説明

溶接部の非破壊検査装置、及び溶接部の非破壊検査方法

【課題】溶接部を従来よりも簡易に非破壊で検査することができるようにする。
【解決手段】3つの脚部11a〜11cと、それら3つの脚部11a〜11cを相互に接続する胴部11dとが一体で形成されたフェライトコア11と、フェライトコア11の胴部11dに電線を巻き回すことにより形成されたコイル12とを有するプローブ10を構成する。そして、鋼板51a、51bがスポット溶接されることにより形成されたインデンテーション52aの内部に脚部11aが位置すると共に、その他の脚部11b、11cがインデンテーション52aの外部に位置するように、プローブ10を配置する。このようにした状態で、コイル12の両端に印加される交流電圧とコイル12に流れる交流電流とに基づくインピーダンスZと偏角θとを計測し、計測した結果に基づいて、ナゲット53の大きさを判定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、溶接部の非破壊測定装置、及び溶接部の非破壊測定方法に関し、特に、磁性体の溶接部を非破壊で検査するために用いて好適なものである。
【背景技術】
【0002】
従来から、自動車や鉄道車両を製造するに際し、重ね合わせた複数の磁性体板(例えば鋼板)を、スポット溶接を行うことにより接合することが広く行われている。このようなスポット溶接では、重ね合わせた複数の磁性体板を点で溶接する。したがって、溶接強度が十分であるか否かを確認するために、溶接部を非破壊で検査することは、完成品の性能を確保する上で極めて重要である。
【0003】
磁性体の溶接部を非破壊で検査する技術として、特許文献1に記載の技術がある。この技術では、まず、磁性体の被測定部に印加された静磁場を遮断し、遮断後の被測定部全体に生起する磁束の変化と、被測定部近傍の複数の位置に生起する局所的な磁束の変化とを測定する。そして、被測定部全体に生起する磁束の変化の測定値を回帰した後に、被測定部近傍の複数の位置に生起する局所的な磁束の変化を回帰する。このようにして回帰した結果に基づいて、被測定部近傍の複数の位置に生起する局所的な磁束の変化を表す回帰関数を求め、求めた回帰関数の係数や減衰定数に基づいて、溶接部の構造を予測する。
【0004】
【特許文献1】特開2005−345282号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、前述した従来の技術では、静磁場を遮断した場合の磁束の過渡現象をモデル化する必要がある。この過渡現象は複雑な現象であるので、多数の係数を用いて複雑なモデルを構築しなければならない。したがって、従来の技術では、溶接部を検査するための手法が容易でないという課題があった。
【0006】
本発明は、このような問題点に鑑みてなされたものであり、溶接部を従来よりも簡易に非破壊で検査することができるようにすることを目的とする。
【課題を解決するための手段】
【0007】
本発明の溶接部の非破壊検査装置は、磁性体を含む被測定材の溶接部を非破壊で検査する溶接部の非破壊検査装置であって、複数の脚部と、それら複数の脚部と磁気的に接続される胴部とを有するコアと、前記コアに巻き回されるコイルと、前記コイルに交流信号を供給する供給手段と、前記コイルに交流信号が供給されることにより得られる交流電圧を測定する電圧測定手段と、前記コイルに交流信号が供給されることにより得られる交流電流を測定する電流測定手段と、前記電圧測定手段により測定された交流電圧と、前記電流測定手段により測定された交流電流とを用いて、前記溶接部を評価するための評価値を導出する導出手段と、を有し、前記交流信号は、前記複数の脚部の先端面が前記被測定材に接触された状態で、前記コイルに供給され、前記供給手段により前記コイルに交流信号が供給されることにより生じた磁束を、前記コアの少なくとも一の脚部から流出させ、前記被測定材の内部を通って前記コアの他の脚部に流入するようにして環流し、前記導出手段は、前記溶接部を通る磁束の時間変化に応じて変化する値を評価値として導出することを特徴とする。
【0008】
本発明の溶接部の非破壊検査方法は、複数の脚部と、それら複数の脚部と磁気的に接続される胴部とを有するコアと、前記コアに巻き回されるコイルと、を有するプローブを用いて、磁性体を含む被測定材の溶接部を非破壊で検査する溶接部の非破壊検査方法であって、前記複数の脚部の先端面を前記被測定材に接触させる配置ステップと、前記配置ステップにより、前記複数の脚部の先端面が前記被測定材に接触された後に、前記コイルに交流信号を供給する供給ステップと、前記コイルに交流信号が供給されることにより得られる交流電圧を測定する電圧測定ステップと、前記コイルに交流信号が供給されることにより得られる交流電流を測定する電流測定ステップと、前記電圧測定ステップにより測定された交流電圧と、前記電流測定ステップにより測定された交流電流とを用いて、前記溶接部を評価するための評価値を導出する導出ステップと、を有し、前記供給ステップにより前記コイルに交流信号が供給されることにより生じた磁束を、前記コアの少なくとも一の脚部から流出させ、前記被測定材の内部を通って前記コアの他の脚部に流入するようにして環流し、前記導出ステップは、前記溶接部を通る磁束の時間変化に応じて変化する値を評価値として導出することを特徴とする。
【発明の効果】
【0009】
本発明によれば、コアに巻き回されたコイルに交流信号を供給することにより生じた磁束を、コアの少なくとも一の脚部から流出させ、被測定材の内部を通ってコアの他の脚部に流入するようにして環流させる。このようにしてコイルに交流信号を供給することにより得られる交流電圧と交流電流とを用いて溶接部を評価する。したがって、複雑な計算を行わなくても、溶接部を評価することができる。よって、溶接部を従来よりも簡易に非破壊で検査することができる。
【発明を実施するための最良の形態】
【0010】
(第1の実施形態)
以下、図面を参照しながら、本発明の第1の実施形態を説明する。
(非破壊検査装置1の概略構成)
図1は、溶接部の非破壊検査装置の概略構成の一例を示す図である。
図1に示すように、鋼板51a、51bには、スポット溶接によりインデンテーション(凹み部)52a、52bが生じる。鋼板51a、51bの接合部には、溶接部であるナゲット(溶着部)53が形成されている。ナゲット53の周囲には、溶融はしていないが、組織が変質している熱影響部54が形成されている。本実施形態の非破壊検査装置1では、2枚の鋼板51a、51bがスポット溶接により接合されることにより生じるナゲットの大きさ(例えば直径)が適正なものであるか否かを検査するようにしている。
【0011】
図1において、非破壊検査装置1は、プローブ10と、インピーダンスメータ20と、コンピュータ30と、ディスプレイ40とを備えている。
【0012】
(プローブ10の構成)
コイル12は、フェライトコア11に巻き回されている。コイル12が巻き回されたフェライトコア11と、プローブ10を人やロボットが把持するための把持部13との間には、例えばシリコンゴムを用いて構成された媒介部14が設けられている。媒介部14は、フェライトコア11と把持部13とを可動的に連結する所謂関節としての機能と、把持部13の動きを吸収する機能(測定中に把持部13の動きがフェライトコア11に伝わるのを抑制する機能)とを有している。この媒介部14により、フェライトコア11の脚部の先端面を鋼板51aの表面に合わせて配置し易くすることができると共に、測定中に把持部13に生じる動きがフェライトコア11に伝わるのを防止することができる。
【0013】
また、プローブ10を人が把持する場合に、プローブ10を把持し易くするために、把持部13の周囲には、膨出部15が設けられている。
把持部13の内部には、コイル12の引き出し線と、リード線16とを電気的に相互に接続するためのプリント基板が設けられている。リード線16は、プローブ10とインピーダンスメータ20とを電気的に相互に接続するためのものである。また、フェライトコア11が有する複数の脚部の1つには、プローブ10の位置決めを行うための位置決め板17が設けられている。
【0014】
図2は、プローブ10の先端付近の構成の一例を示した図である。
図2に示すように、本実施形態では、フェライトコア11が有する複数の脚部のうちの1つが、インデンテーション52aの内部に置かれ、その他の脚部が、インデンテーション52aの外部に置かれるようにしている。
このような状態で、後述するようにしてインピーダンスメータ20から交流信号がコイル12に供給され、フェライトコア11が励磁されると、図2に示すように、フェライトコア11と鋼板51aとを循環する閉磁路18が形成される。この閉磁路18に存在するナゲット53の大きさ(長さ)によって、磁気抵抗が変化する。磁気抵抗が変化すると、コイル12の両端に生じる電圧、ないしはコイル12に流れる電流が変化する。したがって、コイル12の両端に生じる電圧と、コイル12に流れる電流とを測定することにより、ナゲット53の大きさ(長さ)を見積もることができる。本実施形態では、このような性質を利用して、ナゲット53の大きさが適正なものであるか否かを検査するようにしている。
【0015】
図3は、プローブ10の配置方法の一例を示す図である。
図3(a)、(b)に示すように、フェライトコア11の脚部の1つに設けられている位置決め板17は、インデンテーション52aよりも僅かに小さい大きさを有している。すなわち、位置決め板17と、インデンテーション52aとの中心O(中心付近)を合わせた場合に、インデンテーション52aのうち、内縁部分のみを視認できるように位置決め板17の大きさ及び形状が定められている。このように位置決め板17を設けることにより、位置決め板17が取り付けられる脚部とインデンテーション52aとの相対的な位置関係を定めることができ、人がプローブ10を操作する場合でも、プローブ10を出来るだけ正確な位置に配置することができる。
【0016】
尚、インデンテーション52aの大きさは、スポット溶接を行う際に使用される電極形状や溶接条件に応じてある程度の精度で定まる。よって、鋼板51をスポット溶接する際に使用された電極形状と溶接条件を予め把握しておくことにより、位置決め板17の大きさを定めることができる。また、1〜3[mm]の板厚の鋼板におけるインデンテーション52aの典型的な大きさ(直径)は、6〜10[mm]程度であり、更に、インデンテーション52aの典型的な深さは、0.2[mm]程度である。
【0017】
また、図3(a)、(b)に示すように、インデンテーション52aの内部に置かれる"フェライトコア11の脚部"は、インデンテーション52aの中心(中心付近)Oに合わせて配置されるのではなく、インデンテーション52aの中心Oからずれた位置に配置されるようにしている。図3に示す例では、インデンテーション52aの中心Oよりも、インデンテーション52aの外部に置かれる"フェライトコア11の脚部"と反対方向に1[mm]程度ずれた位置に、インデンテーション52aの内部に置かれる"フェライトコア11の脚部"を配置するようにしている。
このようにするのは、適正な大きさのナゲット53が形成されている場合には、ナゲット53が、図2に示した閉磁路18に確実に存在するようにするためである。具体的に本実施形態では、適正な大きさのナゲット53が形成されている場合には、フェライトコア11の"コイル12が巻き回される部分の中心部分"(コイル12の巻幅方向の中心部分)の位置が、ナゲット53の端部に対応する位置になるようにしている(図3(a)の破線を参照)。
【0018】
また、本実施形態では、フェライトコア11の脚部の先端面(フェライトコア11の設置面)は、鏡面研磨されている。また、本実施形態では、図3(c)に示すように、インデンテーション52aの内部に置かれる"フェライトコア11の脚部"の先端面を、インデンテーション52の傾斜(例えば傾斜の平均)に合わせて傾斜させるようにしている。インデンテーション52aの傾斜も、スポット溶接を行う際に使用される電極に応じてある程度の精度で定まる。よって、鋼板51をスポット溶接する際に使用された電極を予め把握しておくことにより、インデンテーション52aの内部に置かれる"フェライトコア11の脚部"の先端面の傾斜角度を定めることができる。
以上のようにしてフェライトコア11の脚部の先端面を加工するのは、フェライトコア11と鋼板51との間にエアギャップ(隙間)が生じ、閉磁路18における磁気抵抗が増大してしまうことを防止するためである。
【0019】
(インピーダンスメータ20の構成)
交流信号源21は、交流信号をプローブ10に供給する。この交流信号は、リード線16と、把持部13内のプリント基板とを介して、コイル12に供給される。これにより、前述したような閉磁路18が形成される(図2を参照)。
交流電圧測定器22は、交流信号源21からコイル12に交流信号が供給されることによりコイル12の両端に生じる交流電圧を測定する。交流電流測定器23は、交流信号源21からコイル12に交流信号が供給されることによりコイル12に流れる交流電流(励磁電流)を測定する。このように本実施形態では、交流信号源21を用いることにより、供給手段が実現され、交流電圧測定器22を用いることにより、電圧測定手段が実現され、交流電流測定器23を用いることにより、電流測定手段が実現される。
【0020】
インピーダンス計測部24は、交流電圧測定器22により測定された交流電圧と、交流電流測定器23により測定された交流電流とに基づく複素インピーダンスの絶対値(以後、単にインピーダンスと表記した場合は、インピーダンスの絶対値の意味である。)を算出する。偏角計測部25は、交流電圧測定器22により測定された交流電圧と、交流電流測定器23により測定された交流電流との位相差である複素インピーダンスの偏角(以後、単に偏角と表記した場合は、インピーダンスの偏角の意味である。)を算出する。
【0021】
(コンピュータ30の構成)
コンピュータ30は、例えばパーソナルコンピュータである。入力部31は、インピーダンス計測部24で算出されたインピーダンスと、偏角計測部25で算出された偏角とを入力するインターフェースである。
評価部32は、入力部31で入力された"インピーダンス及び偏角"に基づく評価値と、基準値記憶部33に記憶されている基準値とを比較することにより、鋼板51a、51bに形成されているナゲット53の大きさと、基準となるナゲットの大きさとの大小関係を判定し、鋼板51a、51bに形成されているナゲット53が適正な大きさ(例えば直径)を有しているか否かを判定する。
