】電磁波の共振の発生を抑制し、良好な信号伝送特性を得る。
【解決手段】光伝送モジュール1は、レーザ素子20を搭載し、レーザ素子20と接続する線路を形成したレーザ素子搭載基板22と、レーザ素子搭載基板22を支持するステム24と、レーザ素子20を駆動させる駆動回路を備えた駆動回路素子16と、駆動回路素子16を支持するブロック18と、レーザ素子搭載基板22と駆動回路素子16とを接続する導線34と、を含み、ステム24とブロック18との配置間隔を、レーザ素子搭載基板22と駆動回路素子16との配置間隔よりも広くした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光伝送モジュールに関する。
【背景技術】
【0002】
光ファイバ通信では、データに基づいてレーザ光を変調して送信する光伝送モジュールが用いられており、光伝送モジュールに搭載されるレーザ素子は熱により特性が変化するため、光伝送モジュールにはレーザ素子を冷却する機構が設けられている。例えば、下記の特許文献1では、レーザ素子を搭載した基板(レーザ素子搭載基板)を冷却素子の上に設置し、冷却素子をレーザ素子の温度に応じて制御して、レーザ素子を一定の温度に保つこととしている。この際、駆動回路とレーザ素子搭載基板とは分離して配置され、両者はワイヤ等の導線により接続されるが、高周波信号の伝送特性を低下させないように導線は短い方が望ましい。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−306100号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、光伝送モジュールにおいて10Gbpsを超える通信速度を実現しようとすると、光伝送モジュール内部を伝送する電気信号の波長が短くなり、信号波長と光伝送モジュール内部の空間や部品寸法のスケールが同程度となり、電磁波の共振が信号に影響を与えやすくなる。そうした環境下で、レーザ素子搭載基板と駆動回路とを近接して配置すると、両者を支持する支持部材の間で電磁波の共振が発生し易くなり、結果として良好な信号伝送特性が得られないことがあった。
【0005】
本発明の目的の一つは、電磁波の共振の発生を抑制し、良好な信号伝送特性を得ることができる光伝送モジュールを提供することにある。
【課題を解決するための手段】
【0006】
上記目的を達成するために、本発明の一態様に係る光伝送モジュールは、レーザ素子を搭載し、当該レーザ素子と接続する線路を形成したレーザ素子搭載基板と、前記レーザ素子搭載基板を支持する第1の支持部材と、前記レーザ素子を駆動させる駆動回路を備えた駆動回路素子と、前記駆動回路素子を支持する第2の支持部材と、前記レーザ素子搭載基板と前記駆動回路素子とを接続する導線と、を含み、前記第1の支持部材と前記第2の支持部材との配置間隔を、前記レーザ素子搭載基板と前記駆動回路素子との配置間隔よりも広くしたことを特徴とする。
【0007】
また、本発明の他の一態様では、前記レーザ素子搭載基板を前記第1の支持部材よりも前記第2の支持部材側に突出させて配置したこととする。
【0008】
また、本発明の他の一態様では、前記レーザ素子搭載基板と前記駆動回路素子とが配置される前記光伝送モジュールの筐体内部の面からのそれぞれの高さを略等しくしたこととする。
【0009】
また、本発明の他の一態様では、前記光伝送モジュールの筐体に設けられた電気信号の入力を受け付ける端子と、前記端子と前記駆動回路との接続を中継する中継回路と、前記中継回路を支持する第3の支持部材と、を含み、前記第2の支持部材と前記第3の支持部材とが配置される前記光伝送モジュールの筐体内部の面からのそれぞれの高さを略等しくしたこととする。
【0010】
また、本発明の他の一態様では、前記第1の支持部材を支持する冷却素子を含むこととする。
【0011】