図4は、基準値記憶部33に記憶されている基準値の一例を示す図である。
図4に示すように、本実施形態の基準値記憶部33には、スポット溶接が行われた際に使用された電極の形状(電極形状a)、スポット溶接が行われた際の電極の加圧力(電極加圧力b)、スポット溶接が行われる鋼板の"種類及びプレス加工の状態"(鋼板c)毎のテーブル33a〜33cが記憶されている。
【0022】
そして、テーブル33a〜33cには、各周波数fにおける"インピーダンス変化率δZと偏角変化率δθ"が記憶されている。インピーダンス変化率δZは、ナゲット53の大きさが基準値であるスポット溶接部鋼板を被測定材としたときのインピーダンスと、スポット溶接が行われていない母材を被測定材としたときのインピーダンスとの変化分を表したものである。一方、偏角変化率δθは、ナゲット53の大きさが基準値であるスポット溶接部鋼板を被測定材としたときの偏角と、スポット溶接が行われていない母材を被測定材としたときの偏角との変化分を表したものである。
【0023】
例えば、インピーダンス変化率δZと偏角変化率δθは、夫々、以下の(1式)、(2式)で表される。
δZ=[(Za−Zb)/Zb]×100 ・・・(1式)
δθ=[(θa−θb)/θb]×100 ・・・(2式)
ここで、Zb、θbは、夫々、母材を被測定材とした場合のインピーダンス、偏角である。また、Za、θaは、夫々、ナゲット53の大きさが基準値であるスポット溶接部を被測定材とした場合のインピーダンス、偏角である。これらの内容は、予め測定され、基準値記憶部33に記憶されている。
【0024】
電極形状aと、電極加圧力bと、鋼板cとを異ならせて、インピーダンス変化率δZと偏角変化率δθとを以上のようにして算出することにより、図4に示すテーブル33a〜33cが得られる。尚、周波数fの測定範囲は、例えば10[Hz]〜20[kHz]である。
【0025】
評価部32は、キーボードやマウス等を備える操作部34の操作に基づいて、電極形状a、電極加圧力b、及び鋼板cを入力し、入力した"電極形状a、電極加圧力b、及び鋼板c"に一致するテーブルを、基準値記憶部33に記憶されているテーブル33a〜33cの中から1つ選択する。
そして、評価部32は、入力部31で入力された"インピーダンス及び偏角"に基づく"インピーダンス変化率δZ及び偏角変化率δθ"と、選択したテーブルの値とを比較して、鋼板51a、51bに形成されているナゲット53が適正な大きさ(例えば直径)を有しているか否かを判定する。
尚、入力部31で入力された"インピーダンス及び偏角"に基づく"インピーダンス変化率δZ及び偏角変化率δθ"は、(1式)、(2式)におけるZa、θaを、夫々、入力部31で入力された"インピーダンス、偏角"とすることで求めることができる。
【0026】
図5は、鋼板51a、51bに形成されているナゲット53が適正な大きさ(例えば直径)を有しているか否かを判定する方法の一例を説明する図である。
図5において、グラフ36は、評価部32が選択したテーブルの値をプロットすることにより得られたものである。すなわち、グラフ36は、ナゲット53の大きさが基準値である場合の"インピーダンス変化率δZと偏角変化率δθの周波数依存性"を表すものである。
【0027】
評価部32は、入力部31で入力された"インピーダンス及び偏角"に基づく"インピーダンス変化率δZと偏角変化率δθ"により定まる点が、グラフ36の左側の領域に属する場合には、鋼板51a、51bに形成されているナゲット53が適正な大きさであると判定し、そうでない場合には、適正な大きさでないと判定する。例えば、図5において、入力部31で入力された"インピーダンス及び偏角"に基づく"インピーダンス変化率δZと偏角変化率δθ"により定まる点が、点37である場合、評価部32は、鋼板51a、51bに形成されているナゲット53が適正な大きさであると判定する。一方、入力部31で入力された"インピーダンス及び偏角"に基づく"インピーダンス変化率δZと偏角変化率δθ"により定まる点が、点38である場合、評価部32は、鋼板51a、51bに形成されているナゲット53が適正な大きさでないと判定する。
【0028】
以上のように本実施形態では、インピーダンス計測部24、偏角計測部25、入力部31、及び評価部32とを用いることにより、導出手段が実現され、入力部31で入力された"インピーダンス及び偏角"に基づく"インピーダンス変化率δZと偏角変化率δθ"が、ナゲット53を通る磁束の時間変化に応じて変化する評価値となる。また、本実施形態では、評価部32を用いることにより、評価手段が実現される。
表示部35は、評価部32で判定された結果を含む画像を表示するための画像データを生成して、例えば液晶ディスプレイであるディスプレイ40に表示させる。
【0029】
尚、図5では、入力部31で入力された"インピーダンス及び偏角"により定まる点が1つ得られると、その点とグラフ36とを比較するようにしたが、必ずしもこのようにする必要はない。すなわち、評価部32は、複数の周波数(例えば、テーブル33a〜33cに登録されている周波数)での"インピーダンス及び偏角"を入力部31から取得し、取得した"インピーダンス及び偏角"による定まる複数の点とグラフ36とを比較し、所定数の点(例えば全ての点)がグラフ36の左側の領域に属する場合には、鋼板51a、51bに形成されているナゲット53が適正な大きさであると判定し、そうでない場合には、適正な大きさでないと判定するようにしてもよい。このようにした場合には、入力部31で入力された複数の"インピーダンス及び偏角"に基づく複数の"インピーダンス変化率δZと偏角変化率δθ"が、ナゲット53を通る磁束の時間変化に応じて変化する評価値となる。
【0030】
あるいは、図5では、入力部31で入力された"インピーダンス及び偏角"により定まる点が1つ得られると、その点とグラフ36とを比較するようにしたが、必ずしもこのようにする必要はない。すなわち、評価部32は、テーブル33a〜33cに登録されているなかの1つの周波数での"インピーダンス及び偏角"を入力部31から取得し、取得した"インピーダンス及び偏角"による定まる点とグラフ36の中で、同じ周波数の点とを比較し、原点(δZ=0、δθ=0)からの距離でナゲットの大きさを判定できる。すなわち、原点からより離れている場合には、ナゲット53が適切な大きさであると判定し、原点により近い場合には、ナゲット53が適正な大きさでないと判定する。この場合、測定は、単一の周波数でのみ行えばよい。
【0031】
さらに、図5では、入力部31で、インピーダンスと偏角との両方を取得するとしたが、必ずしもこのようにする必要はない。すなわち、評価部32は、テーブル33a〜33cに登録されているなかの1つの周波数、あるいは複数の周波数で"インピーダンス"あるいは"偏角"を入力部31から取得し、取得した"インピーダンス"あるいは"偏角"と同じ周波数の"インピーダンス"あるいは"偏角"とを比較し、ナゲットの大きさを判定することもできる。この場合、テーブル33a〜33cに、インピーダンスあるいは偏角のどちらか一つを記憶しておけば良い。
【0032】
また、図1では、インピーダンスメータ20を用いたが、必ずしもインピーダンスメータを用いる必要はない。すなわち、例えば、交流信号源として、定電流発生源を用いれば、交流電流を測定する電流測定手段は、定電流発生源に内蔵されることになり、改めて電流を測定する必要はなくなり、交流電圧だけを測定すれば簡便にインピーダンスを測定することができる。したがって、インピーダンスのみをナゲットの大きさの判定に用いる場合、大幅に測定作業を簡略化することができる。
【0033】
また、本実施形態では、評価部32が、鋼板51a、51bに形成されているナゲット53が適正な大きさであるか否かを判定するようにしたが、必ずしもこの判定動作を評価部32が行う必要はない。例えば、評価部32は、判定動作を行う前までの処理を行い、その処理の結果を表示部35に出力する。そして、表示部35は、図5に示したような画像を表示するための画像データをディスプレイ40に出力することにより、点37、38とグラフ36との位置関係をオペレータに認識させるようにしてもよい。このようにした場合、鋼板51a、51bに形成されているナゲット53が適正な大きさであるか否かをオペレータが判断することになる。
【0034】
尚、図1において、評価部32は、コンピュータ30が備えるCPU、ROM、RAM、HDD等を用いることにより実現される。また、基準値記憶部33は、コンピュータ30が備えるHDD等を用いることにより実現される。また、表示部35は、コンピュータ30が備える画像処理プロセッサ、ビデオRAM等を用いることにより実現される。
【0035】
(フェライトコア11の構成)
図6は、フェライトコア11の構成の一例を示す図である。図6では、寸法をミリメートル単位で表示している。また、図6(b)は、図6(a)のA方向から見た図であり、図6(c)は、図6(a)のB方向から見た図である。
【0036】
図6において、フェライトコア11は、3つの脚部11a〜11cと、それら3つの脚部11a〜11cと磁気的に接続される胴部11dとを有し、3つの脚部11a〜11cと、胴部11dとが一体で形成されている。コイル12は、胴部11dに巻き回される。
【0037】
図6(b)に示すように、脚部11a〜11cの基端面62a〜62cよりも低い位置に胴部11dが形成されている。このようにすることによって、脚部11a〜11cの基端面62a〜62cよりも高い位置にコイル12が形成されないようにすることができ、フェライトコア11を媒介部14に取り付ける際に、コイル12が邪魔になるのを防止することができる。また、コイル12を形成し易くすることもできる。
【0038】
前述したように、3つの脚部11a〜11cの先端面61a〜61cは、鏡面研磨されている。また、インデンテーション52aの内部に配置される脚部11aは、他の脚部11b、11cよりも長くなっており、その先端面61aは、他の先端面61b、61cよりも突出している。また、測定に際し、脚部11aがインデンテーション52aの内部に配置され、脚部11b、11cがインデンテーション52aの外部に配置される。
【0039】
更に、脚部11aの先端面61aは、インデンテーション52aの傾斜(例えば傾斜の平均)に合わせて傾斜している。本実施形態では、以下に示すようにして脚部11aの先端面61aを傾斜させるか否かを決定すると共に、傾斜させる場合の傾斜角度を決定するようにしている。
図7は、フェライトコア11の脚部11aの先端付近をモデル化して示した図である。
図7において、円弧71は、インデンテーション52aをモデル化したものであり、その曲率中心をO、曲率半径をRとする。また、フェライトコア11の脚部11aの幅(横方向の長さ)を2Wとし、脚部11aと円弧71とが接触する点をC2、C3とする。また、円弧71の最深部の点をC1とする。すなわち、点C1は、インデンテーション52aの最深部に対応する。
【0040】
図7に示すようにフェライトコア11の脚部11aを、最深部の点C1から水平方向に長さxだけずらした位置に配置した場合、脚部11aの傾斜角度φと、脚部11aと円弧71との隙間Δとは、夫々、(3式)、(4式)で表される。
φ=tan-1(δx/δy) ・・・(3式)
Δ=R(1−cos(δφ/2)) ・・・(4式)
ここで、δxは、脚部11aの幅であり、以下の(5式)で表される。
δx=R(sin(φ1)−sin(φ2))=2W ・・・(5式)
また、δyは、点C2、C3間の高さ方向における長さであり、以下の(6式)で表される。
δy=R(cos(φ2)−cos(φ1)) ・・・(6式)
【0041】
尚、φ1は、点C1と曲率中心Oとを結ぶ直線と、点C3と曲率中心Oとを結ぶ直線とのなす角度であり、φ2は、点C1と曲率中心Oとを結ぶ直線と、点C2と曲率中心Oとを結ぶ直線とのなす角度であり、夫々、以下の(7式)、(8式)で表される。
φ1=sin-1[(x+W)/R] ・・・(7式)
φ2=sin-1[(x−W)/R] ・・・(8式)
また、円弧71上の点であって、最深部の点C1から水平方向に長さxだけ離れた位置の点C4と曲率半径Oとを結ぶ直線と、点C1と曲率中心Oとを結ぶ直線とのなす角度ηは、以下の(9式)で表される。
η=sin-1(x/R) ・・・(9式)
【0042】
図7からから明らかなように、脚部11aの幅(=2W=δx)が大きければ、脚部11aと円弧71との隙間Δは大きくなる。したがって、脚部11aの幅の大きさが、脚部11aと円弧71との隙間Δを大きく左右することになる。
【0043】
本実施形態では、例えば、フェライトコア11の脚部11aの幅(=2W)と、フェライトコア11の脚部11aを配置する位置(長さx)とから、(3式)、(5式)、(6式)、(7式)、(8式)よりφを決定する。また、(4式)を用いて、脚部11aと円弧71との隙間Δとを算出する。そして、算出した隙間Δの大きさが閾値以上であれば、フェライトコア11の脚部11aの幅(=2W)を狭くする。。
ただし、長さxが小さく(1[mm]程度より小さい場合)、傾斜角が殆ど90°に近い場合には、脚部11aの先端面61aを傾斜させる必要はない。
【0044】
以上のような構成を有するフェライトコア11の初透磁率は、母材の5倍以上であるようにする。ただし、フェライトコア11の初透磁率は、大きいほど好ましい。具体的に説明すると、母材の10倍以上の初透磁率を有するフェライトコア11を用いるのが好ましく、母材の20倍以上の初透磁率を有するフェライトコア11を用いるのがより好ましい。具体的に、初透磁率が比透磁率で3000以上であるフェライトコアや、10000以上であるフェライトコア11や、15000以上であるフェライトコア11を用いることができる。
【0045】
図8は、母材、熱影響部、及びナゲットにおける磁気特性の一例を示す図である。具体的に、図8(a)は、被測定材として高張力鋼板を用いた場合の磁気特性を示し、図8(b)は、軟鋼板を用いた場合の磁気特性を示す。図8に示すように、母材、熱影響部、及びナゲットの夫々において磁気特性が異なり、また、被測定材によっても磁気特性が異なが、比透磁率が10000以上であるフェライトコアを用いれば被測定材によってフェライトコアを変える必要がない。
【0046】