また、本発明の他の一態様では、前記冷却素子と前記第2の支持部材との配置間隔を、前記レーザ素子搭載基板と前記駆動回路素子との配置間隔よりも広くしたこととする。
【0012】
また、本発明の他の一態様では、前記レーザ素子搭載基板と前記第1の支持部材とを熱膨張率が略等しい材料により構成したこととする。
【発明の効果】
【0013】
本発明の一態様によれば、レーザ素子搭載基板と駆動回路素子とを接続する導線を短くした場合にも電磁波の共振の発生を抑制し、良好な信号伝送特性を得ることができる。
【0014】
本発明の一態様によれば、駆動回路素子側を突出させる場合に比べて基板の破損が生じにくくなる。
【0015】
本発明の一態様によれば、レーザ素子搭載基板と駆動回路素子とを接続する導線を短くして、高周波信号の伝送特性が劣化することを抑制できる。
【0016】
本発明の一態様によれば、中継回路から駆動回路へと信号が伝送される際の信号特性の劣化を抑制できる。
【0017】
本発明の一態様によれば、第1の支持部材を介してレーザ素子を冷却することで、レーザ素子を安定動作させることができる。
【0018】
本発明の一態様によれば、冷却素子と第2の支持部材との配置間隔を、レーザ素子搭載基板と駆動回路素子との配置間隔よりも広くしない場合に比べて、電磁波の共振の発生を抑制できる。
【0019】
本発明の一態様によれば、光伝送モジュールの耐久性を向上できる。
【図面の簡単な説明】
【0020】
【図1】本実施形態に係る光伝送モジュールの断面図である。
【図2】図1に示した光伝送モジュールの内部を上から眺めた平面図である。
【図3A】本実施形態に係る光伝送モジュールのシミュレーション結果を示す図である。
【図3B】従来例に係る光伝送モジュールのシミュレーション結果を示す図である。
【図4】第2の実施形態に係る光伝送モジュールの断面図である。
【図5】第3の実施形態に係る光伝送モジュールの断面図である。
【図6】第4の実施形態に係る光伝送モジュールの断面図である。
【図7】従来例に係る光伝送モジュールの断面図である。
【発明を実施するための形態】
【0021】
以下、本発明を実施するための好適な実施の形態(以下、実施形態という)を、図面に従って説明する。
【0022】
図1には、本実施形態に係る光伝送モジュール1の断面図を示す。本実施形態に係る光伝送モジュール1は、例えば10Gbpsを超える高速通信に用いられ、通信機器、データ伝送装置や情報処理装置等から入力される電気信号を光信号に変換して光ファイバに出力する通信モジュールである。なお、図1に示される光伝送モジュール1は、本実施形態を説明するのに必要な部分を抽出して描いたものである。図1に示されるように、光伝送モジュール1は、筐体10、コネクタ12、中継基板14、駆動回路素子16、ブロック18(支持部材)、レーザ素子20、レーザ素子搭載基板22、ステム24(支持部材)、冷却素子26、レンズ28、レンズ保持部30を具備する。
【0023】
コネクタ12は、光伝送モジュール1の筐体10の側面に設けられ、光伝送モジュール1と情報処理装置等の外部機器とを接続するインターフェースである。コネクタ12は、例えば同軸コネクタとして構成してよく、コネクタ12の中心導体13は中継基板14にはんだ等によって接続される。
【0024】
中継基板14は、コネクタ12の中心導体13と、駆動回路素子16との接続を中継するものであり、中継基板14にはコネクタ12から入力された信号を駆動回路素子16に伝送する線路(配線パターン)が形成されている。線路は、例えば、マイクロストリップ線路、コプレナー線路、グラウンデッドコプレナー線路等の高周波信号の伝送特性が良好な線路を用いることとしてよい。中継基板14に形成された線路の一端はコネクタ12の中心導体13と接続され、当該線路の他端は、駆動回路素子16と導線32(細い電線)により接続される(ワイヤボンディング)。
【0025】
駆動回路素子16は、レーザ素子20に駆動電流を供給する駆動回路を備えた素子である。駆動回路素子16は、例えば、中継基板14を介して伝送される「0」と「1」からなるデジタルの送信情報に基づいて「0」をLow、「1」をHighとして変調した変調電流(パルス電流)を基底電流に合波して駆動電流を生成することとしてよい。
【0026】
ブロック18は、光伝送モジュール1の筐体10の内面に載置され、中継基板14と駆動回路素子16とをそれぞれ支持する支持部材である。ブロック18は筐体10に対して固定され、また、中継基板14と駆動回路素子16はブロック18に対して固定される。ブロック18は、駆動回路素子16における発熱を吸収し、かつ電気的にはグラウンドとして機能させ、また、駆動回路素子16とブロック18とは熱膨張率を略等しいものとすることが望ましいため、ブロック18には例えば銅タングステン合金等の熱伝導の良い金属材を用いることとしてよい。
【0027】
レーザ素子搭載基板22は、レーザ素子20を搭載し、レーザ素子20と駆動回路素子16とを接続する線路(配線パターン)が形成された基板である。駆動回路素子16とレーザ素子搭載基板22に形成された線路とは導線34(ワイヤ)により接続され(ワイヤボンディング)、また、レーザ素子搭載基板22に形成された線路とレーザ素子20とも導線36(ワイヤ)により接続される(ワイヤボンディング)。
【0028】
レーザ素子20は、駆動回路素子16からレーザ素子搭載基板22を介して駆動電流の入力を受けて光信号を出力するレーザ光出力素子である。レーザ素子20から出力された光信号は、レンズ保持部30により保持されるレンズ28に入射し、レンズ28で屈折して図示しない光ファイバに集光される。こうして、光信号が光ファイバを介して外部に送信される。なお、光伝送モジュール1には光信号を光ファイバに集光させるための図示しないレンズ28の位置合わせ機構を具備しているが、こうした機構には公知のものを用いることとしてよい。
【0029】
ステム24は、レーザ素子搭載基板22と、レンズ28を保持するレンズ保持部30とをそれぞれ支持する支持部材である。本実施形態では、ステム24の表面に段差が設けられており、高い方にレーザ素子搭載基板22が、低い方にレンズ保持部30が固定されている。また、ステム24は、冷却素子26の上に載置されており、レーザ素子20およびレーザ素子搭載基板22において発生した熱を冷却素子26に伝達するものであるため、熱伝導率が高く、また、レーザ素子搭載基板22と略等しい熱膨張率を有する銅タングステン合金等の材質で形成することとしてよい。
【0030】
冷却素子26は、レーザ素子20の温度が一定となるようにレーザ素子搭載基板22およびレーザ素子20を冷却する機能を有する素子であり、例えばペルティエ素子等の熱電素子を用いることとしてよい。冷却素子26は、その一方の面において光伝送モジュール1の筐体10の内面に固定され、またその対向する面においてステム24が固定されている。なお、図示されていないが、光伝送モジュール1には、レーザ素子20の温度を検出し、当該検出した温度に応じて冷却素子26を制御する制御回路を備えることとしてよい。
【0031】
図2には、図1に示した光伝送モジュール1の内部を上から眺めた平面図を示す。図2に示されるように、光伝送モジュール1への入力は差動入力であり、コネクタ12Aとコネクタ12Bにそれぞれ+信号と−信号が入力され、コネクタ12Aと接続する線路38Aを介して+信号が駆動回路に入力され、コネクタ12Bと接続する線路38Bを介して−信号が駆動回路素子16に入力される。
【0032】
駆動回路素子16からレーザ素子搭載基板22へは単相出力であるが、出力信号の両側をグラウンドとする配線構造とするため、駆動回路素子16とレーザ素子搭載基板22とを接続する導線34(ワイヤ)は、中央を信号線、その両脇をグラウンドとする3本の線路と駆動回路素子16とをそれぞれ接続する3本の導線を含み構成される。