また、使用に際しては、フェライトコア11の磁束密度が、フェライトコア11の飽和磁束密度に達しないようにする必要がある。すなわち、フェライトコア11の磁束密度と磁界との関係を表すB−H曲線において、直線性が保たれている領域でフェライトコア11を使用する必要がある。フェライトコア11の磁束密度が、フェライトコア11の飽和磁束密度に達してしまうと、ナゲット53の磁気抵抗の変化によって、フェライトコア11の透磁率が大きく変わってしまい、インピーダンスの変化が、ナゲット53の磁気抵抗の変化によるものなのか、フェライトコア11の透磁率の変化によるものなのかが分からなくなってしまうからである。
【0047】
例えば、直径が0.1[mm]の電線を100回巻き回してコイル12を形成し、励磁電圧として1[V]、励磁電流として18[mA]をコイル12に供給した場合、磁気抵抗が1×107[A/Wb]であるとすると、フェライトコア11の磁束密度は、0.1[T](=[[100×0.018/107]/1.5]×106)程度になる。フェライトコア11の飽和磁束密度は、0.3[T]程度であるので、以上のようにして非破壊検査装置1を動作させることにより、フェライトコア11を適切な範囲で使用することができる。
尚、フェライトコア11の残留磁束密度と保持力は、小さいほど好ましく、電気抵抗は、大きいほど好ましい。
【0048】
(コイル12の構成)
コイル12の両端に生じる交流電圧と、コイル12に流れる交流電流とに基づくインピーダンスZと、偏角θは、低周波領域(〜50[Hz])では、以下の(10式)、(11式)で表される。
Z≒r≒a×(n/d2) ・・・(10式)
θ=tan-1[(n×d2/a)×(ω/R)] ・・・(11式)
ここで、rは、コイル12の直流抵抗であり、nは、コイル12の巻き数であり、dは、コイル12を構成する電線の直径であり、aは、比例係数であり、ωは、コイル12に供給される交流信号の各周波数であり、Rは、磁気抵抗である。尚、磁気抵抗Rは、低周波領域では、例えば、1×107[A/Wb-1]程度になる。
以上の(10式)、(11式)を用いて、インピーダンスZと偏角θが、インピーダンスメータ20で正確に測定できる範囲になるように、コイル12の巻き数nと、コイル12を構成する電線の直径dを決定する。
【0049】
また、コイル12(巻き線)を構成できる面積Sが決まっている場合、インピーダンスZと、偏角θは、以下の(12式)、(13式)で表される。
Z≒a×S/d4 ・・・(12式)
θ≒tan-1[(S×ω)/(a×R)] ・・・(13式)
よって、コイル12(巻き線)を構成できる面積Sが決まっている場合には、(12式)、(13式)を用いて、インピーダンスZと偏角θが、インピーダンスメータ20で正確に測定できる範囲になるように、コイル12を構成する電線の直径dを決定し、決定した直径dから、以下の(14式)を用いて、コイル12の巻き数nを決定する。
n=S/d4 ・・・(14式)
【0050】
(非破壊検査装置1による測定値の定式化)
ここで、以上のような本実施形態の非破壊検査装置1により測定されるインピーダンスと偏角とを定式化した結果を示す。
図9は、非破壊検査装置1により得られるインピーダンスと偏角を定式化するためのモデルの一例を示す図である。尚、図9において、図1と同一の機能を有する部分については、図1に示した符号と同一の符号を示している。
【0051】
本モデルでは、交流信号源21から発せられる交流信号の各周波数ωと、コイル両端に誘導される交流電圧Vと、コイルに流れる交流電流Iと、コイル12の直流抵抗rと、コイル12の巻き数nと、フェライトコア11の比透磁率μfとが定義される。また、溶接部53の磁気回路における比透磁率μsと、溶接部53に生じる渦流の等価回路における電気抵抗rs及び電流Isとが定義される。更に、磁気回路における"起磁力F、磁束N、磁気抵抗R、断面積S、フェライト部分の長さλf、及び溶接部53の長さλs"が定義される。
そして、低周波領域では、インピーダンスZと偏角θとは、夫々、以下の(15式)、(16式)で表される。
【0052】
【数1】

【0053】
本願発明者らは、直径0.1[mm]の電線を100回巻き回してコイル12を形成した場合のインピーダンスZと偏角θとを、(15式)、(16式)を用いて計算した結果と、実測した結果とで比較した。図10は、インピーダンスZと偏角θとの計算値(回帰値)と測定値とを示す図である。図10に示すように、図9に示したモデルに基づく計算の結果と、実測の結果とは概ね一致することが分かる。
以上のように、本実施形態の非破壊検査装置1で測定される"インピーダンスZ及び偏角θ"は、溶接部(ナゲット)53の大きさ(磁気抵抗R、電気抵抗rs)に応じて変化するものであることが定量的に導き出される。
尚、図10では、1[kHz]以上になると、図9に示したモデルに基づく計算と、実測値とがずれてきているが、これは周波数が極端に変化すると、渦流の分布や透磁率も変化するためである。すなわち、10[Hz]前後で決定した、渦流の等価回路における電気抵抗rsや磁気抵抗Rの値では、1[kHz]前後になると測定値を表現しきれないということであって、1[kHz]になると本願発明の非破壊検査装置と方法が使えないということではない。
【0054】
(実施例)
次に、本実施形態の非破壊検査装置1の実施例について説明する。
図11は、コイル12の構成と、測定に使用した周波数と、インピーダンスZ及び偏角θの実測値と、インピーダンスZ及び偏角θの実測値から得られた比例係数aと、比例係数aと磁気抵抗Rとの積aRとの関係を示す図である。尚、比例係数aは、(10式)、積aRは(11式)で示されるものである。
インピーダンスメータ20における測定を正確に行わせるためには、低周波数でも、インピーダンスZが数[Ω]程度であり、偏差θ(tanθ)が1以上であるのが好ましい。そこで、本実施例では、直径が0.1[mm]の電線を、図6に示したフェライトコア11の胴部11dに100回巻き回して形成されたコイル12を用いて非破壊検査装置1を構成した。そして、インデンテーション52aの中心Oよりも、インデンテーション52aの外部に置かれる脚部11b、11cと反対方向に1[mm]程度ずらした位置に、インデンテーションの内部に脚部11aを配置した。
尚、図11の結果から、(10式)における比例係数aは、3×10-4程度で概ね一定であり、(11式)における比例係数aと磁気抵抗Rとの積aRは、0.13程度で概ね一定であることが分かる。
【0055】
図12は、測定に使用した被測定材と、その被測定材に形成されたナゲットとの関係を示す図である。図12において、Dは、ナゲット53の大きさ(直径)であり、tは、被測定材の厚み[mm]である。
本実施例では、以下の被測定材を2枚重ねたものに対してスポット溶接を行った。
種類;デュアルフェーズ(DP)鋼板
表面処理;合金化溶融亜鉛めっき
厚さ;1.6[mm]
引張強度;590[MPa]
【0056】
また、スポット溶接を行うための電極として、以下のものを使用した。
種類;アルミナ分散銅製のドームラジアス(DR)形電極
呼び径D;16[mm]
電極先端R;40[mm]
電極先端径d;6[mm]
【0057】
更に、以下の条件でスポット溶接を行った。
加圧力;560[kgf]
スクイズタイム(サイクル);30
溶接時間(サイクル);18
ホールドタイム(サイクル);5
尚、ここでは、0.02[sec]を1サイクルとした。また、スクイズタイムとは、電極を被測定材に接触させてから通電を開始するまでの時間をいい、溶接時間とは、通電時間をいい、ホールドタイムとは、通電を終了させてから電極を被測定材から離すまでの時間をいう。
【0058】
図13は、インピーダンスメータ20の設定電圧VZと、インピーダンスメータ20で計測されたインピーダンスZとの関係を示す図である。また、図14は、インピーダンスメータ20の設定電圧VZと、インピーダンスメータ20で計測された偏角θとの関係を示す図である。また、本実施例では、50[Ω]の内部抵抗を有するインピーダンスメータ20を使用した。また、ここでは、交流信号源21の周波数を100[Hz]とした。
【0059】
図13、図14に示すように、インピーダンスメータ20の設定電圧VZを低くしすぎると、コイル12の両端に発生する電圧が低すぎ、インピーダンスメータ20では正確に電圧を測定できない。また、インピーダンスメータ20の設定電圧VZを高くしすぎると、フェライトコア11や、場合によっては被測定材である鋼板51が磁気的に飽和する。そうすると、閉磁路上の磁気抵抗が高くなってしまい、ナゲットの大きさの違いによる閉磁路上の透磁率の変化を磁気抵抗の差として見つけにくくなってしまう。よって、インピーダンスメータ20の能力を十分に発揮することができる範囲で、かつ、特に飽和磁束密度があまり高くないフェライトコアが磁気的に飽和しない範囲でインピーダンスメータ20の設定電圧VZを決定する必要がある。
【0060】
図15は、インピーダンスメータ20の設定電圧VZと、インピーダンスメータ20で計測された偏角θの変化率(偏角変化率δθ)との関係を示す図である。尚、偏角変化率は(2式)で表されるものである。尚、ここでも、交流信号源21の周波数を100[Hz]とした。また、図15では、6回の測定の平均値を示している。
【0061】
図14に示すように、インピーダンスメータ20の設定電圧VZを5[V]より徐々に下げていくと、偏角θは設定電圧VZに対してよく変化し、インピーダンスメータ20の設定電圧VZが2[V]のときに偏角θが最も大きくなる。一方、図15に示すように、偏角θの値が最も大きくなる設定電圧VZの値2[V]で、偏角変化率δθの値は最も小さくなり、また、ナゲットの大きさの違いに対する偏角θの感度が最も良くなることがわかる。そこで、本実施例では、インピーダンスメータ20の設定電圧VZを2[V]とした。
【0062】
このように、本実施例では、低周波数(100[Hz])で測定した結果から決定した設定電圧VZで全周波数の測定を行うようにした。しかしながら、交流信号源21の周波数が高くなるにつれて、偏角θが最大となる設定電圧VZも徐々に高くなり、次いでインピーダンスZも高くなる。このため、偏角θ又はインピーダンスZが最も高くなる設定電圧VZを周波数毎に求めておき、求めておいた設定電圧VZで各周波数における測定を行ってもよい。
【0063】
図16は、以上のような本実施例の非破壊検査装置1を用いて、インピーダンスZと偏角θとを測定した結果を示す図である。図16において、周波数は、交流信号源21の周波数であり、B1〜B5は、図12に示した被測定材を示す。また、Imoniは、交流電流測定器23の指示値であり、Vmoniは、交流電圧測定器22の指示値である。
図17は、インピーダンス変化率δZと偏角変化率δθとの関係を示す図である。図17は、図16に示した結果から(1式)及び(2式)を用いて算出した結果を示すものである。
【0064】
以上のように本実施形態では、3つの脚部11a〜11cと、それら3つの脚部11a〜11cを磁気的に相互に接続する胴部11dとが一体で形成されたフェライトコア11と、フェライトコア11の胴部11dに電線を巻き回すことにより形成されたコイル12とを有するプローブ10を構成した。そして、被測定材の一例である鋼板51a、51bがスポット溶接されることにより形成されたインデンテーション52aの内部に脚部11aが位置すると共に、その他の脚部11b、11cがインデンテーション52aの外部に位置するように、プローブ10を配置する。このとき脚部11a〜11cの先端面が鋼板51aの表面に出来るだけ密着するようにする。このようにした状態で、コイル12に交流信号を供給する。そして、コイル12の両端に発生した交流電圧と、コイル12に流れる交流電流とに基づく"インピーダンスZと偏角θ"とを計測し、計測した結果に基づいて、ナゲット53の大きさを判定するようにした。したがって、ナゲット53の検査を従来よりも容易に行うことができる。
【0065】
また、本実施形態では、規格化したインピーダンスZと偏角θとに基づくインピーダンス変化率δZと偏角変化率δθを、予め設定した基準値と比較することにより、ナゲット53の大きさが適正なものであるか否かを判定するようにした。したがって、ナゲット53の検査をより簡便に行うことができる。
【0066】
また、本実施形態では、インデンテーション52aの内部に置かれる脚部11aが、インデンテーション52aの中心Oよりも、脚部11b、11cが配置されている方向と反対方向にずれた位置に配置されるようにした。したがって、比較的小さなナゲットに対しても閉磁路中にナゲットが存在し、適正な大きさのナゲット53が形成されている場合には、閉磁路18に、ナゲット53が確実に存在するようにすることができ、透磁率の低いナゲットが存在することで閉磁路の磁気抵抗が大きくなり、ナゲットの大きさの違いによる磁気抵抗の変化を測定することができる。
【0067】
また、本実施形態では、脚部11a〜11cの先端面を鏡面研磨した。したがって、脚部11a〜11cと、鋼板51の表面との間に生じるエアギャップを低減させることができる。
また、本実施形態では、インデンテーション52aの深さに合わせて、インデンテーション52aの内部に配置する脚部11aの長さを、その他の脚部11b、11cよりも長くした。したがって、脚部11a〜11cと、鋼板51の表面との間に生じるエアギャップを一層低減させることができる。
また、本実施形態では、インデンテーション52aの内部に配置する脚部11aの先端面を、インデンテーション52aの傾斜に合わせて傾斜させるようにした。したがって、脚部11aと、鋼板51の表面との間に生じるエアギャップをより一層低減させることができる。
【0068】
また、本実施形態では、測定の際に脚部11a〜11cが鋼板51の表面に接するようにして、3箇所が鋼板51の表面に接触するようにした。したがって、プローブ10を鋼板51の表面上で容易に安定させることができる。
【0069】
また、本実施形態では、フェライトコア11と把持部13との間に、媒介部14を設けるようにした。したがって、フェライトコア11の脚部の先端面を鋼板51aの表面に合わせて配置し易くすることができると共に、測定中に把持部13に生じる動きがフェライトコア11に伝わるのを防止することができる。
【0070】
また、本実施形態では、インデンテーション52aの内部に配置する脚部11aに、脚部11aを配設する位置(脚部11aの接触位置)を決める位置決め板17を設けた。したがって、人がプローブ10を操作する場合でも、プローブ10の位置決めを容易に行うことができる。
【0071】