【0033】
図2に示されるように、レーザ素子搭載基板22はステム24および冷却素子26に比べて、駆動回路素子16側に突出して配置されている。図2に示した例では、ステム24の幅はレーザ素子搭載基板22よりも広くなっているが、図示した例に限定されるものではなく、両者の幅は同じであってもよい。また、信号の伝送特性を良好なものとするため、レーザ素子搭載基板22の線路40もインピーダンス整合することとする。
【0034】
上述したように、中継基板14と駆動回路素子16、駆動回路素子16とレーザ素子搭載基板22、そしてレーザ素子搭載基板22とレーザ素子20はそれぞれ導線(ワイヤ)により接続される。こうしたワイヤをレーザ素子搭載基板22に形成された線路40と同じようにインピーダンス整合することは困難であり、ワイヤを長くするとインダクタンス性が大きくなり高周波伝送特性が劣化するため、ワイヤを短くして高周波伝送特性の劣化を抑制することが考えられる。しかしながら、単純に駆動回路素子16および駆動回路素子16を支持するブロック18と、レーザ素子搭載基板22およびレーザ素子搭載基板22を支持するステム24とを近づけてワイヤを短くすると、導体であるブロック18とステム24との間隔が短くなることにより電磁界の共振現象が発生し易くなり、高周波の伝送特性が劣化してしまう。そこで、本実施形態では、レーザ素子搭載基板22の端をステム24の端よりも駆動回路素子16側に突出させて配置することにより、駆動回路素子16とレーザ素子搭載基板22との間隔に対して、ブロック18とステム24との間隔を広げることとしている。すなわち、本実施形態では、レーザ素子搭載基板22にステム24に対して突出した突出部22aを設けることとしている。
【0035】
本実施形態では上述した構成を設けることで、駆動回路素子16とレーザ素子搭載基板22との間隔を狭めて、両者を接続するワイヤの長さを短くするとともに、導体で形成されたブロック18とステム24との間隔を広くすることができ、二つの導体間が狭い場合に発生し易い電磁波の共振現象の発生およびその影響を低減することができる。なお、駆動回路素子16をブロック18からレーザ素子搭載基板22側に突出させても同様の効果が得られるが、駆動回路素子16をブロック18に対して突出させてワイヤをボンディングすると駆動回路素子16の破損を生じさせる可能性が高いため、駆動回路素子16とレーザ素子搭載基板22のどちらか一方を突出させるのであれば、レーザ素子搭載基板22側を突出させる方が望ましい。
【0036】
また、本実施形態では、冷却素子26もステム24と同様にレーザ素子搭載基板22よりもブロック18からの距離を大きくして配置しているが、冷却素子26とステム24とのブロック18に対する間隔は同じでなくともよい。また、ワイヤには幅広のリボン線を用いることで高周波伝送特性が劣化しないようにしてもよい。
【0037】
次に、図3Aおよび図3Bに示したシミュレーション結果を参照しながら、本実施形態に係る光伝送モジュール1の伝送特性について説明する。
【0038】
図3Aには、図1に示すようにレーザ素子搭載基板22の端をステム24の端に対して駆動回路素子16側に突出させた光伝送モジュール1(本実施形態)の、レーザ素子搭載基板22と駆動回路素子16との間隔を0.2mm、ステム24とブロック18との間隔を0.4mmとした場合の、駆動回路素子16の入力端からレーザ素子20に備えられた変調器の出力端までの伝送特性を電磁界シミュレーション(Ansoft社のHFSS)により解析した解析結果を示す。図3Aの横軸は信号の周波数(GHz)、縦軸は伝送特性(dB)を示している。図3Aに示されるように、本実施形態に係る光伝送モジュール1では、周波数が25GHz付近でわずかな乱れがあるものの全体として伝送特性にリプルの発生が抑制されている。すなわち、信号伝送の特性の観点からすると波形の乱れが少なく、良好な特性となっているといえる。
【0039】
図3Bには、図7に示した、レーザ素子搭載基板22の端とステム24の端が一致し、駆動回路素子16の端とブロック18の端とが一致した従来例の光伝送モジュール5に対して、レーザ素子搭載基板22と駆動回路素子16との間隔を0.2mmとした場合の、駆動回路素子16の入力端から、レーザ素子20に備えられた変調器の出力端までの伝送特性を同様の電磁界シミュレーションにより解析した解析結果を示す。図3Bに示されるように、従来例の光伝送モジュール5では、例えば周波数が15GHzから25GHzの辺りで伝送特性に乱れが多数発生しており、全体としても伝送特性にリプルが多く発生している。
【0040】
図3Bに示したシミュレーション結果に係る光伝送モジュール5では、例えば周波数25GHz近傍は凹み(Dip)の特性となっているが、電磁界シミュレータでこの周波数での電磁界分布を解析すると、従来の光伝送モジュール5の断面を表す図7における、ブロック18とステム24の端面との間で、強い電界が発生していた。これは、二つの導体間の間で共振現象が発生しているためといえる。
【0041】
一方で、図1に示される本実施形態に係る光伝送モジュール1の構成に対して同様に電磁界シミュレータを用いて電界の状況を解析した場合には、ブロック18とステム24の端面との間で強い電界の集中は見られなかった。すなわち、二つの導体(ブロック18とステム24)の間隔を広げたことによって、電界の集中が緩和され、共振が見られなくなったものと考えられる。
【0042】
通信用の信号伝送機器では、広い帯域の周波数の信号を扱うので、周波数特性でのリプルは波形の乱れを生じさせ、通信エラー発生の要因となる。したがって、信号伝送機器では、周波数特性で凹凸の少ないことが望ましく、共振によるディップやピークは避けるべき現象である。これに対して本実施形態に係る光伝送モジュール1の伝送特性は、図3Aに示されるようにリプルが小さく良好な特性となっている。
【0043】
なお、図3A,図3Bにおいて示した伝送特性の曲線に関して、20GHz以上で右下がりの特性となっているが、これはシミュレーションに用いたレーザ素子(抵抗とコンデンサの並列回路で回路モデルを記述)の特性に起因するものであり、配線基板や配線構造に起因するものではない。
【0044】
次に、本発明の他の実施形態について説明する。以下、各実施形態を説明する図において図1と同一の符号が付されているものは第1の実施形態におけるものと同じであるため説明を省略する。
【0045】
図4には、本発明の第2の実施形態に係る光伝送モジュール2の断面図を示す。第2の実施形態に係る光伝送モジュール2と第1の実施形態に係る光伝送モジュール1との相違点は、第2の実施形態では中継基板14と駆動回路素子16とがそれぞれ異なるブロック18A,ブロック18Bの上に支持されている点である。そして、ブロック18Aとブロック18Bとは、中継基板14と駆動回路素子16との厚みの差に応じてその高さが定められており、中継基板14と駆動回路素子16との配線接続する面の高さが略等しくなっている。こうすることにより、中継基板14と駆動回路素子16とを接続する導線(ワイヤ)32の長さを最小にし、高周波信号の伝送特性が劣化することを低減することができる。
【0046】
また、中継基板14に比べて駆動回路素子16の発熱が大きいため、駆動回路素子16を支持するブロック18Bを熱伝導率が高い材質で構成することで、駆動回路素子16から放熱が良好に行われて駆動回路素子16の温度上昇が抑えられ、光伝送モジュール2の動作が安定し信頼性が向上する。また、駆動回路素子16に比べて発熱の小さい中継基板14には熱伝導率の高い素材を用いずともよいため、中継基板14と駆動回路素子16とを同じブロック18の上に支持していた第1の実施形態に比べて、ブロックのコストを低減させることができる。
【0047】