尚、本実施形態では、図6に示すフェライトコアを用いるようにしたが、フェライトコアの形状や寸法は、図6に示すものに限定されない。例えば、フェライトコアの脚部11aと、脚部11b、11cとの間の空間部分の長さを、測定対象のインデンテーション52aに応じた円の半径以上、直径の2倍以下の任意の長さにすることができる。具体的に、フェライトコアの脚部11aと、脚部11b、11cとの間の空間部分の長さを、4[mm]以上7[mm]以下にするのがより好ましい。
【0072】
また、脚部11a〜11cの幅を、横方向及び奥行き方向(水平断面の縦方向及び横方向)とも、測定対象のインデンテーション52aに対応する円の半径以下の任意の値にすることができる。具体的に、脚部11a〜11cの幅を、横方向及び奥行き方向とも、0.5[mm]以上3[mm]以下(より好ましくは2[mm]以下)にするのが好ましい。脚部11a〜11cの幅を0.5[mm]よりも小さくすると、フェライトコア11が壊れ易くなり、脚部11a〜11cの幅を3[mm]よりも大きくすると、脚部11aとインデンテーション52aとが十分に密着せず、ナゲット53の大きさに起因した磁気抵抗の変化をインピーダンスメータ20で読み取ることが困難になるからである。ここで、インデンテーション52aに対応する円とは、例えば、図3(b)に示すインデンテーション52aの中心O(中心付近)から、インデンテーション52aの縁までの長さの平均値(又は最大値)を半径とする円をいう。また、この円の大きさは、スポット溶接を行う電極の形状から定めることもできる。
また、本実施形態では、フェライトコアを用いるようにしたが、軟磁性材料を使用していれば、必ずしもフェライトコアを用いる必要はない。
【0073】
また、本実施形態では、ナゲットの大きさが基準の大きさである場合の"インピーダンス変化率δZと偏角変化率δθとの関係"を基準値として基準値記憶部33に記憶し、入力部31で入力された"インピーダンス及び偏角"から、インピーダンス変化率δZと偏角変化率δθとを求め、求めたインピーダンス変化率δZと偏角変化率δθとにより定まる点と、基準値記憶部33に記憶した"インピーダンス変化率δZと偏角変化率δθの周波数依存性"から定まるグラフ36とを比較するようにした。しかしながら、必ずしもこのようにする必要はない。例えば、ナゲットの大きさが基準の大きさである場合の"インピーダンスZと偏角θの周波数依存性"を基準値記憶部33に記憶し、入力部31で入力された"インピーダンス及び偏角"と、基準値記憶部33に記憶した"インピーダンスZと偏角θの周波数依存性"から定まるグラフとを比較するようにしてもよい。
【0074】
また、本実施形態では、インデンテーション52aの内部に置かれる脚部11aが、インデンテーション52aの中心Oよりも、脚部11b、11cが配置されている方向と反対方向にずれた位置に配置されるようにした。しかしながら、例えば判定基準となるナゲットの直径が大きい場合には、インデンテーション52aの内部に置かれる脚部11aが、インデンテーション52aの中心Oよりも、脚部11b、11cが配置されている方向にずれた位置に配置されるようにしてもよい。すなわち、判定基準となるナゲットよりも大きなナゲットが形成されている場合とそうでない場合とで、閉磁路18上に位置するナゲットの量(長さ)が変化するように、判定基準となるナゲットの大きさに合わせて、脚部11aを配置する位置を決定することができる。
【0075】
また、本実施形態では、フェライトコア11の脚部11aを、インデンテーション52aの内部に配置し、その他の脚部11b、11cを、インデンテーション52aの外部に配置するようにした。しかしながら、必ずしもこのようにする必要はない。例えば、フェライトコア11の全ての脚部11a〜11cを、インデンテーション52aの内部に配置してもよい。このようにする場合、フェライトコア11の全ての脚部11a〜11cの先端面61a〜61cを、インデンテーション52aの傾斜に合わせて傾斜させるのが好ましい。
【0076】
また、本実施形態では、媒介部14を弾性体で構成するようにしたが、把持部13の動きを吸収する機能と、フェライトコア11と把持部13とを可動的に連結する機能とのうち、少なくとも何れかの機能を有していれば、媒介部14をどのように構成してもよい。例えばロボットが把持部13を把持する場合には、フェライトコア11と把持部13とを可動的に連結する機能があればよいので、例えばボールジョイントを用いて媒介部14を構成することができる。
【0077】
また、本実施形態では、脚部11a〜11cの先端面61a〜61cを鏡面研磨するようにしたが、必ずしも先端面61a〜61cを鏡面にする必要はなく、被測定材である鋼板51の表面と良好に接触させることができる程度に研磨されていればよい。
【0078】
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。前述した第1の実施形態では、インピーダンス変化率δZと偏角変化率δθとから定まる点の位置関係に基づいて、ナゲット53の大きさが適正なものであるか否かを判定するようにした。これに対し、本実施形態では、複数の周波数での"インピーダンス変化率δZと偏角変化率δθ"に基づいて得られる面積を比較するようにする。このように本実施形態と前述した第1の実施形態とでは、ナゲット53の大きさが適正なものであるか否かを判定する方法の一部が主として異なる。よって、本実施形態の説明において、前述した第1の実施形態と同一の部分については、図1〜図17に付した符号と同一の符号を付すこと等により、詳細な説明を省略する。
【0079】
図18は、基準値記憶部33に記憶されている基準値の一例を示す図である。
図18に示すように、本実施形態の基準値記憶部33には、スポット溶接が行われた際に使用された電極の形状(電極形状a)、スポット溶接が行われた際の電極の加圧力(電極加圧力b)、スポット溶接が行われる鋼板の"種類及びプレス加工の状態"(鋼板c)毎のテーブル180a〜180cが記憶されている。
そして、テーブル180a〜180cには、複数の周波数における"インピーダンス変化率δZと偏角変化率δθ"により定まる複数の点を結ぶ直線(又は曲線)により囲まれる領域の面積Sが記憶されている。図19は、インピーダンス変化率δZと偏角変化率δθとにより定まる複数の点を結ぶ直線(又は曲線)により囲まれる領域の面積Sの一例を示す図である。
【0080】
まず、ナゲット53の大きさが基準値である鋼板51を被測定材としたときのインピーダンス変化率δZと、ナゲット53の大きさが基準値である鋼板51を被測定材としたときの偏角変化率δθとを、周波数fを異ならせて測定する。そして、測定した複数の周波数fにおける"インピーダンス変化率δZと偏角変化率δθ"から定まる点191a〜191iと、原点(母材の"インピーダンス変化率δZと偏角変化率δθ"により定まる点)192とを結ぶ直線(又は曲線)により囲まれる領域(図19の斜線部の領域)の面積Sを求める。そして、求めた面積Sを、電極形状a、電極加圧力b、鋼板c毎に、テーブル180a〜180cに記憶する。また、第1の実施形態で説明したように、母材のインピーダンスZと偏角θの値も基準値記憶部33に記憶する。
尚、インピーダンス変化率δZと偏角変化率δθは、例えば、(1式)、(2式)で表される。また、周波数fの測定範囲は、例えば10[Hz]〜20[kHz]である。
【0081】
前述した第1の実施形態では、図4に示したように、1つのテーブル33a〜33cに、複数の周波数fにおける複数の値を記憶しなければならないが、本実施形態では、図18に示すように、1つのテーブル180a〜180cに、1つの値を記憶しておけばよい。
【0082】
評価部32は、操作部34の操作に基づいて、電極形状a、電極加圧力b、及び鋼板cを入力し、入力した"電極形状a、電極加圧力b、及び鋼板c"に一致するテーブルを、基準値記憶部33に記憶されているテーブル180a〜180cの中から1つ選択する。
そして、評価部32は、予め定められた複数の周波数での"インピーダンス及び偏角"を入力部31から取得すると、取得した"インピーダンス及び偏角"に基づいて、面積Sを算出する。そして、評価部32は、算出した面積Sと、選択したテーブルに記憶されている面積Sとを比較し、算出した面積Sが選択したテーブルに記憶されている面積S以上であれば、鋼板51a、51bに形成されているナゲット53は適正な大きさであると判定し、そうでない場合には、適正な大きさでないと判定する。
【0083】
尚、前述した第1の実施形態では、"インピーダンス及び偏角"を入力部31から1つ取得すれば、判定処理を行うことができた。これに対し、本実施形態では、複数の周波数での"インピーダンス及び偏角"を入力部31から取得する必要がある。
以上のように本実施形態では、面積Sを測定値と基準値とで比較することにより、ナゲット53の大きさが適正なものであるか否かを判定するようにした。このようにしても、第1の実施形態で説明したのと同じ効果を得ることができる。
尚、本実施形態においても、第1の実施形態で説明した種々の形態及び変形例を採ることができる。
【0084】
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。前述した第1の実施形態では、インピーダンス変化率δZと偏角変化率δθとから定まる点の位置関係を、測定値と基準値とで比較して、ナゲット53の大きさが適正なものであるか否かを判定するようにした。これに対し、本実施形態では、インピーダンス変化率δZと偏角変化率δθとを、測定値と基準値とで個別に比較して、ナゲット53の大きさが適正なものであるか否かを判定するようにする。このように本実施形態と前述した第1の実施形態とでは、ナゲット53の大きさが適正なものであるか否かを判定する方法の一部が主として異なる。よって、本実施形態の説明において、前述した第1の実施形態と同一の部分については、図1〜図17に付した符号と同一の符号を付すこと等により、詳細な説明を省略する。
【0085】
図20は、基準値記憶部33に記憶されている基準値の一例を示す図である。
図20に示すように、本実施形態の基準値記憶部33には、スポット溶接が行われた際に使用された電極の形状(電極形状a)、スポット溶接が行われた際の電極の加圧力(電極加圧力b)、スポット溶接が行われる鋼板の"種類及びプレス加工の状態"(鋼板c)毎のテーブル200a〜200cが記憶されている。
そして、テーブル200a〜200cには、規格化ナゲット径と、偏角変化率δθと、インピーダンス変化率δZと、変化距離とが対応付けられて記憶されている。
規格化ナゲット径と、変化距離は、夫々、以下の(17式)、(18式)で表される。
【0086】
【数2】

【0087】
ここで、tは、鋼板の厚さである。
また、インピーダンス変化率δZと偏角変化率δθは、例えば、(1式)、(2式)で表される。
以上のようにして、本実施形態では、規格化ナゲット径と、偏角変化率δθと、インピーダンス変化率δZと、変化距離とを、電極形状a、電極加圧力b、鋼板c毎に、測定結果から予め求めてテーブル200a〜200cに記憶しておく。ここで、測定に際しては、ナゲットの大きさの違いにより、偏角変化率δθ及びインピーダンス変化率δZに明確な差がでるような周波数を使用する。
【0088】
図21は、偏角変化率及びインピーダンス変化率と、周波数との関係の一例を示す図である。具体的に図21(a)は、インピーダンス変化率と、周波数との関係の一例を示す図であり、図21(b)は、偏角変化率と、周波数との関係の一例を示す図である。図21において、B3、B5は、図12に示した被測定材を示し、ナゲットの大きさが既知のものである。
図21に示すように、測定に使用する周波数によっては、被測定材(すなわちナゲットの大きさ)を区別できなくなる。したがって、被測定材(すなわちナゲットの大きさ)を明確に区別できるような周波数を使用して測定を行う必要がある。
図21に示す例では、インピーダンス変化率δZについては、例えば、1[kHz]以上2[kHz]以下の周波数を使用して測定を行うのが好ましい。また、偏角変化率δθについては、200[Hz]以下の周波数を使用して測定を行うのが好ましい。
【0089】
図22は、偏角変化率、インピーダンス変化率、及び変化距離と、規格化ナゲット径との関係の一例を示す図である。具体的に図22(a)は、偏角変化率と、規格化ナゲット径との関係の一例を示す図であり、図22(b)は、インピーダンス変化率と、規格化ナゲット径との関係の一例を示す図であり、図22(c)は、変化距離と、規格化ナゲット径との関係の一例を示す図である。
【0090】
また、図22(a)、図22(c)は、10[Hz]の周波数で測定した結果から得られたものである。また、図22(b)は、2[kHz]の周波数で測定した結果から得られたものである。尚、測定には、第1の実施形態の実施例で説明した非破壊検査装置1を使用した。
図22に示すような偏角変化率δθ、インピーダンス変化率δZ、及び変化距離と、規格化ナゲット径との関係を、電極形状a、電極加圧力b、鋼板c毎に求めて、テーブル200に予め記憶させておく。
【0091】
評価部32は、操作部34の操作に基づいて、電極形状a、電極加圧力b、及び鋼板cを入力し、入力した"電極形状a、電極加圧力b、及び鋼板c"に一致するテーブルを、基準値記憶部33に記憶されているテーブル200a〜200cの中から1つ選択する。また、評価部32は、操作部34の操作に基づいて、基準となる規格化ナゲット径の値を入力し、入力した規格化ナゲット径に対応する"偏角変化率δθ、インピーダンス変化率δZ、及び変化距離"を、選択したテーブルから取得する。更に、評価部32は、選択したテーブルの値を得るための測定に使用した周波数の値も取得する。この周波数は、例えば、基準値記憶部33に記憶されている。
【0092】
尚、入力した規格化ナゲット径に対応する"偏角変化率δθ、インピーダンス変化率δZ、及び変化距離"がテーブルに記憶されていない場合、評価部32は、例えば、補間処理を行うことにより、入力した規格化ナゲット径に対応する"偏角変化率δθ、インピーダンス変化率δZ、及び変化距離"を求めることができる。
【0093】
評価部32は、基準値記憶部33から取得した周波数で測定された"インピーダンス及び偏角"を入力部31から取得すると、その"インピーダンス及び偏角"に基づいて、偏角変化率δθ、インピーダンス変化率δZ、及び変化距離を算出する。そして、評価部32は、算出した"偏角変化率δθ、インピーダンス変化率δZ、及び変化距離"と、選択したテーブルから取得した"偏角変化率δθ、インピーダンス変化率δZ、及び変化距離"とを比較する。具体的に説明すると、評価部32は、偏角変化率δθとインピーダンス変化率δZについては、算出した値が、選択したテーブルから取得した値以下であるという条件を満たすか否かを判定する。一方、変化距離については、算出した値が、選択したテーブルから取得した値以上であるという条件を満たすか否かを判定する。
【0094】
そして、評価部32は、例えば、前述した条件を全て満たす場合に、鋼板51a、51bに形成されているナゲット53は適正な大きさであると判定し、そうでない場合には、適正な大きさでないと判定する。
【0095】
以上のように本実施形態では、偏角変化率δθ、インピーダンス変化率δZ、及び変化距離を、測定値と基準値とで個別に比較することにより、ナゲット53の大きさが適正なものであるか否かを判定するようにした。このようにしても、第1の実施形態で説明したのと同じ効果を得ることができる。
【0096】
尚、本実施形態では、偏角変化率δθ、インピーダンス変化率δZ、及び変化距離の全てについて、条件を満たす場合に、鋼板51a、51bに形成されているナゲット53は適正な大きさであると判定したが、必ずしもこのようにする必要はない。例えば、偏角変化率δθ、インピーダンス変化率δZ、及び変化距離についての条件のうち、2つの条件を満たす場合に、鋼板51a、51bに形成されているナゲット53は適正な大きさであると判定してもよい。また、条件に優先順位をつけ、優先順位の最も高い条件を満たしている場合には、1つの条件しか満たしていない場合でも、鋼板51a、51bに形成されているナゲット53は適正な大きさであると判定してもよい。
【0097】
また、本実施形態では、偏角変化率δθ、インピーダンス変化率δZ、及び変化距離を、測定値と基準値とで個別に比較するようにしたが、必ずしもしもこのようにする必要はない。すなわち、偏角変化率δθ、インピーダンス変化率δZ、及び変化距離のうち、1つ又は2つを、測定値と基準値とで比較してもよい。
更に、複数の周波数における偏角変化率δθを加算した値と、複数の周波数におけるインピーダンス変化率δZを加算した値との双方又は何れか一方が、閾値以上である場合に、鋼板51a、51bに形成されているナゲット53は適正な大きさであると判定し、そうでない場合に、鋼板51a、51bに形成されているナゲット53は適正な大きさでないと判定してもよい。
尚、本実施形態においても、第1〜第2の実施形態で説明した種々の形態及び変形例を採ることができる。
【0098】
(第4の実施形態)
次に、本発明の第4の実施形態について説明する。前述した第1〜第3の実施形態では、把持部13の内部にプリント基板を設けるようにした。これに対し、本実施形態では、把持部とフェライトコアとの間にプリント基板を設けるようにしている。このように本実施形態と前述した第1〜第3の実施形態とは、プリント基板を配置する位置が主として異なる。よって、本実施形態の説明において、前述した第1〜第3の実施形態と同一の部分については、図1〜図22に付した符号と同一の符号を付すこと等により、詳細な説明を省略する。
【0099】
図23は、プローブの構成の一例を示す図である。尚、図23(b)は、図23(a)のA方向から見た図である。
図23において、プローブ230は、フェライトコア11と、コイル12と、媒介部14と、リード線16と、プリント基板231と、把持部232とを有している。これらのうち、フェライトコア11、コイル12、媒介部14、及びリード線16は、第1の実施形態で説明したのと同じものである。
【0100】
プリント基板231は、コイル12の引き出し線と、リード線16とを電気的に相互に接続するためのものであり、その面方向が水平方向になるように、フェライトコア11と媒介部14との間に挟まれている。また、プリント基板231の先端の曲線部分は、第1の実施形態で説明した位置決め板17が有する機能を担っている。すなわち、プリント基板231の先端の曲線の曲率中心と、インデンテーション52aとの中心O(中心付近)とを合わせた場合に、インデンテーション52aのうち、内縁部分のみを視認できるように、プリント基板231の先端の曲線部分の大きさ及び形状が定められている(図3(b)も参照)。このような視認を可能にするために、本実施形態では、把持部232を、透明又は半透明の部材により形成するようにしている。
【0101】
以上のように本実施形態では、プリント基板231を、その面方向が水平方向になるようにして、媒介部14とフェライトコア11との間に設けるようにした。また、プリント基板231の先端の曲線部分を用いて、プローブ230の位置決めを行えるようにした。このようにしても、第1〜第3の実施形態で説明したのと同じ効果を得ることができる。更に、把持部232からリード線16が引き出されないので、プローブ230を操作する場合に、リード線16が邪魔になることを防止することができる。特に、リード線16に邪魔されて、ロボットが把持部232を適切に把持できなくなることを防止することができる。
【0102】
尚、本実施形態では、把持部232を、透明又は半透明の部材により形成するようにしたが、必ずしもこのようにする必要はない。例えば、図23のA方向(上方向)から見た場合に、プリント基板231の先端の曲線部分が、把持部232の側周部分よりも外側に位置する場合には、把持部232を不透明の部材により形成するようにしてもよい。
また、プリント基板を透明又は半透明の部材で形成し、第1の実施形態のようにして位置決め板17を設けるようにしてもよい。
【0103】
また、本実施形態では、媒介部14とフェライトコア11との間にプリント基板231を設けるようにしたが、把持部232とフェライトコア11との間にプリント基板231を設けるようにしていれば、必ずしもこのようにする必要はない。例えば、媒介部14と把持部232との間にプリント基板231を設けるようにしてもよい。
更に、プリント基板231を保護する部材を設けるようにしてもよい。
また、本実施形態においても、第1〜第3の実施形態で説明した種々の形態及び変形例を採ることができる。
【0104】
(第5の実施形態)
次に、本発明の第5の実施形態について説明する。前述した第1〜第4の実施形態では、測定の際に、フェライトコア11の脚部11a〜11cが鋼板51の表面に接するようにして、3箇所が鋼板51の表面に接するようにした。これに対し、本実施形態では、フェライトコアが2つの脚部を有し、この2つの脚部と、フェライトコアに取り付けられる補助部材の脚部との3箇所が、鋼板51の表面に接するようにしている。このように本実施形態と前述した第1〜第4の実施形態とは、フェライトコアの構成等が主として異なる。よって、本実施形態の説明において、前述した第1〜第4の実施形態と同一の部分については、図1〜図23に付した符号と同一の符号を付すこと等により、詳細な説明を省略する。
【0105】
図24は、フェライトコアと、フェライトコアに取り付けられる補助部材の構成の一例を示す図である。尚、図24(b)は、図24(a)のA方向から見た図であり、図24(c)は、図24(a)のB方向から見た図である。
【0106】
図24において、フェライトコア251は、2つの脚部251a、215bと、これら2つの脚部251a、251bと磁気的に接続される胴部251cとを有し、2つの脚部251a、251bcと、胴部251cとが一体で形成されている。コイル12は、胴部251cに巻き回される。尚、フェライトコア251の材質は、第1の実施形態で説明したフェライトコア11と同じである。
【0107】
図24(b)に示すように、本実施形態のフェライトコア251は、概ねH型の形状を有し、脚部251a、251bの基端面253a、253bよりも低い位置に胴部251cが形成されている。このようにすることによって、脚部251a、251bの基端面253a、253bよりも高い位置にコイル12が形成されないようにすることができ、フェライトコア11を媒介部14に取り付ける際に、コイル12が邪魔になるのを防止することができる。また、コイル12を形成し易くすることもできる。
【0108】
また、2つの脚部251a、251bの先端面254a、254bは、鏡面研磨されている。また、インデンテーション52aの内部に配置される脚部251aは、脚部251bよりも長くなっている。更に、脚部251aの先端面251aは、インデンテーション52aの傾斜(例えば傾斜の平均)に合わせて傾斜している。また、測定に際し、脚部251aがインデンテーション52aの内部に配置され、脚部251bがインデンテーション52aの外部に配置される。
【0109】
以上のような構成を有するフェライトコア251に、補助部材252が取り付けられている。補助部材252は、例えば合成樹脂等を用いた成形品である。補助部材252がフェライトコア251に取り付けられると、補助部材252の脚部252aの先端面255が、フェライトコア251の脚部251bの先端面254bと略同じ高さになるようにしている。補助部材252の脚部252aの先端面255は、フェライトコア251の脚部251bの先端面254bと同様に、傾斜を有していない。この補助部材252の脚部252aは、インデンテーション52aの外部に配置される。
【0110】
以上のように本実施形態では、フェライトコア251の2つの脚部251a、251bと、フェライトコア251に取り付けられる補助部材252の脚部252aとの3箇所が、鋼板51の表面に接するようにした。このようにしても、第1〜第3の実施形態で説明したのと同じ効果を得ることができる。また、フェライトコア251の形状を、第1の実施形態で説明したフェライトコア11よりも、シンプルなものにすることができる。
尚、本実施形態においても、第1〜第4の実施形態で説明した種々の形態及び変形例を採ることができる。
【0111】
(第6の実施形態)
次に、本発明の第6の実施形態について説明する。前述した第1〜第5の実施形態では、インデンテーション52aの内部に配置される脚部の長さを、インデンテーション52aの外部に配置される脚部よりも長くすることにより、インデンテーション52aの内部に配置される脚部の先端面が、インデンテーション52aの外部に配置される脚部1の先端面よりも突出するようにした。これに対し、本実施形態では、インデンテーション52aの外部に配置される脚部を上下動できるようにして、インデンテーション52aの内部に配置される脚部の先端面が、インデンテーション52aの外部に配置される脚部の先端面よりも突出するようにしている。このように本実施形態と、前述した第1〜第5の実施形態とは、フェライトコアの構成等が主として異なる。よって、本実施形態の説明において、前述した第1〜第5の実施形態と同一の部分については、図1〜図24に付した符号と同一の符号を付すこと等により、詳細な説明を省略する。
【0112】
図25は、フェライトコアと、フェライトコアが取り付けられる支持部材の構成の一例を示す図である。尚、図25(b)は、図25(a)のA方向から見た図である。
【0113】
図25において、フェライトコア260は、第1のフェライトコア261と、第2のフェライトコア262とを有している。
第1のフェライトコア261は、2つの脚部261a、261bと、補助部材に収容される第1の胴部261cと、脚部261a、261bと第1の胴部261cとを連結する第2の胴部261dとが一体で形成されている。コイル12は、第2の胴部261dに巻き回される。
【0114】
図25(b)に示すように、脚部261a、261bの基端面263a、263bよりも低い位置に第2の胴部261dが形成されている。このようにすることによって、脚部261a、261bの基端面263a、263bよりも高い位置にコイル12が形成されないようにすることができ、フェライトコア11を媒介部14に取り付ける際に、コイル12が邪魔になるのを防止することができる。また、コイル12を形成し易くすることもできる。
また、脚部261a、261bの先端面264a、264bは、鏡面研磨されている。測定に際し、脚部261a、261bは、インデンテーション52aの外部に配置される。更に、脚部261a、261bの先端面264a、264bは、傾斜を有していない。
【0115】
このような構成を有する第1のフェライトコア261の第1の胴部261cが、支持部材266の内部に収容される。支持部材266の内部に収容された第1の胴部261cは、支持部材266の内部において、高さ方向(上下方向。図25(b)の矢印の方向)に動くことができるようになっている。このようにすることによって、第1のフェライトコア261の全体が上下動する。
【0116】
一方、第2のフェライトコア262は、その先端面265が、インデンテーション52aの傾斜(例えば傾斜の平均)に合わせて傾斜しているが、その形状は、概ね直方体である。第2のフェライトコア262の先端面265は、鏡面研磨されている。また、測定に際し、第2のフェライトコア262は、インデンテーション52aの内部に配置される。
【0117】
このような構成を有する第2のフェライトコア262は支持部材266に固定される。第2のフェライトコア262が支持部材266に固定されると、第2のフェライトコア262の基端側の所定の領域が支持部材266の内部に収容され、先端側の所定の領域が支持部材266の外部に露出する。
以上のようにして、別体である第1及び第2のフェライトコア262が、支持部材266に取り付けられると、支持部材266の内部において、第2のフェライトコア262の側面の一部と、第1のフェライトコア261の側面の一部とが互いに接触するようにしている。そして、前述したようにして第1のフェライトコア261が上下動すると、支持部材266の内部において、第2のフェライトコア262の側面の一部と、第1のフェライトコア261の側面の一部とが摺り合わさるようになっている。
尚、第1及び第2のフェライトコア261、262の材質は、第1の実施形態で説明したフェライトコア11と同じである。
【0118】
以上のように本実施形態では、フェライトコア260の3つの脚部(第1のフェライトコア261の脚部261a、261bと第2のフェライトコア262)のうち、インデンテーション52aの外部に配置される脚部(第1のフェライトコア261の脚部261a、261b)を上下動させることにより、インデンテーション52aの内部に配置される脚部(第2のフェライトコア262)の先端面265が、インデンテーション52aの外部に配置される脚部(第1のフェライトコア261の脚部261a、261b)の先端面264a、264bよりも突出するようにした。したがって、フェライトコアの脚部の長さを異ならせなくても、脚部cと、鋼板51の表面との間に生じるエアギャップを低減させることができる。
【0119】
尚、本実施形態では、インデンテーション52aの外部に配置される脚部(第1のフェライトコア261の脚部261a、261b)を上下動させるようにしたが、必ずしもこのようにする必要はない。例えば、インデンテーション52aの外部に配置される脚部(第1のフェライトコア261の脚部261a、261b)を固定し、インデンテーション52aの内部に配置される脚部(第2のフェライトコア262)を上下動させてもよい。また、インデンテーション52aの外部に配置される脚部(第1のフェライトコア261の脚部261a、261b)と、インデンテーション52aの内部に配置される脚部(第2のフェライトコア262)との双方を上下動させてもよい。
尚、本実施形態においても、第1〜第5の実施形態で説明した種々の形態及び変形例を採ることができる。
【0120】
(第7の実施形態)
次に、本発明の第7の実施形態について説明する。前述した第1〜第6の実施形態では、先端面を傾斜させなければ、フェライトコアの脚部の断面積は一定であった。これに対し、本実施形態では、フェライトコアの脚部の先端側の断面積が基端側の断面積よりも小さくなるようにした。このように本実施形態と、前述した第1〜第6の実施形態とは、フェライトコアの構成等が主として異なる。よって、本実施形態の説明において、前述した第1〜第6の実施形態と同一の部分については、図1〜図25に付した符号と同一の符号を付すこと等により、詳細な説明を省略する。
【0121】
図26は、フェライトコアの構成の一例を示す図である。図26では、寸法をミリメートル単位で表示している。また、図26(b)は、図26(a)のA方向から見た図であり、図26(c)は、図26(a)のB方向から見た図である。
【0122】
図26において、フェライトコア271は、3つの脚部271a〜271cと、それら3つの脚部271a〜271cを連結する胴部271dとを有し、それら3つの脚部271a〜271cと、胴部271dとが一体で形成されている。コイル12は、胴部271dに巻き回される。
【0123】
図26(b)に示すように、脚部271a〜271cの基端面272a〜272cよりも低い位置に胴部271dが形成されている。このようにすることによって、脚部271a〜271cの基端面272a〜272cよりも高い位置にコイル12が形成されないようにすることができ、フェライトコア11を媒介部14に取り付ける際に、コイル12が邪魔になるのを防止することができる。また、コイル12を形成し易くすることもできる。
【0124】
また、3つの脚部271a〜271cの先端面273a〜273cは、鏡面研磨されている。また、インデンテーション52aの内部に配置される脚部271aは、他の脚部271b、271cよりも長くなっている。更に、脚部271aの先端面273aは、インデンテーション52aの傾斜に合わせて傾斜している。また、測定に際しは、脚部271aがインデンテーション52aの内部に配置され、脚部271b、271cがインデンテーション52aの外部に配置される。
【0125】
そして、本実施形態では、3つの脚部271a〜271cの先端側における"水平方向の断面積"を、基端側におけるそれよりも小さくし、3つの脚部271a〜271cが先細りとなるようにした。したがって、コイル12を巻き回すのに必要な大きさを確保しつつ、鋼板51と接触する面を小さくすることができるフェライトコアを実現することができる。これにより、フェライトコア271の脚部271a〜271cの先端面273a〜273cと鋼板51の表面との間に生じるエアギャップを一層低減できるとともに、フェライトの磁気的飽和を抑制でき、より広い励磁電流範囲での測定が可能となる。
尚、本実施形態においても、第1〜第6の実施形態で説明した種々の形態及び変形例を採ることができる。
【0126】
(第8の実施形態)
次に、本発明の第8の実施形態について説明する。前述した第1〜第7の実施形態では、フェライトコアに巻き回されるコイルは1つであった。これに対し、本実施形態では、交流信号源21からの交流信号を受けるコイルと、そのコイルが交流信号を受けることにより誘起される交流電圧を検出するコイルとを設けるようにしている。このように本実施形態と、前述した第1〜第7の実施形態とは、コイルの構成とインピーダンスメータの構成の一部とが主として異なる。よって、本実施形態の説明において、第1〜第7の実施形態と同一の部分については、図1〜図26に付した符号と同一の符号を付すこと等により、詳細な説明を省略する。
【0127】
図27は、溶接部の非破壊検査装置の概略構成の一例を示す図である。尚、コンピュータは、図1に示したものと同じであるので、図27では、コンピュータの図示を省略している。
(プローブ280の構成)
図27において、プローブ280は、フェライトコア11と、把持部13と、媒介部14と、膨出部15と、位置決め板17と、第1のコイル281と、第2のコイル282と、リード線283、284とを有している。尚、フェライトコア11、把持部13、媒介部14、膨出部15、及び位置決め板17は、第1の実施形態で説明したものと同じである。
【0128】
第1のコイル281は、インピーダンスメータ288から、リード線283と、把持部13の内部に設けられたプリント基板とを経由して、交流信号を受ける。これにより、フェライトコア11の内部に磁界が発生し、図2に示したような閉磁路18が形成される。
第2のコイル282は、第1のコイル281に交流信号が発生することにより誘起される交流電圧を検出するためのものである。第2のコイル282で検出された交流電圧は、把持部13の内部に設けられたプリント基板と、リード線284とを経由して、インピーダンスメータ288に伝送される。
尚、本実施形態では、第1のコイル281と第2のコイル282の巻き数を同じにしている。
【0129】
(インピーダンスメータ288の構成)
インピーダンスメータ288は、交流信号源285と、交流電圧測定器286と、交流電流測定器287と、インピーダンス計測部24と、偏角計測部25とを有している。尚、インピーダンス計測部24と、偏角計測部25は、第1の実施形態で説明したものと同じである。また、交流信号源285、交流電圧測定器286、交流電流測定器287は、夫々、図1に示した第1の実施形態の交流信号源21、交流電圧測定器22、交流電流測定器23と結線方法が異なるだけである。
【0130】
交流信号源285は、交流信号をプローブ10に供給する。この交流信号は、リード線283と、把持部13内のプリント基板とを介して、第1のコイル281に供給される。これにより、図2に示したような閉磁路18が形成される。
交流電圧測定器286は、交流信号源285から第1のコイル281に交流信号が供給されることにより第2のコイル282の両端に誘起される交流電圧を測定する。交流電流測定器287は、交流信号源285から第1のコイル281に交流信号が供給されることにより第1のコイル281に流れる交流電流(励磁電流)を測定する。
【0131】
図28は、以上のような構成を有する本実施形態の非破壊検査装置を用いて、インピーダンス変化率δZと、偏角変化率δθとを測定した結果の一例を示す図である。具体的に、図28(a)は、インピーダンス変化率δZと周波数との関係を示す図であり、図28(b)は、偏角変化率δθと周波数との関係を示す図である。また、図28(c)は、10[Hz]の測定で得られたインピーダンス変化率δZと規格化ナゲット径との関係と、5[kHz]の測定で得られた偏角変化率δθと周波数との関係を示す図である。
尚、インピーダンス変化率δZと偏角変化率δθは、例えば、(1式)、(2式)で表される。また、規格化ナゲット径は、(17式)で表される。
【0132】
図29は、第1の本実施形態の非破壊検査装置を用いて、インピーダンス変化率δZと、偏角変化率δθとを測定した結果の一例を示す図である。図29(a)〜図29(c)は、夫々、図28(a)〜図28(c)と比較するための図であり、図28(a)〜図28(c)と同じ条件の測定で得られたものである。
【0133】
図28及び図29から分かるように、本実施形態の非破壊検査装置の方が、広い周波数範囲で測定できることが分かる。このように本実施形態の非破壊検査装置の方が広い周波数範囲で測定できるのは、インピーダンスメータ288の電圧測定端子の入力インピーダンスが大きい(例えば2[MΩ])ため、第2のコイル282に殆ど電流が流れないからである。すなわち、交流電圧の測定に、コイルの直流抵抗が殆ど寄与せず、ナゲットの大きさの違いによる磁気抵抗の違いを反映した誘導電圧しか寄与しないからである。
尚、本実施形態においても、第1〜第7の実施形態で説明した種々の形態及び変形例を採ることができる。
【0134】
(第9の実施形態)
次に、本発明の第9の実施形態を説明する。本実施形態では、直流バイアスが加えられた交流信号をコイルに供給するようにしている。このように本実施形態と前述した第1〜第8の実施形態とは、コイルに交流信号を供給する方法の一部が主として異なる。したがって、本実施形態の説明において、前述した第1〜第8の実施形態と同一の部分については、図1〜図29に付した符号と同一の符号を付すこと等により詳細な説明を省略する。
【0135】
図30は、インピーダンスメータの構成の一例を示す図である。
図30において、インピーダンスメータ310は、交流信号源21と、交流電圧測定器22と、交流電流測定器23と、インピーダンス計測部24と、偏角計測部25と、直流電源311とを有している。尚、交流信号源21、交流電圧測定器22、交流電流測定器23、インピーダンス計測部24、及び偏角計測部25は、第1の実施形態で説明したものと同じである。
直流電源311は、交流信号源21から発生する交流信号に直流バイアスを加えるためのものである。このようにして直流バイアスが加えられた交流信号は、リード線16と、把持部13内のプリント基板とを介して、コイル12に供給される。これにより、図2に示したような閉磁路18が形成される。このとき、鋼板51の内部(熱影響部54、ナゲット53等)は、B−H曲線におけるマイナーループに基づく磁気特性を示すことになる。
【0136】
以上のようにすることにより、B−H曲線の初透磁率からずれ始める磁界が、母材、熱影響部54、ナゲット53の夫々で異なることを利用することができ、ナゲット53の磁気抵抗の変化をより一層高精度に検出することが可能になる。
尚、本実施形態においても、第1〜第8の実施形態で説明した種々の形態及び変形例を採ることができる。
【0137】
(第10の実施形態)
次に、本発明の第10の実施形態を説明する。本実施形態では、コイルが巻き回されたフェライトコアを保護するようにしている。このように本実施形態は、前述した第1〜第9の実施形態に対し、フェライトコアを保護(緩衝)する構成を加えたものである。したがって、本実施形態の説明において、前述した第1〜第9の実施形態と同一の部分については、図1〜図30に付した符号と同一の符号を付すこと等により詳細な説明を省略する。
【0138】
図31は、フェライトコアを保護する構成の一例を示す図である。尚、図31(b)は、図31(a)のA方向から見た図である。
図31に示すように、フェライトコア11の脚部の先端付近の領域(鋼板51と接触する付近の領域)を除いて、フェライトコア11を保護部材331で被覆するようにしている。保護部材331は、ゴム等の弾性材料を用いて構成することができる。ただし、必ずしも弾性材料を用いて保護部材331を構成する必要はなく、例えば、合成樹脂等を用いて構成するようにしてもよい。
このようにすることによって、破損し易いフェライトコア11を保護することができる。
尚、本実施形態においても、第1〜第9の実施形態で説明した種々の形態及び変形例を採ることができる。
【0139】
(第11の実施形態)
次に、本発明の第11の実施形態について説明する。本実施形態では、被測定材である鋼板51が磁気を帯びている場合、その磁気を消磁してから測定を行うようにする。このように本実施形態は、前述した第1〜第10の実施形態に対し、鋼板51を消磁する構成を加えたものである。したがって、本実施形態の説明において、前述した第1〜第10の実施形態と同一の部分については、図1〜図31に付した符号と同一の符号を付すこと等により詳細な説明を省略する。
【0140】
本実施形態において、図1に示した交流信号源21は、被測定材である鋼板51の保持力を超える励磁電流を有する交流信号をプローブ10に供給し、徐々に交流信号を弱くする。これにより、鋼板51の残留磁束密度が徐々に小さくなり、鋼板51が消磁される。その後、交流信号源21は、交流信号(電圧)を、測定に必要な値(測定電圧)とする。このような交流信号源21の動作は、インピーダンスメータ20に設けられている操作部をオペレータが操作することにより実現される。また、インピーダンスメータ20が備えるマイコンが、コンピュータ30からの指示等に基づいて、このような交流信号源21の動作を自動的に行わせるようにしてもよい。
以上のように本実施形態では、交流信号源21を用いることにより消磁手段が実現される。
【0141】
図32は、インピーダンスメータ20の設定電圧VZと偏角θとの関係の一例を示す図である。尚、図32では、10[Hz]で測定を行った結果を示している。
図32において、昇圧方向測定とは、設定電圧VZを0から徐々に昇圧させて測定したことを指し、降圧方向測定とは、設定電圧VZを5[V]から徐々に降圧させて測定したことを指す。図13及び図14に示したように、概ね0.1[V]以上、2[V]以下の設定電圧VZにして測定を行うのが好ましい。そこで、例えば1[V]の設定電圧VZで測定を行うことを考える。そうすると、図32からも明らかなように、設定電圧VZを0[V]から昇圧させて1[V]にする場合よりも、設定電圧VZを5[V]として、鋼板51を消磁しながら降圧させて1[V]にした方が、測定の感度を向上させることができることが分かる。
【0142】
尚、本実施形態では、交流信号源21から供給される交流信号を用いて、鋼板52を消磁するようにしたが、鋼板52を消磁する方法はこのような方法に限定されるものではない。例えば、鋼板52を消磁するためのコイルを別途設け、そのコイルから、鋼板52を消磁できる磁場を鋼板52に与えるようにしてもよい。
また、本実施形態においても、第1〜第10の実施形態で説明した種々の形態及び変形例を採ることができる。
【0143】
(第12の実施形態)
次に、本発明の第11の実施形態について説明する。本実施形態では、フェライトコアと鋼板51とが適切に接触(好ましくは密着)しているか否かを、測定中に確認するようにしている。このように本実施形態は、前述した第1〜第11の実施形態に対し、フェライトコアと鋼板51とが適切に接触しているか否かを、測定中に確認する構成を加えたものである。したがって、本実施形態の説明において、前述した第1〜第10の実施形態と同一の部分については、図1〜図32に付した符号と同一の符号を付すこと等により詳細な説明を省略する。
【0144】
本実施形態において、図1に示した交流信号源21は、測定中の任意のタイミングで、プローブ10に供給する交流信号を変更(昇圧)し、フェライトコア11(又は鋼板51)を磁気的に飽和させる。尚、交流信号の変更は、インピーダンスメータ20に設けられている操作部をオペレータが操作することにより行ってもよいし、インピーダンスメータ20が備えるマイコンがコンピュータ30からの指示等に基づいて自動的に行ってもよい。
【0145】
その後、交流電圧測定器22、交流電流測定器23は、変更された交流信号がプローブ10に供給されることにより得られる交流電圧、交流電流を測定する。偏角計測部25は、測定された交流電圧、交流電流に基づく偏角θを算出する。そして、コンピュータ30は、交流信号の変更前に偏角計測部25で算出された偏角θと、交流信号の変更後に偏角計測部25で算出した偏角θとの差が閾値以上であるか否かを判定し、閾値以上でない場合には、フェライトコア11と鋼板51とが適切に接触していないことをディスプレイ40に表示する(オペレータに報知する)。
本実施形態では、以上のようなコンピュータ30の処理を行うことによって、第2の導出手段と第2の評価手段とが実現される。
【0146】
図33は、インピーダンスメータ20の設定電圧VZと偏角θとの関係の一例を示す図である。尚、図33では、40[Hz]で測定を行った結果を示している。
図33において、エアギャップ無しとは、フェライトコア11と鋼板51とを密着させた状態で測定したことを指し、エアギャップ有りとは、フェライトコア11と鋼板51との間に0.1[mm]の隙間(エアギャップ)を設けた状態で測定したことを示す。
【0147】
図33に示すように、エアギャップがなく、フェライトコア11と鋼板51とを密着させた場合には、設定電圧VZを上げると、フェライトコア11は容易に飽和し、偏角θは減少する。これに対し、エアギャップを設けた場合には、設定電圧VZを上げても、フェライトコア11は容易に飽和せず、偏角θはあまり変化しない。
本実施形態では、このような性質を利用し、前述したようにして、フェライトコア11と鋼板51とが適切に接触しているか否かを測定中に判定し、判定した結果をオペレータに報知するようにしている。
このようにすることによって、プローブ10と被測定材である鋼板51との接触不良による測定誤差を低減することができる。
尚、本実施形態においても、第1〜第11の実施形態で説明した種々の形態及び変形例を採ることができる。
【0148】
(第13の実施形態)
次に、本発明の第13の実施形態について説明する。本実施形態では、フェライトコアの脚部の先端面と鋼板51との間に、フェライトなど軟磁性材料からなる微粉末を含む粘性材料を介在させるようにする。このように本実施形態は、前述した第1〜第12の実施形態に対し、フェライトコアの脚部の先端面と鋼板51との間に粘性材料を追加したものとなる。したがって、本実施形態の説明において、前述した第1〜第12の実施形態と同一の部分については、図1〜図33に付した符号と同一の符号を付すこと等により詳細な説明を省略する。
【0149】
例えば、亜鉛めっき処理が施された鋼板に対して、何度もスポット溶接を行った電極の表面には、銅と亜鉛の合金が生成される。この合金は脆いため、電極表面から剥がれ落ちる。そうすると、電極の表面の滑らかさが失われる。このように表面が滑らかでない電極を用いてスポット溶接が行われた場合、その電極が押し付けられた部分(例えばインデンテーションの部分)には、電極の凹凸が転写される。これにより、フェライトコア11と鋼板51とにエアギャップが生じる。フェライトコア11と、被測定材である鋼板51との間にエアギャップがあると、ナゲット53の大きさの違いによる磁気抵抗の変化を判別することが難しくなり、非破壊検査装置1における測定精度が低下する。
【0150】
そこで、本実施形態では、フェライトコア11と同じ材質のフェライトの微粉末(粉体)をシリコン油に練り込んでペースト化した粘性材料を、フェライトコア11と鋼板51との間に入れるようにして、エアギャップが生じるのを防止するようにしている。
尚、粘性材料の粘性の程度は特に限定されない。また、フェライト等軟磁性材料の微粉末の直径は、好ましくは2[μm]以下、より好ましくは1[μm]以下である。また、本実施形態においても、第1〜第12の実施形態で説明した種々の形態及び変形例を採ることができる。
【0151】
(第14の実施形態)
次に、本発明の第14の実施形態について説明する。前述した第1〜第14の実施形態では、フェライトコアの脚部の1つを、インデンテーション52aの内部に配置し、その他の脚部を、インデンテーション52aの外部に配置するようにした。これに対し、本実施形態では、フェライトコアがインデンテーション52aを跨ぐように、フェライトコアの全ての脚部を、インデンテーション52aの外部に配置するようにする。このように本実施形態と前述した第1〜第13の実施形態とは、フェライトコアの構成及び配置方法が主として異なる。したがって、本実施形態の説明において、前述した第1〜第12の実施形態と同一の部分については、図1〜図33に付した符号と同一の符号を付すこと等により詳細な説明を省略する。
【0152】
図34は、溶接部の非破壊検査装置の概略構成の一例を示す図である。また、図35は、フェライトコア371の構成の一例を示す図である。
図34に示すように、本実施形態では、プローブ361が備えるフェライトコア371がインデンテーション52aを跨ぐように、フェライトコア371の3つの脚部371a〜371cを、インデンテーション52aの外部の比較的平坦な領域に配置する。
【0153】
したがって、本実施形態では、図35に示すように、フェライトコア371の3つの脚部371a〜371cの長さを全て同じにすると共に、3つの脚部371a〜371cの先端面372a〜372cの全てを傾斜させないようにしている。また、フェライトコア371がインデンテーション52aを跨ぐようにするために、脚部371aと、脚部371b、371cとの間の空間の長さ(胴部371dの長さ)を、インデンテーション52aに対応する円の大きさ(直径)よりも長くするようにしている。ただし、脚部371aと、脚部371b、371cとの間の空間の長さ(胴部371dの長さ)は、測定対象のインデンテーション52aに対応する円の直径の2倍以下であるのが好ましい。例えば、インデンテーション52aに対応する大きさ(直径)が8[mm]程度である場合には、脚部371aと、脚部371b、371cとの間の空間の長さ(胴部371dの長さ)を、例えば、図35に示すように、12[mm]にすることができる。
フェライトコア371のその他の構成は、図6等に示したフェライトコア11と同じである。
【0154】
図36は、本実施形態の非破壊検査装置で測定した結果の一例を示す図である。図36に示すように、フェライトコア371がインデンテーション52aを跨ぐように、フェライトコア371の全ての脚部371a〜371cを、インデンテーション52aの外部に配置するようにしても、ナゲット53の大きさ(ナゲット径)が適切であるか否かを、測定結果から判定することができる。このようにした場合、フェライトコアの脚部371aと脚部371bおよび371cの中央に、補助部材を用いて位置決め板17を取り付けても良い。
また、本実施形態においても、第1〜第13の実施形態で説明した種々の形態及び変形例を採ることができる。
【0155】
以上の第1〜第14の実施形態では、プローブの先端の3箇所が鋼板51の表面に接触するようにしたが、必ずしもこのようにする必要はなく、プローブの先端の複数箇所が鋼板51の表面に接触していればよい。また、フェライトコアの脚部の数は、2つであっても、4つ以上であってもよい。更に、フェライトコアの脚部の水平方向の断面(水平断面)の形状は矩形に限定されず、円や楕円等であってもよい。また、フェライトコアの外形も、前述したものに限定されない。2つの脚部を有するフェライトコアを用いる場合には、例えば、コの字形状のフェライトコアを用いたり、U字形状のフェライトコアを用いたりすることができる。
【0156】
尚、前述した実施形態は、スポット溶接部の検査を対象としていた。しかし、円盤状の電極を用い、スポット溶接を連続的に行うシーム溶接や、マッシュシーム溶接に対しても全く同様に本発明を適用することができる。
さらに、前述した実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
【図面の簡単な説明】
【0157】
【図1】本発明の第1の実施形態を示し、溶接部の非破壊検査装置の概略構成の一例を示す図である。
【図2】本発明の第1の実施形態を示し、プローブの先端付近の構成の一例を示した図である。
【図3】本発明の第1の実施形態を示し、プローブの配置方法の一例を示す図である。
【図4】本発明の第1の実施形態を示し、基準値記憶部に記憶されている基準値の一例を示す図である。
【図5】本発明の第1の実施形態を示し、鋼板に形成されているナゲットが適正な大きさ(例えば直径)を有しているか否かを判定する方法の一例を説明する図である。
【図6】本発明の第1の実施形態を示し、フェライトコアの構成の一例を示す図である。
【図7】本発明の第1の実施形態を示し、フェライトコアの脚部の先端付近をモデル化して示した図である。
【図8】本発明の第1の実施形態を示し、母材、熱影響部、及びナゲットにおける磁気特性の一例を示す図である。
【図9】本発明の第1の実施形態を示し、非破壊検査装置により得られるインピーダンスと偏角を定式化するためのモデルの一例を示す図である。
【図10】本発明の第1の実施形態を示し、インピーダンスと偏角との計算値と測定値とを示す図である。
【図11】本発明の第1の実施形態を示し、コイルの構成と、測定に使用した周波数と、インピーダンス及び偏角の実測値と、インピーダンス及び偏角の実測値から得られた比例係数と、比例係数aと磁気抵抗Rとの積との関係を示す図である。
【図12】本発明の第1の実施形態を示し、測定に使用した被測定材と、その被測定材に形成されたナゲットとの関係を示す図である。
【図13】本発明の第1の実施形態を示し、インピーダンスメータの設定電圧と、インピーダンスメータで計測されたインピーダンスとの関係を示す図である。
【図14】本発明の第1の実施形態を示し、インピーダンスメータの設定電圧と、インピーダンスメータで計測された偏角との関係を示す図である。
【図15】本発明の第1の実施形態を示し、インピーダンスメータの設定電圧と、インピーダンスメータで計測された偏角の変化率(偏角変化率)との関係を示す図である。
【図16】本発明の第1の実施形態を示し、非破壊検査装置を用いて、インピーダンスと偏角とを測定した結果を示す図である。
【図17】本発明の第1の実施形態を示し、インピーダンス変化率と偏角変化率との関係を示す図である。
【図18】本発明の第2の実施形態を示し、基準値記憶部に記憶されている基準値の一例を示す図である。
【図19】本発明の第2の実施形態を示し、インピーダンス変化率と偏角変化率により定まる複数の点を結ぶ直線(又は曲線)により囲まれる領域の面積の一例を示す図である。
【図20】本発明の第3の実施形態を示し、基準値記憶部に記憶されている基準値の一例を示す図である。
【図21】本発明の第3の実施形態を示し、偏角変化率及びインピーダンス変化率と、周波数との関係の一例を示す図である。
【図22】本発明の第3の実施形態を示し、偏角変化率、インピーダンス変化率、及び変化距離と、規格化ナゲット径との関係の一例を示す図である。
【図23】本発明の第4の実施形態を示し、プローブの構成の一例を示す図である。
【図24】本発明の第5の実施形態を示し、フェライトコアと、フェライトコアに取り付けられる補助部材の構成の一例を示す図である。
【図25】本発明の第6の実施形態を示し、フェライトコアと、フェライトコアが取り付けられる支持部材の構成の一例を示す図である。
【図26】本発明の第7の実施形態を示し、フェライトコアの構成の一例を示す図である。
【図27】本発明の第8の実施形態を示し、溶接部の非破壊検査装置の概略構成の一例を示す図である。
【図28】本発明の第8の実施形態を示し、非破壊検査装置を用いて、インピーダンス変化率と、偏角変化率とを測定した結果の一例を示す図である。
【図29】本発明の第8の実施形態を示し、第1の本実施形態の非破壊検査装置を用いて、インピーダンス変化率と、偏角変化率とを測定した結果の一例を示す図である。
【図30】本発明の第9の実施形態を示し、インピーダンスメータの構成の一例を示す図である。
【図31】本発明の第10の実施形態を示し、フェライトコアを保護する構成の一例を示す図である。
【図32】本発明の第11の実施形態を示し、インピーダンスメータの設定電圧と偏角との関係の一例を示す図である。
【図33】本発明の第12の実施形態を示し、インピーダンスメータの設定電圧と偏角との関係の一例を示す図である。
【図34】本発明の第14の実施形態を示し、溶接部の非破壊検査装置の概略構成の一例を示す図である。
【図35】本発明の第14の実施形態を示し、フェライトコアの構成の一例を示す図である。
【図36】本発明の第14の実施形態を示し、非破壊検査装置で測定した結果の一例を示す図である。
【符号の説明】
【0158】
1 溶接部の非破壊検査装置
10、230、280 プローブ
11、251、260、271、371 フェライトコア
12 コイル
13、232 把持部
14 媒介部
15 膨出部
16、283、284 リード線
17 位置決め板
20、288、310 インピーダンスメータ
21、285 交流信号源
22、286 交流電圧測定器
23、287 交流電流測定器
24 インピーダンス計測部
25 偏角計測部25
30 コンピュータ
31 入力部
32 評価部
33 基準値記憶部
34 操作部
35 表示部
40 ディスプレイ
51 鋼板
52 インデンテーション
53 ナゲット
54 熱影響部
231 プリント基板
252 補助部材
261 第1のフェライトコア
262 第2のフェライトコア
266 支持部材
281 第1のコイル
282 第2のコイル
310 直流電源
331 保護部材

【特許請求の範囲】
【請求項1】
磁性体を含む被測定材の溶接部を非破壊で検査する溶接部の非破壊検査装置であって、
複数の脚部と、それら複数の脚部と磁気的に接続される胴部とを有するコアと、
前記コアに巻き回されるコイルと、
前記コイルに交流信号を供給する供給手段と、
前記コイルに交流信号が供給されることにより得られる交流電圧を測定する電圧測定手段と、
前記コイルに交流信号が供給されることにより得られる交流電流を測定する電流測定手段と、
前記電圧測定手段により測定された交流電圧と、前記電流測定手段により測定された交流電流とを用いて、前記溶接部を評価するための評価値を導出する導出手段と、を有し、
前記交流信号は、前記複数の脚部の先端面が前記被測定材に接触された状態で、前記コイルに供給され、
前記供給手段により前記コイルに交流信号が供給されることにより生じた磁束を、前記コアの少なくとも一の脚部から流出させ、前記被測定材の内部を通って前記コアの他の脚部に流入するようにして環流し、
前記導出手段は、前記溶接部を通る磁束の時間変化に応じて変化する値を評価値として導出することを特徴とする溶接部の非破壊検査装置。
【請求項2】
前記導出手段により導出された評価値と、予め設定された基準値とを比較し、比較した結果に基づいて、前記溶接部の大きさと、基準の大きさとの大小関係を判定する評価手段を有することを特徴とする請求項1に記載の溶接部の非破壊検査装置。
【請求項3】
前記複数の脚部の先端面が研磨されていることを特徴とする請求項1又は2に記載の溶接部の非破壊検査装置。
【請求項4】
前記被測定材と接触する箇所が3箇所であることを特徴とする請求項1〜3の何れか1項に記載の溶接部の非破壊検査装置。
【請求項5】
人又はロボットにより把持される把持部と、
前記把持部と前記コアとの間に設けられた媒介部と、を有し、
前記媒介部は、前記把持部と前記コアとを可動的に連結する機能と、前記把持部の動きを吸収する機能との少なくとも何れか一方の機能を有することを特徴とする請求項1〜4の何れか1項に記載の溶接部の非破壊検査装置。
【請求項6】
前記媒介部は、弾性体を用いて構成されることを特徴とする請求項5に記載の溶接部の非破壊検査装置。
【請求項7】
前記コアに巻き回されるコイルは1つであり、
前記供給手段は、前記1つのコイルに交流信号を供給し、
前記電圧測定手段は、前記1つのコイルの両端に発生する交流電圧を測定し、
前記電流測定手段は、前記1つのコイルに流れる交流電流を測定することを特徴とする請求項1〜6の何れか1項に記載の溶接部の非破壊検査装置。
【請求項8】
前記コアに巻き回されるコイルは、2つであり、
前記供給手段は、前記2つのコイルの一方に交流信号を供給し、
前記電圧測定手段は、前記2つのコイルの他方の両端に発生する交流電圧を測定することを特徴とする請求項1〜6の何れか1項に記載の溶接部の非破壊検査装置。
【請求項9】
前記溶接部は、スポット溶接が行われることにより前記被測定材の内部に生じるナゲットであり、
前記コアの一の脚部と、前記コアの他の脚部との間の長さは、スポット溶接が行われることにより前記被測定材の表面に生じるインデンテーションに応じた円の半径以上の長さを有し、
前記コアの複数の脚部の幅の長さは、横方向及び奥行き方向とも、前記インデンテーションに応じた円の半径以下の長さを有することを特徴とする請求項1〜8の何れか1項に記載の溶接部の非破壊検査装置。
【請求項10】
前記コアの一の脚部が、前記インデンテーションの内部に配置され、前記コアの他の脚部が、前記インデンテーションの外部に配置されることを特徴とする請求項9に記載の溶接部の非破壊検査装置。
【請求項11】
前記コアが有する複数の脚部の1つに設けられた板であって、当該1つの脚部を配置する位置を定めるための位置決め板を有することを特徴とする請求項10に記載の溶接部の非破壊検査装置。
【請求項12】
前記コアの一の脚部の先端面は、前記コアの他の脚部の先端面よりも突出していることを特徴とする請求項10又は11に記載の溶接部の非破壊検査装置。
【請求項13】
前記コアに取り付けられた支持部材を有し、
前記コアの一の脚部と、前記コアの他の脚部は、別体で形成され、
前記支持部材に取り付けられた前記コアの一の脚部と他の脚部との少なくとも何れか一方が、高さ方向に動くことにより、前記コアの一の脚部の先端面が、前記コアの他の脚部の先端面よりも突出するようにしたことを特徴とする請求項10又は11に記載の溶接部の非破壊検査装置。
【請求項14】
前記複数の脚部の少なくとも1つの先端面が、傾斜していることを特徴とする請求項9〜13の何れか1項に記載の溶接部の非破壊検査装置。
【請求項15】
前記溶接部は、スポット溶接が行われることにより前記被測定材の内部に生じるナゲットであり、
スポット溶接が行われることにより前記被測定材の表面に生じるインデンテーションを前記コアが跨ぐように、前記コアの脚部の全てが、前記インデンテーションの外部に配置されることを特徴とする請求項1〜9の何れか1項に記載の溶接部の非破壊検査装置。
【請求項16】
前記被測定材の磁気を消磁する消磁手段を有し、
前記供給手段は、前記消磁手段により磁気が消磁された後に、前記コイルに交流信号を供給することを特徴とする請求項1〜15の何れか1項に記載の溶接部の非破壊検査装置。
【請求項17】
前記電圧測定手段により測定された交流電圧と、前記電流測定手段により測定された交流電流とを用いて、前記コアと前記被測定材との接触状態を評価するための第2の評価値を導出する第2の導出手段と、
前記第2の導出手段により導出された第2の評価値を用いて、前記コアと前記被測定材との接触状態を評価する第2の評価手段を有し、
前記供給手段は、前記溶接部を評価するための交流信号を前記コイルに供給している最中に、当該交流信号よりも高い電圧を有する第2の交流信号を一時的に前記コイルに供給し、
前記電圧測定手段は、前記コイルに第2の交流信号が供給されると、当該第2の交流信号により得られる第2の交流電圧を測定し、
前記電流測定手段は、前記コイルに第2の交流信号が供給されると、当該第2の交流信号により得られる第2の交流電流を測定し、
前記第2の評価手段は、前記交流信号の電圧の変化の前後で前記第2の導出手段により導出された第2の評価値とを比較し、比較した結果に基づいて、前記コアと前記被測定材との接触状態を評価することを特徴とする請求項1〜16の何れか1項に記載の溶接部の非破壊検査装置。
【請求項18】
前記コアの脚部の先端部と前記被測定材料との間に粉末状の軟磁性材料を介在させることを特徴とする請求項1〜17の何れか1項に記載の溶接部の非破壊検査装置。
【請求項19】
複数の脚部と、それら複数の脚部と磁気的に接続される胴部とを有するコアと、
前記コアに巻き回されるコイルと、を有するプローブを用いて、磁性体を含む被測定材の溶接部を非破壊で検査する溶接部の非破壊検査方法であって、
前記複数の脚部の先端面を前記被測定材に接触させる配置ステップと、
前記配置ステップにより、前記複数の脚部の先端面が前記被測定材に接触された後に、前記コイルに交流信号を供給する供給ステップと、
前記コイルに交流信号が供給されることにより得られる交流電圧を測定する電圧測定ステップと、
前記コイルに交流信号が供給されることにより得られる交流電流を測定する電流測定ステップと、
前記電圧測定ステップにより測定された交流電圧と、前記電流測定ステップにより測定された交流電流とを用いて、前記溶接部を評価するための評価値を導出する導出ステップと、を有し、
前記供給ステップにより前記コイルに交流信号が供給されることにより生じた磁束を、前記コアの少なくとも一の脚部から流出させ、前記被測定材の内部を通って前記コアの他の脚部に流入するようにして環流し、
前記導出ステップは、前記溶接部を通る磁束の時間変化に応じて変化する値を評価値として導出することを特徴とする溶接部の非破壊検査方法。
【請求項20】
前記導出ステップにより導出された評価値と、予め設定された基準値とを比較し、比較した結果に基づいて、前記溶接部の大きさと、基準の大きさとの大小関係を判定する評価ステップを有することを特徴とする請求項19に記載の溶接部の非破壊検査方法。
【請求項21】
前記配置ステップは、前記複数の脚部の先端面であって、研磨された先端面を、前記被測定材に接触させることを特徴とする請求項19又は20に記載の溶接部の非破壊検査方法。
【請求項22】
前記配置ステップは、前記複数の脚部の先端面を含む3箇所を、前記被測定材に接触させることを特徴とする請求項19〜21の何れか1項に記載の溶接部の非破壊検査方法。
【請求項23】
前記プローブは、把持部と、
前記把持部と前記コアとの間に設けられた媒介部と、を更に有し、
前記媒介部は、前記把持部と前記コアとを可動的に連結する機能と、前記把持部の動きを吸収する機能との少なくとも何れか一方の機能を有し、
前記配置ステップは、前記把持部を把持して、前記複数の脚部の先端面を前記被測定材に接触させることを特徴とする請求項19〜22の何れか1項に記載の溶接部の非破壊検査方法。
【請求項24】
前記コアに巻き回されるコイルは1つであり、
前記供給ステップは、前記1つのコイルに交流信号を供給し、
前記電圧測定ステップは、前記1つのコイルの両端に発生する交流電圧を測定し、
前記電流測定ステップは、前記1つのコイルに流れる交流電流を測定することを特徴とする請求項19〜23の何れか1項に記載の溶接部の非破壊検査方法。
【請求項25】
前記コアに巻き回されるコイルは、2つであり、
前記供給ステップは、前記2つのコイルの一方に交流信号を供給し、
前記電圧測定ステップは、前記2つのコイルの他方の両端に発生する交流電圧を測定することを特徴とする請求項19〜23の何れか1項に記載の溶接部の非破壊検査方法。
【請求項26】
前記溶接部は、スポット溶接が行われることにより前記被測定材の内部に生じたナゲットであり、
前記配置ステップは、前記コアの一の脚部を、前記スポット溶接が行われることにより前記被測定材の表面に生じたインデンテーションの内部に配置し、前記コアの他の脚部を、前記インデンテーションの外部に配置することを特徴とする請求項19〜25の何れか1項に記載の溶接部の非破壊検査方法。
【請求項27】
前記プローブは、前記コアが有する複数の脚部の1つに設けられた板であって、当該1つの脚部を配置する位置を定めるための位置決め板を更に有し、
前記配置ステップは、前記位置決め板を用いて、前記1つの脚部の先端面の接触位置を決定することを特徴とする請求項26に記載の溶接部の非破壊検査方法。
【請求項28】
前記配置ステップは、前記複数の脚部のうち、先端面が他の脚部よりも、前記インデンテーションの深さに応じた長さ分だけ突出している脚部を、前記インデンテーションの内部に配置することを特徴とする請求項26又は27に記載の溶接部の非破壊検査方法。
【請求項29】
前記プローブは、前記コアに取り付けられた支持部材を更に有し、
前記コアの一の脚部と、前記コアの他の脚部は、別体で形成され、
前記配置ステップは、前記支持部材に取り付けられた前記コアの一の脚部と他の脚部との少なくとも何れか一方を高さ方向に動かしながら、前記コアの一の脚部を前記インデンテーションの内部に配置し、前記コアの他の脚部を前記インデンテーションの外部に配置することを特徴とする請求項26又は27に記載の溶接部の非破壊検査方法。
【請求項30】
前記配置ステップは、前記コアの一の脚部の先端面に生じている傾斜を、前記インデンテーションの傾斜に合わせるようにして、当該コアの一の脚部を前記インデンテーションの内部に配置することを特徴とする請求項26〜29の何れか1項に記載の溶接部の非破壊検査方法。
【請求項31】
前記溶接部は、スポット溶接が行われることにより前記被測定材の内部に生じるナゲットであり、
前記配置ステップは、スポット溶接が行われることにより前記被測定材の表面に生じるインデンテーションを前記コアが跨ぐように、前記コアの脚部の全てを、前記インデンテーションの外部に配置することを特徴とする請求項19〜25の何れか1項に記載の溶接部の非破壊検査方法。
【請求項32】
前記被測定材の磁気を消磁する消磁ステップを有し、
前記供給ステップは、前記消磁ステップにより磁気が消磁された後に、前記コイルに交流信号を供給することを特徴とする請求項19〜31の何れか1項に記載の溶接部の非破壊検査方法。
【請求項33】
前記電圧測定ステップにより測定された交流電圧と、前記電流測定ステップにより測定された交流電流とを用いて、前記コアと前記被測定材との接触状態を評価するための第2の評価値を導出する第2の導出ステップと、
前記第2の導出ステップにより導出された第2の評価値を用いて、前記コアと前記被測定材との接触状態を評価する第2の評価ステップを有し、
前記供給ステップは、前記溶接部を評価するための交流信号を前記コイルに供給している最中に、当該交流信号よりも高い電圧を有する第2の交流信号を一時的に前記コイルに供給し、
前記電圧測定ステップは、前記コイルに第2の交流信号が供給されると、当該第2の交流信号により得られる第2の交流電圧を測定し、
前記電流測定ステップは、前記コイルに第2の交流信号が供給されると、当該第2の交流信号により得られる第2の交流電流を測定し、
前記第2の評価ステップは、前記交流信号の電圧の変化の前後で前記第2の導出ステップにより導出された第2の評価値とを比較し、比較した結果に基づいて、前記コアと前記被測定材との接触状態を評価することを特徴とする特徴とする請求項19〜32の何れか1項に記載の溶接部の非破壊検査方法。
【請求項34】
前記コアの脚部の先端部と前記被測定材料との間に粉末状の軟磁性材料を介在させることを特徴とする請求項19〜33の何れか1項に記載の溶接部の非破壊検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate


【公開番号】特開2009−133786(P2009−133786A)
【公開日】平成21年6月18日(2009.6.18)
【国際特許分類】
【出願番号】特願2007−311598(P2007−311598)
【出願日】平成19年11月30日(2007.11.30)
【出願人】(000006655)新日本製鐵株式会社 (6,474)
【Fターム(参考)】