図5には、本発明の第3の実施形態に係る光伝送モジュール3の断面図を示す。第3の実施形態と第1の実施形態との相違点は、図5に示されるように、第3の実施形態では、駆動回路素子16とレーザ素子搭載基板22とのそれぞれをブロック18、ステム24から突出させて配置している点である。本実施形態に係る光伝送モジュール3によっても、レーザ素子搭載基板22と駆動回路素子16とを接続する導線34を短くした場合にも電磁波の共振の発生を抑制し、良好な信号伝送特性を得ることができる。
【0048】
図6には、本発明の第4の実施形態に係る光伝送モジュール4の断面図を示す。第4の実施形態と第1の実施形態との相違点は、図6に示されるように、第4の実施形態では、レーザ素子搭載基板22ではなく駆動回路素子16の方をブロック18に対してレーザ素子搭載基板22側に突出させて配置している点である。本実施形態に係る光伝送モジュール4によっても、レーザ素子搭載基板22と駆動回路素子16とを接続する導線34を短くした場合にも電磁波の共振の発生を抑制し、良好な信号伝送特性を得ることができる。
【0049】
本発明は、上述した実施形態に限定されるものではなく、例えば本発明を送信用の光モジュールのみならず受信用、送受信用の光モジュールにも適用してよいのはもちろんである。
【符号の説明】
【0050】
1 光伝送モジュール、2 光伝送モジュール(第2の実施形態)、3 光伝送モジュール(第3の実施形態)、4 光伝送モジュール(第4の実施形態)、5 光伝送モジュール(従来例)、10 筐体、12,12A,12B コネクタ、13 中心導体、14 中継基板、16 駆動回路素子、18,18A,18B ブロック、20 レーザ素子、22 レーザ素子搭載基板、22a 突出部、24 ステム、26 冷却素子、28 レンズ、30 レンズ保持部、32,34,36 導線(ワイヤ)、38A,38B,40 線路。

【特許請求の範囲】
【請求項1】
レーザ素子を搭載し、当該レーザ素子と接続する線路を形成したレーザ素子搭載基板と、
前記レーザ素子搭載基板を支持する第1の支持部材と、
前記レーザ素子を駆動させる駆動回路を備えた駆動回路素子と、
前記駆動回路素子を支持する第2の支持部材と、
前記レーザ素子搭載基板と前記駆動回路素子とを接続する導線と、を含み、
前記第1の支持部材と前記第2の支持部材との配置間隔を、前記レーザ素子搭載基板と前記駆動回路素子との配置間隔よりも広くしたことを特徴とする光伝送モジュール。
【請求項2】
前記レーザ素子搭載基板を前記第1の支持部材よりも前記第2の支持部材側に突出させて配置したことを特徴とする請求項1に記載の光伝送モジュール。
【請求項3】
前記レーザ素子搭載基板と前記駆動回路素子とが配置される前記光伝送モジュールの筐体内部の面からのそれぞれの高さを略等しくしたことを特徴とする請求項1又は2に記載の光伝送モジュール。
【請求項4】
前記光伝送モジュールの筐体に設けられた電気信号の入力を受け付ける端子と、
前記端子と前記駆動回路との接続を中継する中継回路と、
前記中継回路を支持する第3の支持部材と、を含み、
前記第2の支持部材と前記第3の支持部材とが配置される前記光伝送モジュールの筐体内部の面からのそれぞれの高さを略等しくしたことを特徴とする請求項1乃至3のいずれかに記載の光伝送モジュール。
【請求項5】
前記第1の支持部材を支持する冷却素子を含むことを特徴とする請求項1乃至4のいずれかに記載の光伝送モジュール。
【請求項6】
前記冷却素子と前記第2の支持部材との配置間隔を、前記レーザ素子搭載基板と前記駆動回路素子との配置間隔よりも広くしたことを特徴とする請求項5に記載の光伝送モジュール。
【請求項7】
前記レーザ素子搭載基板と前記第1の支持部材とを熱膨張率が略等しい材料により構成したことを特徴とする請求項1乃至6に記載の光伝送モジュール。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate