説明

金属製電気機械的機能素子の形成方法および機能性基板

【課題】 金属製電気機械的機能素子を大きな設計の自由度をもって、かつ高い効率で容易に形成することのできる金属製電気機械的機能素子の形成方法、当該金属製電気機械的機能素子の形成方法を利用したマイクロスプリングの製造方法およびマイクロスイッチの製造方法並びに機能性基板を提供することにある。
【解決手段】 本発明の金属製電気機械的機能素子の形成方法は、基板に対して各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成し、型体と金属部分とよりなる中間体における型体を形成する硬化樹脂を除去する型体除去処理が行われることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えばプローブカードにおける接触子として用いられる金属製電気機械的機能素子の形成方法および機能性基板に関し、詳しくは金属製電気機械的機能素子の形成方法、基本的にこの金属製電気機械的機能素子の形成方法を利用したマイクロスプリングの製造方法およびマイクロスイッチの製造方法、並びに機能性基板に関する。
【背景技術】
【0002】
近年、携帯電話、パーソナルコンピューター、家庭用電気器具、車載電子機器などの電子・電気機器の高機能化および高容量化に伴って、このような電子・電気機器に搭載されるLSI(大規模集積回路)素子が高機能化および高容量化されてきていることから、LSI素子の製造工程においては、LSIチップの作製に、MCM(Multi Chip Module)、MCP(Multi Chip Package)およびWLP(Wafer Level Package)などの高密度実装技術や小容積実装技術が多用されており、これらの実装技術において必要とされる品質が保証されたベアチップ(Bea Die)を得るために、WLT(Wafer Level Test)およびWLBI(Wafer Level Burn−in)などのテスト技術が求められている。
【0003】
而して、作製したLSIチップの電気的性能や信頼性などを検査するために相当長い時間が必要となるために検査コストが大きくなり、最終的な商品価格に影響を及ぼしてしまうという問題が潜在化してきており、このため、品質の確保および検査コストの低減化を目的として、ウエハ段階(ベアチップとする前の段階)で当該ウエハ上に形成されている多くのチップを同時に検査するMDT(Multi Die Test)、ウエハを構成するすべてのチップの機能テストを同時に行うFWT(Full Wafer Test)、更にはウエハを構成するすべてのチップに同時にバーンインテストを行うWLBI(Wafer Level Burn−in)などの検査手法が実用化されてきている。
【0004】
このような手法によって性能検査を行うためには、同時に多くのチップを検査することが必要となるため、ウエハ上の複数の被検査電極の各々に検査用接触子を接触させてテスターから電源および入力信号を供給し、被検査電極から出力を取り出してその信号の適正を判断することができるよう、同時に検査すべき被検査電極数に対応した個数の接触子を有するプローブカードが必要となる。
【0005】
一方、LSIチップ検査用のプローブカードとしては、一般的に、例えばタングステンなどの金属材料よりなる金属針が植設されてなるカレンチレバー型プローブカード、リン青銅などの優れたバネ特性を有する金属材料よりなるワイヤーが植設されてなるバーチカルプローブカード、エレクトロフォーミング法によってニッケルなどの金属材料よりなるスプリング状の針が植設されてなるプローブカード(以下、「スプリング型プローブカード」ともいう。)、ポリイミドシートの表面に配線パターンおよびバンプが形成されてなる構成のフレキシブルプリント基板よりなるプローブカード(以下、「プリント基板型プローブカード」ともいう。)などが用いられている(例えば、特許文献1参照。)。
また、近年においては、フォトリソ法およびエレクトロフォーミング法などのMEMS(micro electrical mechanical system)技術を応用し、三次元的に多くの接触子を同時に形成してLSIチップ検査用のプローブカードを形成する方法が注目されてきている。
【0006】
しかしながら、ウエハ段階でウエハを構成するすべてのチップの性能検査を同時に行うためのプローブカードとしては、例えば直径8インチのウエハを被検査対象とする場合においては、1万個以上、具体的には3万個程度の接触子を有するものが必要となり、また、直径12インチのウエハを被検査対象とする場合には、2万個以上、具体的には6万個程度の接触子を有するものが必要となるが、カレンチレバー型プローブカード、バーチカルプローブカード、スプリング型プローブカードなどの一般的に用いられている形態のプローブカードには多くの接触子を精度よく配設することが困難であり、また仮に製作することができたとしてもプローブカード自体が高額なものとなり、結果として検査コストが大きくなってしまう、という問題がある。
【0007】
また、システムLSIなどにおいては、性能検査のために1品種当たり数枚のプローブカードが必要とされ、またDRAM(Dynamic Random Access Memory)やFlash RAMにおいては、1品種当たり数十枚から百枚程度のプローブカードが必要とされることから、MEMS技術を応用してプローブカードを製造する場合には、植針コストの他、フォトリソ技術、薄膜形成技術、メッキ技術および微細接合技術などにおけるイニシャルコストやプロセスコストが大きく、しかもその製造プロセスが相当長い時間を要するために高歩留りを確保することが難しいことなどから、製造コストが極めて大きくなるため、このMEMS技術を実用適用することが難しい、という問題がある。
【0008】
具体的に、ウエハ段階でウエハを構成するすべてのチップの性能検査を同時に行うためのプローブカードにおける接触子を形成するための方法としては、例えば下記に示す手法が広く用いられているが、このような手法においては、多くの処理が必要となることや個々の処理が煩雑であることなどから高い形成効率が得られない、という問題がある。
【0009】
以下に、図32に示されるように、回路基板20における電極部21Aの上方(図32において上方)に伸びるポスト部分31と、その一端部32A(図32において左端部)がポスト部分31に一体に連続し、回路基板20の表面方向(図32において左右方向)に伸びるビーム部分32と、当該ビーム部分32の他端部32B(図32において右端部)の上面から上方に伸びる上方突出部分33とを備えてなる構成の接触子とされる金属製電気機械的機能素子を形成するための方法を示す。
【0010】
先ず、図33に示すように、配線パターン21が形成された回路基板20を用意し、この回路基板20の下面(図33において下面)に電解メッキ用コモン電極層101を形成した後、当該回路基板20の上面(図33において上面)に配線パターン21における電極部21Aの配置位置に対応する部分にポスト部分形成用貫通孔102Aを有するポスト部分用レジスト層の複数が積層されてなる積層体102を形成し、図34に示すように、積層体102におけるポスト部分形成用貫通孔102A内にニッケルメッキ層103を形成し、このニッケルメッキ層103の表面を研磨処理した後、当該ニッケルメッキ層103の表面および積層体102の表面にスパッタ法によってビーム部分形成用コモン電極層104を形成する。
次いで、図35に示すように、ビーム部分形成用コモン電極層104上にビーム部分形成用貫通孔を有するビーム部分用レジスト層105を形成し、当該ビーム部分形成用貫通孔内に、ライトエッチング処理を行ってエッチング銅層を形成した後、電解メッキ法によってニッケルメッキ層および銅メッキ層(図35においてはこれらをまとめて「金属層106」と示す。)をこの順に形成し、この銅メッキ層の表面を研磨処理した後、上方突出部分形成用貫通孔を有する上方突出部分用レジスト層の複数が積層されてなる積層体107を形成し、当該上方突出部分形成用貫通孔内に、ライトエッチング処理を行ってエッチング銅層を形成し、このエッチング銅層上に電解メッキ法によってニッケルメッキ層(図35においてはこのニッケルメッキ層と当該ニッケルメッキ層の直下に形成されているエッチング銅層とをまとめて「金属層108」と示す。)を形成し、このニッケルメッキ層の表面を研磨処理する。
更に、複数のポスト部分形成用レジスト層よりなる積層体102、ビーム部分用レジスト層105および複数の上方突出部分形成用レジスト層よりなる積層体107を剥離した後、電解メッキ用コモン電極層101およびビーム部分形成用コモン電極層104のうちの金属層106と一体化されている部分以外をエッチング処理によって除去することにより、図32に示されるような構成を有する機能性素子が回路基板20の上面上に形成される。
【0011】
【特許文献1】特開2005−069712号公報
【発明の開示】
【発明が解決しようとする課題】
【0012】
本発明は、以上のような事情に基づいてなされたものであって、本発明の第1の目的は、金属製電気機械的機能素子を大きな設計の自由度をもって、かつ高い効率で容易に形成することのできる金属製電気機械的機能素子の形成方法を提供することにある。
本発明の第2の目的は、マイクロスプリングを大きな設計の自由度をもって、かつ高い効率で容易に製造することのできるマイクロスプリングの製造方法を提供することことにある。
本発明の第3の目的は、マイクロスイッチを大きな設計の自由度をもって、かつ高い効率で容易に製造することのできるマイクロスイッチの製造方法を提供することにある。
本発明の第4の目的は、基板の上面上に金属製のスプリング要素を含むマイクロスプリングが設けられてなる機能性基板を提供することにある。
【課題を解決するための手段】
【0013】
本発明の金属製電気機械的機能素子の形成方法は、基板の上面上に、上方に伸びるポスト部分と、このポスト部分に一体に連続して当該基板の表面方向に伸びるビーム部分とよりなり、当該ビーム部分が上下方向に湾曲するよう弾性的に変形可能である金属製可変形要素を含む電気機械的機能素子を形成する方法であって、
基板に対して中間体形成工程が行われることにより、ポスト部分およびビーム部分が型体に形成されてなる中間体が形成され、
当該中間体形成工程は、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、得られた中間体における型体を形成する硬化樹脂を除去する型体除去処理が行われることを特徴とする。
【0014】
この本発明の金属製電気機械的機能素子の形成方法においては、基板が回路基板であり、ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることが好ましい。
【0015】
また、本発明の金属製電気機械的機能素子の形成方法においては、中間体形成工程の金属部分形成手段においては、金属部分形成用凹所の内面上に無電解メッキ法によってメッキ基層が形成され、このメッキ基層の上に、電解メッキ工程による金属付着操作が1回以上繰り返されることが好ましい。
【0016】
本発明の金属製電気機械的機能素子の形成方法は、基板の上面上に、上方に伸びる第1のポスト部分と、この第1のポスト部分に一体に連続して当該基板の表面方向に伸びる第1のビーム部分と、この第1のビーム部分の上面から上方に伸びる第2のポスト部分と、この第2のポスト部分に一体に連続して前記第1のビーム部分と平行に伸びる第2のビーム部分とよりなり、第1のビーム部分および第2のビーム部分がいずれも上下方向に湾曲するよう弾性的に変形可能である金属製可変形要素複合体を含む電気機械的機能素子を形成する方法であって、
基板に対して第1の中間体形成工程が行われることにより、第1のポスト部分および第1のビーム部分が第1の型体に形成されてなる第1の中間体が形成され、
この第1の中間体に対して第2の中間体形成工程が行われることにより、第2のポスト部分および第2のビーム部分が第2の型体に形成されてなる第2の中間体が形成され、
第1の中間体形成工程および第2の中間体形成工程は、いずれも、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とする。
【0017】
この本発明の金属製電気機械的機能素子の形成方法においては、基板が回路基板であり、第1の中間体における第1のポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることが好ましい。
【0018】
本発明のマイクロスプリングの製造方法は、基板の上面上に、上方に伸びるポスト部分と、一端部がこのポスト部分に一体に連続して当該基板の表面方向に伸びるビーム部分とを備えてなり、当該ビーム部分の他端部が上下方向に弾性的に変位可能である金属製可変形要素を含むマイクロスプリングの製造方法であって、
基板に対して中間体形成工程が行われることにより、ポスト部分およびビーム部分が型体に形成されてなる中間体が形成され、
当該中間体形成工程は、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を合む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、得られた中間体における型体を形成する硬化樹脂を除去する型体除去処理が行われることを特徴とする。
【0019】
この発明のマイクロスプリングの製造方法においては、基板が回路基板であり、ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることが好ましい。
【0020】
本発明のマイクロスプリングの製造方法は、基板の上面上に、上方に伸びる第1のポスト部分と、一端部がこの第1のポスト部分に一体に連続して当該基板の表面方向に伸びる第1のビーム部分と、この第1のビーム部分の他端部の上面から上方に伸びる第2のポスト部分と、一端部がこの第2のポスト部分に一体に連続して前記第1のビーム部分と平行に伸びる第2のビーム部分とよりなり、第1のビーム部分および第2のビーム部分の他端部がいずれも上下方向に弾性的に変位可能である金属製可変形要素を含むマイクロスプリングを製造する方法であって、
基板に対して第1の中間体形成工程が行われることにより、第1のポスト部分および第1のビーム部分が第1の型体に形成されてなる第1の中間体が形成され、
この第1の中間体に対して第2の中間体形成工程が行われることにより、第2のポスト部分および第2のビーム部分が第2の型体に形成されてなる第2の中間体が形成され、
第1の中間体形成工程および第2の中間体形成工程は、いずれも、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とする。
【0021】
この本発明のマイクロスプリングの製造方法においては、基板が回路基板であり、第1の中間体の第1のポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることが好ましい。
【0022】
本発明のマイクロスイッチの製造方法は、基板の上面上に、上方に伸びるポスト部分と、一端部がこのポスト部分に一体に連続して当該基板の表面方向に伸びるビーム部分と、このビーム部分の他端部の下面から下方に突出する下方突出部分とよりなり、当該ビーム部分の他端部が上下方向に弾性的に変位可能である金属製可変形要素を合むマイクロスイッチを製造する方法であって、
基板に対して中間体形成工程が行われることにより、ポスト部分、下方突出部分およびビーム部分が型体に形成されてなる中間体が形成され、
中間体形成工程は、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、得られた中間体における型体を形成する硬化樹脂を除去する型体除去処理が行われることを特徴とする。
【0023】
この本発明のマイクロスイッチにおいては、基板が回路基板であり、ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されると共に、下方突出部分は、当該基板におけるスイッチ用接点部の上方に離間して対向した状態で形成されることが好ましい。
【0024】
本発明の機能性基板は、基板の上面上に、上方に伸びる中央ポスト部分と、この中央ポスト部分に一体に連続して当該基板の表面方向に伸びる下辺ビーム部分と、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する2つの端部ポスト部分と、これら2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分とよりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能である金属製スプリング要素を含むマイクロスプリングが設けられていることを特徴とする。
【0025】
本発明の機能性基板は、基板の上面上に、上方に伸びる中央ポスト部分とこれに接続された矩形枠状体部分とよりなる金属製スプリング要素の複数が一体的に積重されてなるマイクロスプリングが設けられてなり、
各金属製スプリング要素の矩形枠状体部分は、基板の表面方向に伸びる下辺ビーム部分、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する2つの端部ポスト部分およびこれら2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分よりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能であり、
各金属製スプリング要素において、中央ポスト部分に下辺ビーム部分が一体に連続していることを特徴とする。
【0026】
本発明のマイクロスプリングの製造方法は、基板の上面上に、上方に伸びる中央ポスト部分、この中央ポスト部分に一体に連続して当該基板の表面方向に伸びる下辺ビーム部分、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する2つの端部ポスト部分およびこれら2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分よりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能である金属製スプリング要素を含むマイクロスプリングを形成する方法であって、
中央ポスト部分および下辺ビーム部分とが第1の型体に形成されてなる第1の中間体を形成する第1の中間体形成工程と、2つの端部ポスト部分および上辺ビーム部分が第2の型体に形成されてなる第2の中間体を形成する第2の中間体形成工程とよりなる金属製可変形枠状部分形成操作が行われ、
第1の中間体形成工程および第2の中間体形成工程は、いずれも、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とする。
【0027】
この本発明のマイクロスプリングの製造方法においては、基板が回路基板であり、中央ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることが好ましい。
【0028】
本発明のマイクロスプリングの製造方法は、基板の上面上に、上方に伸びる中央ポスト部分とこれに接続された矩形枠状体部分とよりなる金属製スプリング要素の複数が一体的に積重されてなるマイクロスプリングが設けられてなり、
各金属製スプリング要素の矩形枠状体部分は、基板の表面方向に伸びる下辺ビーム部分、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する2つの端部ポスト部分およびこれら2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分よりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能であり、各金属製スプリング要素において、中央ポスト部分に下辺ビーム部分が一体に連続しているマイクロスプリングを製造する方法であって、
中央ポスト部分および下辺ビーム部分とが第1の型体に形成されてなる第1の中間体を形成する第1の中間体形成工程と、2つの端部ポスト部分および上辺ビーム部分が第2の型体に形成されてなる第2の中間体を形成する第2の中間体形成工程とよりなる金属製可変形枠状部分形成操作が繰り返して行われ、
各金属製可変形枠状部分形成操作における第1の中間体形成工程および第2の中間体形成工程は、いずれも、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、すべての金属製可変形枠状部分形成操作における第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とする。
【0029】
この本発明のマイクロスプリングの製造方法においては、基板が回路基板であり、最初の金属製可変形枠状部分形成操作の第1の中間体形成工程において、中央ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることが好ましい。
【発明の効果】
【0030】
本発明の金属製電気機械的機能素子の形成方法は、光造形法によって基板上に形成した型体の金属部分形成用凹所内に無電解メッキ層を形成する過程を含む金属部分形成手段によって金属部分が形成されてなる中間体を形成した後、当該中間体における型体を構成する光硬化樹脂を除去することにより、この金属部分よりなる金属製電気機械的機能素子を得る手法であり、光造形法によれば、オーバーハング形状、ブリッジ形状などの三次元的な形状を有する金属部分を成形するための型体を、液状の光硬化性樹脂よりなる未硬化層に対して選択的に光を照射することによって形成される硬化樹脂単位層を積層していくという手法によって容易に、しかも制御された状態で光を照射することによって所望の形状の硬化樹脂単位層を制限を受けずに形成することができると共に、複数の硬化樹脂単位層を位置のアライメント誤差なく積層することができることから、金属部分を成形するための型体を、大きな設計の自由度をもって、高い精度でかつ高い効率で容易に形成することができる。
従って、本発明の金属製電気機械的機能素子の形成方法によれば、高い精度の金属製電気機械的機能素子を大きな設計の自由度をもって、かつ高い効率で容易に形成することができる。
【0031】
このような金属製電気機械的機能素子の形成方法によれば、プローブカードにおける接触子を形成することができ、特に極めて多数の接触子を備えてなる構成のプローブカードにおける当該多数の接触子を、容易な手法によって極めて大きな製造コストを要することなく同時に形成することができる。
【0032】
本発明のマイクロスプリングの製造方法は、基本的に上記の金属製電気機械的機能素子の形成方法を利用することによってマイクロスプリングを得る手法であることから、マイクロスプリングを大きな設計の自由度をもって、かつ高い効率で容易に製造することができる。
【0033】
また、本発明のマイクロスイッチの製造方法は、基本的に上記の金属製電気機械的機能素子の形成方法を利用することによってマイクロスイッチを得る手法であることから、マイクロスプリングを大きな設計の自由度をもって、かつ高い効率で容易に製造することができる。
【0034】
本発明の機能性基板は、上記のマイクロスプリングの製造方法によって三次元的な構造を有するスプリング要素を容易に形成することができることから得られるものであり、基板の上面上に金属製のスプリング要素を含むマイクロスプリングが設けられてなるという三次元的な形状を有するものである。
【発明を実施するための最良の形態】
【0035】
以下、本発明について詳細に説明する。
本発明の金属製電気機械的機能素子の形成方法は、下記の(1)および(2)の電気機械的機能素子を形成するための方法である。
【0036】
(1)基板の上面上に、上方に伸びるポスト部分と、このポスト部分に一体に連続して当該基板の表面方向に伸びるビーム部分とよりなり、当該ビーム部分が上下方向に湾曲するよう弾性的に変形可能である金属製可変形要素を含む電気機械的機能素子(以下、「特定機能素子」ともいう。)
(2)基板の上面上に、上方に伸びる第1のポスト部分と、この第1のポスト部分に一体に連続して当該基板の表面方向に伸びる第1のビーム部分と、この第1のビーム部分の上面から上方に伸びる第2のポスト部分と、この第2のポスト部分に一体に連続して前記第1のビーム部分と平行に伸びる第2のビーム部分とよりなり、第1のビーム部分および第2のビーム部分がいずれも上下方向に湾曲するよう弾性的に変形可能である金属製可変形要素複合体を含む電気機械的機能素子(以下、「特定複合機能素子」ともいう。)
【0037】
特定機能素子を形成する方法は、基板に対して中間体形成工程が行われることにより、ポスト部分およびビーム部分が型体に形成されてなる中間体が形成され、その後、得られた中間体における型体を形成する硬化樹脂を除去する型体除去処理が行われることを特徴とする。
また、特定複合機能素子を形成する方法は、基板に対して第1の中間体形成工程が行われることにより、第1のポスト部分および第1のビーム部分が第1の型体に形成されてなる第1の中間体が形成され、この第1の中間体に対して第2の中間体形成工程が行われることにより、第2のポスト部分および第2のビーム部分が第2の型体に形成されてなる第2の中間体が形成され、その後、第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とする。
【0038】
ここに、ビーム部分は、上下方向に湾曲して弾性的に変形可能であるものであればよいが、その変位量を30μmとした場合のバネ定数(以下、「特定バネ定数」ともいう。)が470〜500N/mとなる弾性特性を有するものであることが好ましい。
また、ビーム部分は、1種の金属材料よりなるものであってもよいが、異なる種類の金属材料よりなる複数(2種または3種)の金属層が積層されてなる構成(以下、「積層構造」ともいう。)のものであることが好ましい。ビーム部分を積層構造を有するものとすることにより、この積層構造における金属層を構成する金属材料を選択することによって当該ビーム部分の弾性特性を制御することができ、また、高い弾性特性を得ることができる可能性がある。特に、2種の金属材料よりなる積層構造(2層構造)とした場合には、バイメタル効果が期待されることから、高温条件下で用いた場合の押圧力を向上させることができる可能性がある。
【0039】
金属製電気機械的機能素子が形成される基板としては、電極部および配線部よりなる配線パターンが形成されてなる回路基板であることが好ましく、このような回路基板上においては、金属製電気機械的機能素子は、当該回路基板における電極部上に電気的に接続された状態で形成される。
【0040】
中間体形成工程は、光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体(以下、「樹脂型体」ともいう。)を形成する型体形成過程と、この型体形成過程において得られた樹脂型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、樹脂型体と金属部分とよりなる中間体を形成する金属部分形成過程とよりなる工程である。
【0041】
型体形成過程においては、光造形法によって樹脂型体が形成されるが、この光造形法は、液状の光硬化性樹脂よりなる未硬化層(n)に対して造形すべき樹脂型体のスライス形状データ(n)に基づいて選択的に光を照射することにより硬化樹脂単位層(n)を形成し、この硬化樹脂単位層(n)上に新たな光硬化性樹脂を供給して未硬化層(n十1)を形成し、この未硬化層(n十1)に対してスライス形状データ(n十1)に基づいて選択的に光を照射することにより硬化樹脂単位層(n十1)を形成する工程を繰り返すことにより、硬化樹脂単位層の積層体からなる樹脂型体を造形する方法である。
【0042】
光造形法に用いられる光造形装置としては、形成される樹脂型体に優れた耐熱性および物理的性能(補強効果)を得るために、液状の光硬化性樹脂に充填材が配合されてなる光硬化性樹脂組成物(以下、単に「組成物」ともいう。)を樹脂型体の材料とし、例えば図1に示すように、垂直支柱10Aを有する固定ベース10と、当該固定ベース10に固定され、組成物Rを収容するための、例えばステンレスなどの光不透過性材料よりなる収容容器11と、組成物Rの液面に選択的に光を照射するための光源装置12と、垂直支柱10Aに沿って昇降可能に設けられた、硬化樹脂単位層の積層体Hを支持するための支持ステージ13とを備えてなり、支持ステージ13を図1に示す状態から下降させることによって積層体Hの上面に組成物Rを供給し、支持ステージ13の下降量に相当する厚みの未硬化層を形成させる構成のものが用いられる。
図1において、15は、組成物Rの液面、すなわち未硬化層の上面を平滑化させるためのスキージ機構であり、16は、循環ポンプ16A、液吸引側配管16Bおよび液吐出側配管16Cよりなり、収容容器11内に収容された組成物Rのうち、当該収容容器11の底面付近(図1において収容容器11の下方)に位置する組成物を液面付近(図1において収容容器11の上方)に移送するための循環手段であり、17は、例えばパーソナルコンピューターよりなり、樹脂型体のCADデータに基づくスライス形状データ群を算出し、かつ、これらのスライス形状データの各々に基づいて、光源装置12、支持ステージ13、スキージ機構15および循環手段16の各々の動作を制御するための制御手段である。
【0043】
光造形装置においては、光源装置12から放射される光を選択的に組成物Rの液面に照射するための制御機構として、光源装置12から放射される光自体を移動させることによって組成物Rの液面における光照射位置を移動させる放射光移動方式、または平面ステージ13を移動させることによって組成物Rの液面における光照射位置を移動させるステージ移動方式のいずれのものを用いることができるが、例えば直径8インチ以上の大きさを有する基板の上面上に複数の金属製電気機械的機能素子を形成するような場合には、光照射精度および解像性の観点から、ステージ移動方式の制御機構を用いることが好ましい。
【0044】
このような光造形装置においては、光源装置12として、半導体レーザー装置または紫外線ランプよりなる光源部を備えてなり、ライン幅解像能が10μm以上であり、透過率制御あるいは放射光強度制御によって調整される硬化深さが100μm以内である特性を有するものを用いることが好ましい。
【0045】
組成物Rを構成する樹脂成分である光硬化性樹脂としては、例えば変性ポリウレタン(メタ)アクリレート、オリゴエステル(メク)アクリレート、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、感光性ポリイミド、アミノアルキド、エポキシ化合物、ビニルエーテル、オキセタン、スピロオルソエステル化合物、ビニルエーテルーマレイン酸、チオールーエンなどのモノマーおよびオリゴマーを挙げることができ、これらは単独でまたは2種以上組み合わせて使用することができる。
さらに、組成物Rには、光が照射されることにより分解してラジカルまたはカチオンを発生する光重合開始剤、保存安定性、その他の特性を向上させるための添加剤が含有されていてもよい。
【0046】
組成物Rを構成する充填材としては、粉末状および繊維状の無機充填材などを挙げることができ、具体的には、ガラス粉、シリカ粉、アルミナ、アルミナ水和物、酸化マグネシウム、水酸化マグネシウム、硫酸バリウム、硫酸カルシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸塩鉱物、ケイソウ上、ケイ砂、ケイ石粉、酸化チタン、アルミ粉、ブロンズ、亜鉛粉、銀粉、鉛粉、金粉、銀粉、ガラス繊維、チタン酸カリウムウィスカー、カーボンウィスカー、サファイアウィスカー、ベリリアウィスカー、炭化ホウ素ウィスカー、炭化ケイ素ウィスカー、窒化ケイ素ウィスカーなどを使用することができる。ここに、充填材の平均粒子径・平均繊維長は、通常1〜50μmとされる。組成物Rにおける無機充填材の配合割合は、光硬化性樹脂と光重合開始剤との混合物100容量部に対して、例えば100〜140容量部とされる。
【0047】
組成物Rの組成としては、例えば、光硬化性樹脂として、「SA−1002」(三菱化学(株)製)50重量部、「FA−513A」(目立化成(株)製)25重量部、N−ビニルピロリドン25重量部;光重合開始剤として、「イルガキュア(lrgacure)651」(チバガイギー社製)0.25重量部;安定化剤としてp−メトキシフェノール0.1重量部からなる樹脂混合物100容量部に、無機充填材として、ガラスビーズ「GB045ZC」(東芝バロティーニ(株)製)160容量部を分散混合させたものを例示することができる。
【0048】
上記のような構成の光造形装置によれば、造形すべき樹脂型体のCADデータを制御手段17に入力することによって当該制御手段17が樹脂型体の高さ方向に等間隔のスライス形状データ群を算出し、この制御手段17からの制御信号を受けた支持ステージ13が、ステージ面13Aが組成物Rの液面から1層分に相当する深さレベルに位置するまで降下することによって当該ステージ面13A上に組成物Rが供給されて未硬化層(第1層)が形成される。次いで、制御手段17からの制御信号を受けたスキージ機構15が作動することによって組成物Rの液面が平滑化されて未硬化層(第1層)の厚みが均一化されると、制御手段17により算出されたスライス形状データ(第1層のデータ)に基づいて、光源装置12からの光が未硬化層(第1層)に対して選択的に照射され、光照射された部分が光重合により硬化し、硬化樹脂単位層(第1層)が形成される。その後、制御手段17からの制御信号を受けた支持ステージ13が、更に1層分降下し、硬化樹脂単位層(第1層)上に組成物Rが供給されて未硬化層(第2層)が形成され、制御手段17からの制御信号を受けたスキージ機構15によって組成物Rの液面が平滑化されて未硬化層(第2層)の厚みが均一化されると、制御手段17により算出されたスライス形状データ(第2層のデータ)に基づいて、光源装置12からの光が未硬化層(第2層)に対して選択的に照射されて光照射された部分が光重合により硬化し、硬化樹脂単位層(第2層)が形成される。このようにして、未硬化層の形成、液面の平滑化、硬化樹脂単位層の形成を繰り返すことにより、硬化樹脂単位層の積層体よりなる樹脂型体が造形される。
【0049】
そして、この光造形装置においては、光造形法による樹脂型体の造形操作が行われている間に、あるいは、造形操作を開始する前工程として、循環手段16による組成物Rの循環(底面付近に存在する組成物の液面付近への移送)が行われ、収容容器11内に収容された組成物Rのうち、充填材の分散割合が経時的に増加する傾向にある底面付近に位置する組成物が開口11Aから収容容器11外に移出され、液吸引側配管16B、循環ポンプ16Aおよび液吐出側配管16Cを移動して、開口11Bから収容容器11内に移入されることにより、底面付近に存在していた組成物(充填材高分散状態)と、液面付近に存在している組成物とが混合される。
【0050】
金属部分形成過程においては、無電解メッキ法によって無電解メッキ層を形成する過程を含む金属部分形成手段によって金属部分が形成されるが、この金属部分形成手段としては、樹脂型体の金属部分形成用凹所の内面上に無電解メッキ法によって無電解メッキ層であるメッキ基層を形成し、このメッキ基層上に更にメッキ層を形成するメッキ工程(以下、「特定メッキ工程」ともいう。)による金属付着操作を1回以上繰り返すことにより、金属部分形成用凹所内において金属部分を形成する手法を用いることが好ましい。
【0051】
ここに、金属付着操作に係る特定メッキ工程においては、電解メッキ法または無電解メッキ法のいずれのメッキ法を用いることもできるが、電解メッキ法を用いる場合には、メッキ析出速度が速いためメッキ時間の短縮化を図ることができ、また比較的低温の条件でメッキ処理を行うことができるために型体への制約が小さくなる、という利点が得られ、また、無電解メッキ法を用いる場合には、金属部分形成手段によって形成された金属部分を含む中間体に対して新たに中間体形成工程を行う際に、当該金属部分の表面に対して、当該表面を平坦化させるための処理を行う必要がない、という利点が得られる。
【0052】
金属部分形成手段における特定メッキ工程によって形成される金属部分の構成の具体例としては、例えば無電解メッキ法によって形成されてなるニッケル層と、電解メッキ法によって形成されてなる銅層とよりなる構成を有するものなどが挙げられるが、無電解メッキ法によって形成されてなるニッケル層と、電解メッキ法によって形成されてなるニッケル層とよりなる構成を有するものが好ましい。
【0053】
また、金属部分形成手段としては、金属部分形成用凹所の内面上に無電解メッキ法によってニッケルメッキ層あるいは銅メッキ層を形成し、これをコモン電極として用いることにより、当該ニッケルメッキ層あるいは銅メッキ層上に電解メッキ法によってニッケルメッキ層を形成する手法を用いることもできる。この手法によれば、金属層の形成に要する時間を小さくすることができることから、特に大きな厚みの金属層を形成する必要がある場合には、高い効率で金属製電気機械的機能素子を形成することができる。
【0054】
金属部分形成手段において、特定メッキ工程を構成する金属付着操作の繰り返し回数は、1回以上であればよく、形成すべき金属部分の形状などによって適宜に選択されるが、通常1〜5回であることが好ましい。
【0055】
型体除去工程においては、中間体形成工程において得られた、樹脂型体と金属部分とよりなる中間体を構成する当該樹脂型体が型体除去処理によって除去されるが、この型体除去処理としては、例えば樹脂型体を溶解させることによって除去する手法、樹脂型体を灰化させることによって除去する手法などを用いることができる。
【0056】
樹脂型体を溶解させるための溶剤としては、例えば次メチルスルフィド(DMS)、水酸化テトラメチルアンモニウム(TMAH)、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)などを用いることができる。
【0057】
以上のような電気機械的機能素子の形成方法によって形成される電気機械的機能素子の具体例としては、下記の(1)〜(3)の構成を有するものが挙げられる。
【0058】
(1)基板の上面上に、上方に伸びるポスト部分と、一端部がこのポスト部分に一体的に連続して当方基板の表面方向に伸びるビーム部分とを備え、当該ビーム部分の他端部が上下方向に弾性的に変位可能である金属製可変形要素を含むマイクロスプリング(以下、「特定片持ちスプリング」ともいう。)
(2)基板の上面上に、上方に伸びるポスト部分と、一端部がこのポスト部分に一体に連続して当該基板の表面方向に伸びるビーム部分と、このビーム部分の他端部の下面から下方に突出する下方突出部分とよりなり、当該ビーム部分の他端部が上下方向に弾性的に変位可能である金属製可変形要素を含むマイクロスイッチ(以下、「特定スイッチ」ともいう。)
(3)基板の上面上に、上方に伸びる中央ポスト部分と、この中央ポスト部分に一体に連続して当該基板の表面方向に伸びる下辺ビーム部分と、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する端部ポスト部分およびこれらの2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分とよりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能である金属製スプリング要素を合むマイクロスプリング(以下、「特定中空スプリング」ともいう。)
【0059】
以下、特定片持ちスプリングの製造方法、特定スイッチの製造方法および特定中空スプリングの製造方法の各々について、図を用いて詳細に説明する。
【0060】
〔特定片持ちスプリングの製造方法〕
図2は、本発明のマイクロスプリングの製法方法によって作製された特定片持ちスプリングの構成の一例を示す説明図である。
この特定片持ちスプリングは、配線パターン21が形成された回路基板20の上面(図2において上面)上に、当該配線パターン21における電極部21Aの上方(図2において上方)に伸び、この電極部21Aに電気的に接続された状態で形成された柱状のポスト部分31と、その一端部(図2において左端部)32Aがポスト部分31に一体に連続し、回路基板20の表面方向(図2において左右方向)に伸びる矩形棒状のビーム部分32とを備え、当該ビーム部分32の他端部(図2において右端部)32Bが上下方向(図2において上下方向)に弾性的に変位可能である金属製可変形要素を有するものであり、ビーム部分32の他端部32Bの上面から上方に突出する円柱状の上方突出部分33が設けられてなるものである。
【0061】
特定片持ちスプリングの具体的な一例としては、ポスト部分31が縦40μm、横30μm、高さ100μmであり、ビーム部分32が全長300μm、幅30μm、厚み20μmであり、上方突出部分33が直径20μm、高さ80μmであり、またポスト部分31の端部から上方突出部分33の中心部までの距離L1が250μmである形状を有し、また、プローブカードの接触子として用いる場合には、例えば同一形状を有する複数の特定片持ちスプリングを配列ピッチ80μmでセンターパッド配列する。
【0062】
このような構成の特定片持ちスプリングは、回路基板20に対して中間体形成工程を行うことにより、ポスト部分31およびビーム部分32並びに上方突出部分33が樹脂型体内に形成されてなる中間体を形成し、その後、得られた中間体における樹脂型体を形成する硬化樹脂を除去する型体除去処理を行うことによって製造されたものである。
【0063】
以下、具体的に、特定片持ちスプリングの製造方法について、図を用いて説明する。
【0064】
<中間体形成工程>
(ポスト部分およびビーム部分用型体形成過程)
図3に示すようにその上面に配線パターン21が形成された回路基板20を用意し、図4に示すように、この回路基板20の上面上に、光造形法によって配線パターン21における電極部21Aの配置位置に対応する部分にポスト部分用貫通孔48Aを有するポスト部分形成用の硬化樹脂単位層(以下、「ポスト部分用樹脂単位層」ともいう。)47Aを形成し、図5に示すように、このポスト部分用樹脂単位層47A上に、複数(図の例においては4層)のポスト部分用樹脂単位層47B〜47Eを積層し、更に、図6に示すように、最上層のポスト部分用樹脂単位層47E上に、ポスト部分用貫通孔48Aと連通するビーム部分用貫通孔48Bを有するビーム部分形成用の硬化樹脂単位層(以下、「ビーム部分用樹脂単位層」ともいう。)47Fを積層することにより、複数(図の例においては5個)のポスト部分用貫通孔48Aおよびビーム部分用貫通孔48Bよりなる、ポスト部分31およびビーム部分32を形成するための金属部分形成用凹所部分(以下、「第1凹所部分」ともいう。)41Aを有する樹脂型体部分(以下、「第1樹脂型体部分」ともいう。)41を形成する。
【0065】
ここに、第1樹脂型体部分41を構成するポスト部分用樹脂単位層47A〜47Eおよびビーム部分用樹脂単位層47Fの各々は、アスペクト比が3以下となる厚みを有するものであることが好ましく、特にアスペクト比が0.5〜2.0となる厚みを有するものであることが好ましい。
第1樹脂型体部分41を構成する硬化樹脂単位層の各々の厚みをアスペクト比が3以下となる大きさとすることにより、各硬化樹脂単位層における貫通孔を確実にストレートウォール形状とすることができるため、最終的に得られる特定片持ちスプリングを高い精度を有するものとすることができる。
なお、以下、この特定片持ちスプリングの製造方法において、後述する硬化樹脂単位層の厚みについても同様である。
【0066】
(第1の金属部分形成過程)
図7に示すように、得られた第1樹脂型体部分41の第1凹所部分41Aの内面に対して表面脱脂処理を行った後、無電解メッキ法によってニッケルメッキ基層45Aを形成し、更にこのニッケルメッキ基層45Aに対して金属付着操作を1回以上(この例においては1回)繰り返すことにより、当該ニッケルメッキ基層45Aを覆うように銅メッキ層45Bが積層されてなる第1金属層45を形成する。
この図の例においては、第1金属層45によって第1凹所部分41Aが完全に充填されて埋められた状態とはされておらず、複数のポスト部分用貫通孔48Aとビーム部分用貫通孔48Bとが重ねられてなる領域の中央部分には窪み45Cが形成されている。
【0067】
ここに、表面脱脂処理としては、例えばアルカリ表面処理、酸表面処理などの手法を用いることができる。
このような表面脱脂処理を第1凹所部分41Aの内面に対して施すことにより、この第1凹所部分41Aの内面に、ニッケルメッキ基層45Aとの大きな密着強度を得ることができる。
表面脱脂処理の具体的な一例としては、温度50℃の条件下において5分間のアルカリ脱脂処理を行った後、室温において2分間の硫酸および界面活性剤による表面処理、および室温において2分間の濃度10%の硫酸による表面処理をこの順に行い、更に、室温において6分間のプリディップ処理を行った後、室温において5分間のアクセラレーター処理を行う手法が挙げられる。
【0068】
(上方突出部分用型体形成過程)
図8に示すように、第1樹脂型体部分41の第1凹所部分41Aの内面に形成された第1金属層45の表面に対してその表面を平坦化する目的で表面粗面化処理を行った後、当該第1樹脂型体部分41および第1金属層45の表面上に、光造形法によって第1金属層45の一端部(図8において右端部)に上方突出部分用貫通孔48Cを有すると共に、当該第1金属層45における窪み45Cの形成位置に対応する部分にポスト部分形成用貫通孔48Dを有する上方突出部分形成用の硬化樹脂単位層(以下、「上方突出部分用樹脂単位層」ともいう。)47G〜47Jをこの順に形成して積層することにより、複数(図の例において4個)の上方突出部分用貫通孔48Cよりなる、上方突出部分33を形成するための金属部分形成用凹所部分(以下、「第2凹所部分」ともいう。)43Aと、窪み45Cに連通する複数(図の例において4個)のポスト部分形成用貫通孔48Dよりなる開口43Bを有する樹脂型体部分(以下、「第2樹脂型体部分」ともいう。)43とを形成する。
【0069】
ここに、表面粗面化処理としては、例えば研磨処理等の機械的処理、または酸ライトエッチング処理等の化学的処理などの手法を用いることができる。
このような表面粗面化処理を第1金属層45の表面に対して施すことにより、この第1金属層45の表面に、上方突出部分用硬化樹脂単位層47Gとの大きな密着強度を得ることができる。
表面粗面化処理の具体的な一例としては、室温において2分間の硫酸および界面活性剤による表面処理、および室温において2分間の濃度10%の硫酸による表面処理をこの順に行い、更に、有機溶媒洗浄処理を行った後に乾燥処理を行う手法が挙げられる。
【0070】
(第2の金属部分形成過程)
図9に示すように、窪み45C内に存在する未硬化樹脂を洗い流した後、得られた第2樹脂型体部分43の第2凹所部分43Aおよび窪み45Cにおける内面の金属面領域に対してライトエッチング処理を行ってエッチング銅層を形成した後、電解メッキ法により、第2凹所部分43Aおよび窪み45Cの各々を充填してニッケルメッキ層よりなる第2金属層46を形成し、これにより、回路基板20の上面上に、第1樹脂型体部分41および第2樹脂型体部分43よりなる樹脂型体と、この樹脂型体における第1凹所部分41Aおよび第2凹所部分43Aよりなる金属部分形成用凹所内に形成された第1金属層45および第2金属層46よりなる金属部分によって構成される中間体40が形成される。
この図の例においては、形成された中間体40における金属部分の上方突出部分33とされる部分の先端面が研磨処理され、これによって平坦化されている。
【0071】
<型体除去工程>
中間体形成工程において得られた中間体40に対して型体除去処理を行い、この中間体40から樹脂型体を構成する硬化樹脂を除去して金属部分を露出させることにより、図2に示されるような構成を有する特定片持ちスプリングが回路基板20の上面上に形成される。
【0072】
このような特定片持ちスプリングの製造方法によれば、中間体形成工程において、光造形法によって回路基板20上に形成した樹脂型体の金属部分形成用凹所内に金属部分が形成されてなる中間体40を形成した後、型体除去工程において、中間体40における樹脂型体を構成する硬化樹脂を除去することにより、当該金属部分よりなる特定片持ちスプリングが得られるため、例えば図33〜図35に示したような従来用いられている手法に比して、多くの処理が必要とされず、また個々の処理が煩雑なものでないことから、高い効率で容易に特定片持ちスプリングを製造することができる。
また、この特定片持ちスプリングの製造方法においては、樹脂型体の形成に光造形法を用い、造形すべき樹脂型体のCADデータに基づいて複数の硬化樹脂単位層を積層することによって樹脂型体を形成しているため、弊害を伴うことなくアスペクト比の大きい形状の樹脂型体を形成することができると共に、例えば硬化樹脂単位層を形成しようとする面(具体的には、回路基板20の上面や形成しようとする硬化樹脂単位層の直下に位置することとなる硬化樹脂単位層の上面)の形状およびその表面の平坦性などによって制限を受けることなく所望の形状を有する硬化樹脂単位層を高い精度で形成することができ、また、複数の硬化樹脂単位層を位置のアライメント誤差なく積層することができるため、金属部分を成形するための型体を、大きな設計の自由度をもって、高い精度でかつ高い効率で容易に形成することができる、
従って、特定片持ちスプリングの製造方法によれば、特定片持ちスプリングを大きな設計の自由度をもって、かつ高い効率で容易に形成することができる。
【0073】
また、この特定片持ちスプリングの製造方法においては、形成される特定片持ちスプリングは第1金属層45と第2金属層46とが一体的に組み合わされてなるものであるが、第2の金属部分形成過程において、第1金属層45の表面に対してライトエッチング処理が施されているため、第1金属層45と、第2金属層46と間に優れた密着性が得られる。実際上、上述の製造方法によって図2に示した構成の特定片持ちスプリングを製造し、得られた特定片持ちスプリングのビーム部分における特定バネ定数を確認し、その後、当該ビーム部分に1.25kgの荷重を加えることによって変位量30μmで変位させる変位操作を10000回行った後、再び特定バネ定数を確認したところ、製造直後の特定バネ定数の値と同一の値が得られた。
【0074】
更に、本発明の特定片持ちスプリングの製造方法によれば、基板の上面上に、上方に伸びる第1のポスト部分と、一端部がこの第1のポスト部分に一体に連続して当該基板の表面方向に伸びる第1のビーム部分と、この第1のビーム部分の他端部の上面から上方に伸びる第2のポスト部分と、一端部がこの第2のポスト部分に一体に連続して前記第1のビーム部分と平行に伸びる第2のビーム部分とよりなり、第1のビーム部分および第2のビーム部分の他端部がいずれも上下方向に弾性的に変位可能である金属製可変形要素(金属製可変形要素複合体)を含む構成の特定片持ちスプリング(以下、「特定片持ち複合スプリング」ともいう。)を製造することもできる。
【0075】
図10は、本発明のマイクロスプリングの製造方法によって製造された特定片持ちスプリングの構成の他の例、具体的には、特定片持ち複合スプリングの構成を示す説明図である。
この特定片持ち複合スプリングは、配線パターン21が形成された回路基板20の上面(図10において上面)上に、当該配線パターン21における電極部21Aの上方(図10において上方)に伸び、この電極部21Aに電気的に接続された状態で形成された箱状の第1のポスト部分34と、その一端部(図10において左端部)35Aが第1のポスト部分34に一体に連続し、回路基板20の表面方向(図10において左右方向)に伸びる矩形棒状の第1のビーム部分35と、この第1のビーム部分35の他端部(図10において右端部)35Bの上面から上方に伸びる柱状の第2のポスト部分36と、その一端部(図10において右端部)37Aが第2のポスト部分36に一体に連続して第1のビーム部分35と平行に伸びる矩形棒状の第2のビーム部分37と、この第2のビーム部分37の他端部(図10において左端部)37Bの上面から上方に伸びる柱状の第3のポスト部分38と、その一端部(図10において左端部)39Aが第3のポスト部分38に一体に連続して第2のビーム部分37と平行に伸びる矩形棒状の第3のビーム部分39とを備え、当該第1のビーム部分35の他端部35Bおよび第2のビーム部分37の他端部37B並びに第3のビーム部分39の他端部(図10において右端部)39Bがいずれも上下方向(図10において上下方向)に弾性的に変位可能である金属製可変形要素を有するものであり、第3ビーム部分39の他端部39Bの上面から上方に突出する円柱状の上方突出部分39Cが設けられてなる構成のものである。
【0076】
このような構成の特定片持ち複合スプリングは、回路基板20に対して第1の中間体形成工程を行うことにより、第1のポスト部分34および第1のビーム部分35が第1の樹脂型体に形成されてなる第1の中間体を形成し、この第1の中間体に対して第2の中間体形成工程を行うことにより、第2のポスト部分36および第2のビーム部分37が第2の樹脂型体内に形成されてなる第2の中間体を形成し、この第2の中間体に対して第3の中間体形成工程を行うことにより、第3のポスト部分38および第3のビーム部分39が第3の樹脂型体内に形成されてなる第3の中間体を形成し、更に第3の中間体に対して第4の中間体形成工程を行うことにより、上方突出部分39Cが第4の樹脂型体内に形成されてなる第4の中間体を形成し、その後、得られた第1の中間体における第1の樹脂型体、第2の中間体における第2の樹脂型体、第3の中間体における第3の樹脂型体および第4の中間体における第4の樹脂型体を形成する硬化樹脂を一括して除去する型体除去処理を行うことによって製造されたものである。
【0077】
具体的には、先ず、図11に示すように、図2に係る特定片持ちスプリングの製造方法における中間体形成工程のポスト部分およびビーム部分用型体形成過程と同様にして、回路基板20の上面上に、第1のポスト部分34および第1のビーム部分35を形成するための第1の金属部分形成用凹所51Bを有する第1の樹脂型体(図の例においては6層の硬化樹脂単位層よりなる積層体)51Aを形成し、図12に示すように、この第1の樹脂型体51Aの第1の金属部分形成用凹所51B内に、図2に係る特定片持ちスプリングの製造方法における中間体形成工程の第1の金属部分形成過程と同様にして、ニッケルメッキ基層および銅メッキ層よりなる第1の金属層51Cを形成し、これにより、第1の樹脂型体51Aと、この第1の樹脂型体51Aにおける第1の金属部分形成用凹所51Bに形成された第1の金属層51Cよりなる金属部分とによって構成される第1の中間体51が形成される。
【0078】
次いで、図13に示すように、得られた第1の中間体51における第1の金属層51Cの表面に対して表面粗面化処理を行った後、当該第1の中間体51上に、図2に係る特定片持ちスプリングの製造方法における中間体形成工程のポスト部分およびビーム部分用型体形成過程と同様の手法により、第2のポスト部分36および第2のビーム部分37を形成するための第2の金属部分形成用凹所52Bを有する第2の樹脂型体(図の例においては5層の硬化樹脂単位層よりなる積層体)52Aを形成し、図14に示すように、この第2の樹脂型体52Aの第2の金属部分形成用凹所52B内に、図2に係る特定片持ちスプリングの製造方法における中間体形成工程の第1の金属部分形成過程と同様にして、ニッケルメッキ基層および銅メッキ層よりなる第2の金属層52Cを形成し、これにより、第2の樹脂型体52Aと、この第2の樹脂型体52Aにおける第2の金属部分形成用凹所52Bに形成された第2の金属層52Cよりなる金属部分とによって構成される第2の中間体52が形成される。
【0079】
そして、図15に示すように、得られた第2の中間体52における第2の金属層52Cの表面に対して表面粗面化処理を行った後、当該第2の中間体52上に、図2に係る特定片持ちスプリングの製造方法における中間体形成工程のポスト部分およびビーム部分用型体形成過程と同様の手法により、第3のポスト部分38および第3のビーム部分39を形成するための第3の金属部分形成用凹所53Bを有する第3の樹脂型体(図の例においては5層の硬化樹脂単位層よりなる積層体)53Aを形成し、図16に示すように、この第3の樹脂型体53Aの第3の金属部分形成用凹所53B内に、図2に係る特定片持ちスプリングの製造方法における中間体形成工程の第1の金属部分形成過程と同様にして、ニッケルメッキ基層および銅メッキ層よりなる第3の金属層53Cを形成し、これにより、第3の樹脂型体53Aと、この第3の樹脂型体53Aにおける第3の金属部分形成用凹所53Bに形成された第3の金属層53Cよりなる金属部分とによって構成される第3の中間体53が形成される。
【0080】
更に、図17に示すように、得られた第3の中間体53における第3の金属層53Cの表面に対して表面粗面化処理を行った後、当該第3の中間体53上に、図2に係る特定片持ちスプリングの製造方法における中間体形成工程の上方突出部分用型体形成過程と同様の手法により、上方突出部分39Cを形成するための第4の金属部分形成用凹所54Bを有する第4の樹脂型体(図の例においては2層の硬化樹脂単位層よりなる積層体)54Aを形成し、図18に示すように、この第4の樹脂型体54Aの第4の金属部分形成用凹所53B内に、図2に係る特定片持ちスプリングの製造方法における中間体形成工程の第2の金属部分形成過程と同様にして、エッチング銅層およびニッケルメッキ層よりなる第4の金属層54Cを形成し、これにより、第4の樹脂型体54Aと、この第4の樹脂型体54Aにおける第4の金属部分形成用凹所54Bに形成された第4の金属層54Cよりなる金属部分とによって構成される第4の中間体54が形成される。
【0081】
その後、第1の中間体形成工程、第2の中間体形成工程、第3の中間体形成工程および第4の中間体形成工程の各々において得られた第1の中間体51、第2の中間体52、第3の中間体53および第4の中間体54に対して型体除去処理を行い、これらの中間体から樹脂型体を構成する硬化樹脂を一括して除去することにより、図10に示されるような構成を有する特定片持ち複合スプリングが回路基板20の上面上に形成される。
【0082】
以上、本発明の特定片持ちスプリングの製造方法について説明したが、本発明の特定の片持ちスプリングの製造方法はこれに限定されるものではなく、種々の変更を加えることができる。
例えば、図2に示した特定片持ちスプリングの製造方法において、上方突出部分33を形成するためには、第1凹所部分内に窪み45Cを有する第1金属層が形成された状態の第1樹脂型体部分の表面上にレジスト法によって上方突出部分用貫通孔およびポスト部分形成用貫通孔を有するレジスト層を形成し、このレジスト層における上方突出部分用貫通孔および窪みに対してメッキ法を行う手法を用いることができる。
なお、図10に示した特定片持ち複合スプリングの製造方法においても、上方突出部分39Cを同様の手法によって形成することもできる。
【0083】
また、上方突出部分を形成するためには、電解メッキ法によりニッケル層よりなる金属層を形成することに限定されず、例えばニッケル−ホウ素層、ニッケル−リン層、ニッケル−コバルト層およびニッケル−鉄層や、ニッケル層上に炭素微分末が混入された表層が形成されてなるもの(以下、「炭素粉末含有層」ともいう。)などよりなる金属層を形成することもできる。これらの金属層よりなる上方突出部分には、優れた硬度が得られ、接点部材としての上方突出部分に優れた耐久性および接触性が得られると共に、ニッケル−ホウ素層よりなるものにおいては、摩擦係数が低減されることから一層優れた耐久性が得られることとなり、また、炭素粉末含有層よりなるものにおいては、酸化抑制能が得られることから一層優れた接触性が得られることとなる。
これらの金属層よりなる上方突出部分に得られる硬度は、具体的に、ニッケル層よりなるものはHV300〜600であり、これに比して、ニッケル−ホウ素層よりなるものはHV600〜900、ニッケル−リン層よりなるものはHV600〜900、ニッケル−コバルト層よりなるものはHV700〜1200、ニッケル−鉄層よりなるものはHV700〜1200、炭素粉末含有層よりなるものはHV600〜1000である。
【0084】
〔特定スイッチの製造方法〕
図19は、本発明のマイクロスイッチの製法方法によって作製された特定スイッチの構成の一例を示す説明図である。
この特定スイッチは、配線パターン21が形成された回路基板20の上面(図19において上面)上に、当該配線パターン21における電極部21Aの上方(図19において上方)に伸び、この電極部21Aに電気的に接続された状態で形成された柱状のポスト部分71と、その一端部(図19において左端部)72Aがポスト部分71に一体に連続して回路基板20の表面方向(図19において左右方向)に伸びる矩形棒状のビーム部分72と、このビーム部分72の他端部(図19において右端部)72Bの下面(図2において下面)から下方(図19において下方)に突出する円柱状の下方突出部分73とを備え、当該ビーム部分72の他端部72Bが上下方向(図19において上下方向)に弾性的に変位可能である金属製可変形要素を有するものである。
この特定スイッチは、下方突出部分73が回路基板20の配線パターン21におけるスイッチ用接点部とされる電極部21Bの上方に離間して対向した状態に位置するよう設けられており、この下方突出部分73は、ビーム部分72が下方に変位することによって電極部2Bと電気的の接続された状態とされる。
【0085】
特定スイッチの具体的な一例としては、ポスト部分71が縦40μm、横30μm、高さ100μmであり、ビーム部分72が全長300μm、、幅30μm、厚み20μmであり、下方突出部分73が直径20μm、高さ80μmであり、また、ポスト部分71の端部から下方突出部分73の中心部までの距離L2が250μmである形状を有し、また、プローブカードの接触子として用いる場合には、例えば同一形状を有する複数の特定片持ちスプリングを配列ピッチ80μmでセンターパッド配列する。
【0086】
このような構成の特定スイッチは、回路基板20に対して中間体形成工程を行うことにより、ポスト部分71およびビーム部分72並びに下方突出部分73が樹脂型体内に形成されてなる中間体を形成し、その後、得られた中間体における樹脂型体を形成する硬化樹脂を除去する型体除去処理を行うことによって製造されたものである。
【0087】
以下、具体的に、特定スイッチの製造方法について、図を用いて説明する。
【0088】
<中間体形成工程>
図20に示すように、その上面に配線パターン21の形成された回路基板20を用意し、この回路基板20の上面上に、光造形法によって配線パターン21における電極部21Aの配置位置に対応する部分にポスト部分用貫通孔79Aを有するポスト部分形成用の硬化樹脂単位層(以下、「ポスト部分用樹脂単位層」ともいう。)78Aを形成し、図21に示すように、このポスト部分用樹脂単位層78A上に、ポスト部分用貫通孔79Aを有すると共に、配線パターン21における電極部21Bの配置位置に対応する部分に下方突出部分用貫通孔79Bを有するポスト部分および下方突出部分形成用の硬化樹脂単位層(以下、「下方突出部分用樹脂単位層」ともいう。)78Bを積層し、更に、図22に示すように、この下方突出部分用樹脂単位層78B上に、ポスト部分用貫通孔79Aおよび下方突出部分用貫通孔79Bと連通するビーム部分用貫通孔79Cを有するビーム部分形成用の硬化樹脂単位層(以下、「ビーム部分用樹脂単位層」ともいう。)78Cを積層することにより、複数(図の例においては2個)のポスト部分用貫通孔79A、下方突出部分用通孔79Bおよびビーム部分用貫通孔79Cよりなる、ポスト部分71、下方突出部分73およびビーム部分72を形成するための金属部分形成用凹所75Aを有する硬化樹脂製の樹脂型体75を形成する。
【0089】
ここに、樹脂型体75を構成するポスト部分用樹脂単位層78A、下方突出部分用樹脂単位層78Bおよびビーム部分用樹脂単位層78Cの各々は、アスペクト比が3以下となる厚みを有するものであることが好ましく、特にアスペクト比が0.5〜2.0となる厚みを有するものであることが好ましい。
樹脂型体75を構成する硬化樹脂単位層の各々の厚みをアスペクト比が3以下となる大きさとすることにより、各硬化樹脂単位層における貫通孔を確実にストレートウオール形状とすることができるため、最終的に得られる特定スイッチを高い精度を有するものとすることができる。
【0090】
(金属部分形成工程)
図23に示すように、得られた樹脂型体75の金属部分形成用凹所75Aの内面に対して表面脱脂処理を行った後、無電解メッキ法によってニッケルメッキ基層77Aを形成し、更にこのニッケルメッキ基層77Aに対して金属付着操作を1回以上(この例においては1回)繰り返すことにより、当該ニッケルメッキ基層77Aを覆うように銅メッキ層77Bが積層されてなる金属層77を形成し、これにより、回路基板20の上面上に、硬化樹脂製の樹脂型体75と、この樹脂型体75における金属部分形成用凹所75A内に形成された金属層77よりなる金属部分によって構成される中間体74が形成される。
【0091】
ここに、表面脱脂処理としては、例えばアルカリ表面処理、酸表面処理などの手法を用いることができる。
このような表面脱脂処理を金属部分形成用凹所75Aの内面に対して施すことにより、この金属部分形成用凹所75Aの内面に、ニッケルメッキ基層77Aとの大きな密着強度を得ることができる。
表面脱脂処理の具体的な一例としては、温度50℃の条件下において5分間のアルカリ脱脂処理を行った後、室温において2分間の硫酸および界面活性剤による表面処理、および室温において2分間の濃度10%の硫酸による表面処理をこの順に行い、更に、室温において6分間のプリディップ処理を行った後、室温において5分間のアクセラレークー処理を行う手法が挙げられる。
【0092】
<型体除去工程>
中間体形成工程において得られた中間体74に対して型体除去処理を行い、この中間体74から樹脂型体75を構成する硬化樹脂を除去して金属部分を露出させることにより、図19に示されるような構成を有する特定スイッチが回路基板20の上面上に形成される。
【0093】
このような特定スイッチの製造方法によれば、中間体形成工程において、光造形法によって回路基板20上に形成した樹脂型体75の金属部分形成用凹所75A内に金属層77よりなる金属部分が形成されてなる中間体74を形成した後、型体除去工程において、中間体74における樹脂型体75を構成する硬化樹脂を除去することにより、当該金属部分よりなる特定スイッチが得られるため、従来用いられている手法に比して、多くの処理が必要とされず、また個々の処理が煩雑なものでないことから、高い効率で容易に特定スイッチを製造することができる。
また、この特定スイッチの製造方法においては、樹脂型体75の形成に光造形法を用い、造形すべき樹脂型体75のCADデータに基づいて複数の硬化樹脂単位層を積層することによって樹脂型体75を形成しているため、弊害を伴うことなくアスペクト比の大きい形状の樹脂型体を形成することができると共に、例えば硬化樹脂単位層を形成しようとする面(具体的には、回路基板20の上面や形成しようとする硬化樹脂単位層の直下に位置することとなる硬化樹脂単位層の上面)の形状およびその表面の平坦性などによって制限を受けることなく所望の形状を有する硬化樹脂単位層を高い精度で形成することができ、また、複数の硬化樹脂単位層を位置のアライメント誤差なく積層することができるため、オーバーハング形状を有する金属部分を成形するための樹脂型体75を、大きな設計の自由度をもって、高い精度でかつ高い効率で容易に形成することができる。
従って、特定スイッチの製造方法によれば、特定スイッチを大きな設計の自由度をもって、かつ高い効率で容易に形成することができる。
【0094】
[特定中空スプリングの製造方法〕
図24は、本発明のマイクロスプリングの製法方法によって作製された特定中空スプリングの構成の一例を示す説明図である。
この特定中空スプリングは、配線パターン21が形成された回路基板20の上面(図24において上面)上に、当該配線パターン21における電極部21Aの上方(図24において上方)に伸び、この電極部21Aに電気的に接続された状態で形成された柱状の中央ポスト部分81と、その中央部分が中央ポスト部分81に一体に連続し、回路基板20の表面方向(図24における左右方向)に伸びる矩形棒状の下辺ビーム部分82と、この下辺ビーム部分82の両方の端部82A、82Bの各々の上面からそれぞれ上方に突出する2個の柱状の端部ポスト部分83A、83Bおよびこれら2つの端部ポスト部分83A、83Bの上面にそれぞれ両方の端部84A、84Bが一体に連続する矩形棒状の上辺ビーム部分84とを備え、当該下辺ビーム部分82および上辺ビーム部分84が上下方向(図24において上下方向)に弾性的に変形可能である金属製スプリング要素を有するものであり、上辺ビーム部分84の中央部の上面から上方に突出する円柱状の上方突出部分85が設けられてなるものである。
この特定中空スプリングにおいては、下辺ビーム部分82と、2個の端部ポスト部分83A、83Bと、上辺ビーム部分84とにより、下辺ビーム部分82の中央部において中央ポスト部分81と一体に接続した状態の矩形状枠体部分86が形成されている。
【0095】
特定中空スプリングの具体的な一例としては、中央ポスト部分81が縦40μm、横30μm、高さ80μmであり、下辺ビーム部分82が全長300μm、幅30μm、厚み20μmであり、端部ポスト部分83A、83Bの各々が縦40μm、横30μm高さ80μmであり、下辺ビーム部分82が全長300μm、幅30μm、厚み20μmであり、上方突出部分85が直径20μm、高さ80μmである形状を有し、また、プローブカードの接触子として用いる場合には、例えば同一形状を有する複数の特定中空スプリングを配列ピッチ80μmでセンターパッド配列する。
【0096】
このような構成の特定中空スプリングは、回路基板20に対して第1の中間体形成工程を行うことにより、中央ポスト部分81および下辺ビーム部分82が第1の樹脂型体内に形成されてなる第1の中間体を形成し、この第1の中間体に対して第2の中間体形成工程を行うことにより、2個の端部ポスト部分83A、83Bおよび上辺ビーム部分84が第2の樹脂型体内に形成されてなる第2の中間体を形成し、更に、第2の中間体に対して第3の中間体形成工程を行うことにより、上方突出部分85が第3の樹脂型体内に形成されてなる第3の中間体を形成し、その後、第1の中間体における第1の樹脂型体、第2の中間体における第2の樹脂型体および第3の中間体における第3の樹脂型体の各々を形成する硬化樹脂を一括して除去する型体除去処理を行うことによって製造されたものである。
【0097】
以下、具体的に、特定中空スプリングの製造方法について、図を用いて説明する。
【0098】
<第1の中間体形成工程>
(型体形成過程)
図25に示すように、その上面に配線パターン21が形成された回路基板20を用意し、この回路基板20の上面上に、光造形法によって配線パターン21における電極部21Aの配置位置に対応する部分に中央ポスト部分用貫通孔98Aを有する中央ポスト部分形成用の硬化樹脂単位層(以下、「中央ポスト部分用樹脂単位層」ともいう。)97A、97Bをこの順に形成して積層し、最上層の中央ポスト部分用樹脂単位層97B上に、中央ポスト部分用貫通孔98Aと連通する下辺ビーム部分用貫通孔98Bを有する下辺ビーム部分形成用の硬化樹脂単位層(以下、「下辺ビーム部分用樹脂単位層」ともいう。)97Cを積層することにより、複数(図の例においては2個)の中央ポスト部分用貫通孔98Aおよび下辺ビーム部分用貫通孔98Bよりなる、中央ポスト部分81および下辺ビーム部分82を形成するための第1の金属部分形成用凹所91Bを有する第1の樹脂型体91Aを形成する。
【0099】
ここに、第1の樹脂型体91Aを構成する中央ポスト部分用樹脂単位層97A、97Bおよび下辺ビーム部分用樹脂単位層97Cの各々は、アスペクト比が3以下となる厚みを有するものであることが好ましく、特にアスペクト比が0.5〜2.0となる厚みを有するものであることが好ましい。
第1の樹脂型体91Aを構成する硬化樹脂単位層の各々の厚みをアスペクト比が3以下となる大きさとすることにより、各硬化樹脂単位層における貫通孔を確実にストレートウオール形状とすることができるため、最終的に得られる特定中空スプリングを高い精度を有するものとすることができる。
なお、以下、この特定中空スプリングの製造方法において、後述する硬化樹脂単位層の厚みについても同様である。
【0100】
(金属部分形成過程)
図26に示すように、得られた第1の樹脂型体91Aの第1の金属部分形成用凹所91Bの内面に対して表面脱脂処理を行った後、無電解メッキ法によってニッケルメッキ基層を形成し、更にこのニッケルメッキ基層に対して金属付着操作を1回以上(この例においては1回)繰り返し、当該ニッケルメッキ基層を覆うように銅メッキ層が積層されてなる第1の金属層91Cを形成することにより、回路基板20の上面上に、第1の樹脂型体91Aと、この第1の樹脂型体91Aにおける第1の金属部分形成用凹所91B内に形成された第1の金属層91Cよりなる金属部分によって構成される第1の中間体91が形成される。
【0101】
ここに、表面脱脂処理としては、例えばアルカリ表面処理、酸表面処理などの手法を用いることができる。
このような表面脱脂処理を第1の金属部分形成用凹所91Bの内面に対して施すことにより、この第1の金属部形成用凹所91Bの内面に、ニッケルメッキ基層との大きな密着強度を得ることができる。
表面脱脂処理の具体例な一例としては、温度50℃の条件下において5分間のアルカリ脱脂処理を行った後、室温において2分間の硫酸および界面活性剤による表面処理、および室温において2分間の濃度10%の硫酸による表面処理をこの順に行い、更に、室温において6分間のプリディップ処理を行った後、室温において5分間のアクセラレーター処理を行う手法が挙げられる。
なお、以下、この特定中空スプリングの製造方法における他の工程で行われる表面脱脂処理についても同様である。
【0102】
<第2の中間体形成工程>
(型体形成過程)
図27に示すように、第1の中間体形成工程において得られた第1の中間体91における第1の金属層91Cの表面に対してその表面を平坦化する目的で表面粗面化処理を行った後、当該第1の中間体91上に、光造形法によって第1の金属層91Cの両端部の各々に対応する部分に端部ポスト部分用貫通孔98C、98Cを有する端部ポスト部分形成用の硬化樹脂単位層(以下、「端部ポスト部分用樹脂単位層」ともいう。)97D、97Eをこの順に形成して積層し、最上層の端部ポスト部分用樹脂単位層97E上に、2個の端部ポスト部分用貫通孔98C、98Cと連通する上辺ビーム部分用貫通孔98Dを有する上辺ビーム部分形成用の硬化樹脂単位層(以下、「上辺ビーム部分用樹脂単位層」ともいう。)97Fを積層することにより、複数(図の例においては合計4個)の端部ポスト部分用貫通孔98Cおよび上辺ビーム部分用貫通孔98Dよりなる、端部ポスト部分83A、83Bおよび上辺ビーム部分84を形成するための第2の金属部分形成用凹所92Bを有する第2の樹脂型体92Aを形成する。
【0103】
ここに、表面粗面化処理としては、例えば研磨処理等の機械的処理、または酸ライトエッチング処理等の化学的処理などの手法を用いることができる。
このような表面粗面化処理を第1の金属層91Cの表面に対して施すことにより、この第1の金属層91Cの表面に、端部ポスト部分用硬化樹脂単位層97Dとの大きな密着強度を得ることができる。
表面粗面化処理の具体的な一例としては、室温において2分間の硫酸および界面活性剤による表面処理、および室温において2分間の濃度10%の硫酸による表面処理をこの順に行い、更に、有機溶媒洗浄処理を行った後に乾燥処理を行う手法が挙げられる。
なお、以下、この特定中空スプリングの製造方法における他の工程で行われる表面粗面化処理についても同様である。
【0104】
(金属部分形成過程)
図28に示すように、得られた第2の樹脂型体92Aの第2の金属部分形成用凹所92Bの内面に対して表面脱脂処理を行った後、無電解メッキ法によってニッケルメッキ基層を形成し、更にこのニッケルメッキ基層に対して金属付着操作を1回以上(この例においては1回)繰り返し、当該ニッケルメッキ基層を覆うように銅メッキ層が積層されてなる第2の金属層92Cを形成することにより、第1の中間体91上に、硬化樹脂製の第2の樹脂型体92Aと、この第2の樹脂型体92Aにおける第2の第2の金属部分形成用凹所92B内に形成された第2の金属層92Cよりなる金属部分によって構成される第2の中間体92が形成される。
【0105】
<第3の中間体形成工程>
(型体形成過程)
図29に示すように、第2の中間体形成工程において得られた第2の中間体92における第2金属層92Cの表面に対してその表面を平坦化する目的で表面粗面化処理を行った後、当該第2の中間体92上に、光造形法によって第2の金属層92Cの中央部分の上方に対応する部分に上方突出部分用貫通孔98Eを有する上方突出部分形成用の硬化樹脂単位層(以下、「上方突出部分用樹脂単位層」ともいう。)97G、97Hをこの順に形成して積層することにより、複数(図の例においては2個)の上方突出部分用貫通孔98Eよりなる、上方突出部分85を形成するための第3の金属部分形成用凹所93Bを有する第3の樹脂型体93Aを形成する。
【0106】
(金属部分形成過程)
図30に示すように、得られた第3の樹脂型体93Aの第3の金属部分形成用凹所93Bの内面に対して表面脱脂処理を行った後、無電解メッキ法によってニッケルメッキ基層を形成し、更にこのニッケルメッキ基層に対して金属付着操作を1回以上(この例においては1回)繰り返し、当該ニッケルメッキ基層を覆うように銅メッキ層が積層されてなる第3の金属層93Cを形成することにより、第2の中間体92上に、第3の樹脂型体93Aと、この第3の樹脂型体93Aにおける第3の金属部分形成用凹所93B内に形成された第3の金属層93Cよりなる金属部分によって構成される第3の中間体93が形成される。
【0107】
<型体除去工程>
第1の中間体形成工程、第2の中間体形成工程および第3の中間体形成工程の各々において得られた第1の中間体91、第2の中間体92および第3の中間体93に対して型体除去処理を行い、これらの中間体の各々から樹脂型体を構成する硬化樹脂を除去して金属部分を露出させることにより、図24に示されるような構成を有する特定中空スプリングが回路基板20の上面上に形成される。
【0108】
このような特定中空スプリングの製造方法によれば、第1の中間体形成工程、第2の中間体形成工程および第3の中間体形成工程において、各々、回路基板20上に、光造形法によって形成した樹脂型体の金属部分形成用凹所内に金属部分が形成されてなる第1の中間体91、第2の中間体92および第3の中間体93をこの順に形成した後、型体除去工程において、第1の中間体91、第2の中間体92および第3の中間体93の各々における樹脂型体を構成する硬化樹脂を一括して除去することにより、当該金属部分よりなる特定中空スプリングが得られるため、従来用いられている手法に比して、多くの処理が必要とされず、また個々の処理が煩雑なものでないことから、高い効率で容易に特定中空スプリングを製造することができる。
また、この特定中空スプリングの製造方法においては、第1の樹脂型体91A、第2の樹脂型体92Aおよび第3の樹脂型体93Aの形成に光造形法を用い、造形すべき第1の樹脂型体91A、第2の樹脂型体92Aおよび第3の樹脂型体93Aの各々CADデータに基づいて複数の硬化樹脂単位層を積層することによって樹脂型体を形成しているため、弊害を伴うことなくアスペクト比の大きい形状の樹脂型体を形成することができると共に、例えば硬化樹脂単位層を形成しようとする面(具体的には、回路基板の上面や形成しようとする硬化樹脂単位層の直下に位置することとなる硬化樹脂単位層の上面)の形状およびその表面の平坦性などによって制限を受けることなく所望の形状を有する硬化樹脂単位層を高い精度で形成することができ、また、複数の硬化樹脂単位層を位置のアライメント誤差なく積層することができるため、ブリッジ形状を有する金属部分を成形するための樹脂型体を、大きな設計の自由度をもって、高い精度でかつ高い効率で容易に形成することができる。
従って、特定中空スプリングの製造方法によれば、中空スプリングを大きな設計の自由度をもって、かつ高い効率で容易に形成することができる。
【0109】
また、この特定中空スプリングの製造方法においては、形成される特定中空スプリングは第1の金属層91Cと第2の金属層92Cと第3の金属層93Cとが一体的に組み合わされてなるものであるが、各々の金属部分形成過程において、第1の金属層91Cおよび第2の金属層92Cの各々の表面に対してライトエッチング処理が施されているため、第1の金属層91Cと第2の金属層92Cと間、第2の金属層92Cと第3の金属層93Cと間と間の各々に優れた密着性が得られる。
【0110】
更に、このような特定中空スプリングの製造方法によれば、三次元的な構造を有するスプリング要素を容易に形成することができることから、基板の上面上に金属製のスプリング要素を含むマイクロスプリングが設けられてなるという三次元的な形状を有する、図24に示されるような本発明の機能性基板を製造することができる。
【0111】
更に、本発明の特定中空スプリングの製造方法によれば、基板の上面上に、上方に伸びる中央ポスト部分と、矩形状枠体部分、具体的には、中央ポスト部分に一体に連続して当該基板の表面方向に伸びる下辺ビーム部分、この下辺ビーム部分の両端部の上面から上方に伸びる端部ポスト部分、これらの2個の端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分とからなる金属製スプリング要素の複数が一体的に積重されてなる構成の特定中空スプリング(以下、「特定中空複合スプリング」ともいう。)を製造することもできる。
【0112】
図31は、本発明の特定中空スプリングの製造方法によって製造された特定中空スプリングの構成の他の例、具体的には特定中空複合スプリングの構成を示す説明図である。
この特定中空複合スプリングは、同一の形状を有する2個の金属製スプリング要素が一体的に積重されてなる構成を有し、配線パターン21が形成された回路基板20の上面(図31において上面)上に、当該配線パターン21における電極部21Aの上方(図31において上方)に伸び、この電極部21Aに電気的に接続された状態で形成された中央ポスト部分81と、この中央ポスト部81に、下辺ビーム部分82の中央部において一体に接続した矩形枠状体部分(以下、「第1の矩形枠状体部分」ともいう。)86とよりなる第1の金属製スプリング要素、および第1の金属製スプリング要素の第1の矩形状枠体部分86を構成する上辺ビーム部分84の中央部の上面の中央部から上方に突出する中央ポスト部分81と、この中央ポスト部81に、下辺ビーム部分82の中央部において一体に接続した矩形枠状体部分(以下、「第2の矩形枠状体部分」ともいう。)89とよりなる第2の金属製スプリング要素よりなり、第2の金属製スプリング要素の第2の矩形状枠体部分89を構成する上辺ビーム部分84の中央部の上面から上方に突出する上方突出部分85が設けられてなるものである。
この図の例においては、第1の矩形枠状体部分86および第2の矩形枠状体部分89は、各々、図24で示される特定中空スプリングにおける矩形枠状体部分86と同様の構成を有するものである。
【0113】
このような構成の第2の複合マイクロスプリングは、図24に係る特定中空スプリングの製造方法における第1の中間体形成工程と、第2の中間体形成工程とよりなる金属製可変形枠状部分形成操作を繰り返し、この金属製可変形枠状部分形成操作を合計2回行った後、更にこの工程に続いて、図24に係る特定中空スプリングの製造方法における第3の中間体形成工程を行うことにより、樹脂型体と金属部分とよりなる中間体の複合体を形成し、その後、これらのすべての中間体形成工程において形成された中間体における樹脂型体を形成する硬化樹脂を一括して除去する型体除去処理を行うことによって製造されたものである。
【0114】
以上、本発明の特定中空スプリングの製造方法について説明したが、本発明の特定中空スプリングの製造方法はこれに限定されるものではなく、種々の変更を加えることができる。
例えば、図24に示した特定中空スプリングの製造方法において、上方突出部分85を形成するためには、第2の中間体の表面上にレジスト法によって上方突出部分用貫通孔を有するレジスト層を形成し、このレジスト層における上方突出部分用貫通孔に対してメッキ法を行う手法を用いることができる。
なお、図31に示した特定中空複合スプリングの製造方法においても、上方突出部分85を同様の手法によって形成することもできる。
【0115】
また、上方突出部分を形成するためには、電解メッキ法によりニッケル層よりなる金属層を形成することに限定されず、例えばニッケル−ホウ素層、ニッケル−リン層、ニッケル−コバルト層およびニッケル−鉄層や、ニッケル層上に炭素微分末が混入された表層が形成されてなる炭素粉末含有層などよりなる金属層を形成することもできる。これらの金属層よりなる上方突出部分には、優れた硬度が得られ、接点部材としての上方突出部分に優れた耐久性および接触性が得られると共に、ニッケル−ホウ素層よりなるものにおいては、摩擦係数が低減されることから一層優れた耐久性が得られることとなり、また、炭素粉末含有層よりなるものにおいては、酸化抑制能が得られることから一層優れた接触性が得られることとなる。
これらの金属層よりなる上方突出部分に得られる硬度は、具体的に、ニッケル層よりなるものはHV300〜600であり、これに比して、ニッケル−ホウ素層よりなるものはHV600〜900、ニッケル−リン層よりなるものはHV600〜900、ニッケル−コバルト層よりなるものはHV700〜1200、ニッケル−鉄層よりなるものはHV700〜1200、炭素粉末含有層よりなるものはHV600〜1000である。
【0116】
以上のような本発明の製造方法によれば、プローブカードにおける接触子を形成することができ、特に極めて多数の接触子を備えてなる構成のプローブカード、具体的には直径8インチ以上の大きさを有するウエハ上に形成された複数のLSIチップの性能検査に好適に用いられるプローブカードにおける当該多数の接触子を、容易な手法によって極めて大きな製造コストを要さずに同時に形成することができる。
【図面の簡単な説明】
【0117】
【図1】本発明の金属性電気機械的機能素子の形成方法に用いられる光造形装置の構成の一例を示す説明図である。
【図2】本発明のマイクロスプリングの製造方法によって作製された特定片持ちスプリングの構成の一例を示す説明図である。
【図3】図2の特定片持ちスプリングの製造方法に用いられる回路基板の構成の一例を示す説明図である。
【図4】図3の回路基板上に硬化樹脂単位層が形成された状態を示す説明図である。
【図5】図4の硬化樹脂単位層上に複数の硬化樹脂単位層が形成された状態を示す説明図である。
【図6】図2の片持ちスプリングの製造方法に係る第1樹脂型体部分の構成を示す説明図である。
【図7】図6の第1樹脂型体部分における第1凹所部分に第1金属層が形成された状態を示す説明図である。
【図8】図7の第1凹所部分に第1金属層が形成された状態の第1樹脂型体部分上に第2樹脂型体部分が形成された状態を示す説明図である。
【図9】図2の片持ちスプリングの製造方法に係る中間体の構成を示す説明図である。
【図10】本発明のマイクロスプリングの製造方法によって作製された特定片持ちスプリングの構成の他の例を示す説明図である。
【図11】図10の特定片持ち複合スプリングの製造方法に係る第1の樹脂型体の構成を示す説明図である。
【図12】図10の特定片持ち複合スプリングの製造方法に係る第1の中間体の構成を示す説明図である。
【図13】図12の第1の中間体上に第2の樹脂型体が形成された状態を示す説明図である。
【図14】図12の第1の中間体上に第2の中間体が形成された状態を示す説明図である。
【図15】図14の第2の中間体上に第3の樹脂型体が形成された状態を示す説明図である。
【図16】図14の第2の中間体上に第3の中間体が形成された状態を示す説明図である。
【図17】図16の第3の中間体上に第4の樹脂型体が形成された状態を示す説明図である。
【図18】図16の第3の中間体上に第4の中間体が形成された状態を示す説明図である。
【図19】本発明のマイクロスイッチの製造方法によって作製された特定マイクロスイッチの構成の一例を示す説明図である。
【図20】図19の特定マイクロスイッチの製造方法に係る回路基板上に硬化樹脂単位層が形成された状態を示す説明図である。
【図21】図20の硬化樹脂単位層上に更に硬化樹脂単位層が形成された状態を示す説明図である。
【図22】図19の特定マイクロスイッチの製造方法に係る樹脂型体の構成を示す説明図である。
【図23】図19の特定マイクロスイッチの製造方法に係る中間体の構成を示す説明図である。
【図24】本発明のマイクロスプリングの製造方法によって作製された特定中空スプリングの構成の一例を示す説明図である。
【図25】図24の特定中空スプリングの製造方法に係る第1の樹脂型体の構成を示す説明図である。
【図26】図24の特定中空スプリングの製造方法に係る第1の中間体の構成を示す説明図である。
【図27】図26の第1の中間体上に第2の樹脂型体が形成された状態を示す説明図である。
【図28】図26の第1の中間体上に第2の中間体が形成された状態を示す説明図である。
【図29】図28の第2の中間体上に第3の樹脂型体が形成された状態を示す説明図である。
【図30】図28の第2の中間体上に第3の中間体が形成された状態を示す説明図である。
【図31】本発明のマイクロスプリングの製造方法によって作製された特定中空スプリングの構成の他の例を示す説明図である。
【図32】金属製電気機械的機能素子の構成の一例を示す説明図である。
【図33】図32の電気機械的機能素子の製造工程を示す説明図である。
【図34】図33において示される製造工程後に係る製造工程を示す説明図である。
【図35】図34において示される製造工程後に係る製造工程を示す説明図である。
【符号の説明】
【0118】
10 固定ベース
10A 垂直支柱
11 収容容器
11A、11B 開口
12 光源装置
13 支持ステージ
13A ステージ面
15 スキージ機構
16 循環手段
16A 循環ポンプ
16B 液吸引側配管
16C 液吐出側配管
17 制御手段
20 回路基板
21 配線パターン
21A、21B 電極部
31 ポスト部分
32 ビーム部分
32A 一端部
32B 他端部
33 上方突出部分
34 第1のポスト部分
35 第1のビーム部分
35A 一端部
35B 他端部
36 第2のポスト部分
37 第2のビーム部分
37A 一端部
37B 他端部
38 第3のポスト部分
39 第3のビーム部分
39A 一端部
39B 他端部
39C 上方突出部分
40 中間体
41 樹脂型体部分(第1樹脂型体部分)
41A 金属部分形成用凹所部分(第1凹所部分)
43 樹脂型体部分(第2樹脂型体部分)
43A 金属部分形成用凹所部分(第2凹所部分)
43B 開口
45 第1金属層
45A ニッケルメッキ基層
45B 銅メッキ層
45C 窪み
46 第2金属層
47A〜47J 硬化樹脂単位層
48A ポスト部分用貫通孔
48B ビーム部分用貫通孔
48C 上方突出部分用貫通孔
48D ポスト部分形成用貫通孔
51 第1の中間体
51A 第1の樹脂型体
51B 第1の金属部分形成用凹所
51C 第1の金属層
52 第2の中間体
52A 第2の樹脂型体
52B 第2の金属部分形成用凹所
52C 第2の金属層
53 第3の中間体
53A 第3の樹脂型体
53B 第3の金属部分形成用凹所
53C 第3の金属層
54 第4の中間体
54A 第4の樹脂型体
54B 第4の金属部分形成用部分
54C 第4の金属層
71 ポスト部分
72 ビーム部分
72A 一端部
72B 他端部
73 下方突出部分
74 中間体
75 樹脂型体
75A 金属部分形成用凹所
77 金属層
77A ニッケルメッキ基層
77B メッキ銅層
78A〜78C 硬化樹脂単位層
79A ポスト部分用貫通孔
79B 下方突出部用貫通孔
79C ビーム部分用貫通孔
81 中央ポスト部分
82 下辺ビーム部分
82A、82B 端部
83A、83B 端部ポスト部分
84 上辺ビーム部分
84A、84B 端部
85 上方突出部分
86、89 矩形状枠体部分
91 第1の中間体
91A 第1の樹脂型体
91B 第1の金属部分形成用凹所
91C 第1の金属層
92 第2の中間体
92A 第2の樹脂型体
92B 第2の金属部分形成用凹所
92C 第2の金属層
93 第3の中間体
93A 第3の樹脂型体
93B 第3の金属部分形成用凹所
93C 第3の金属層
97A〜97H 硬化樹脂単位層
98A 中央ポスト部分用貫通孔
98B 下辺ビーム部分用貫通孔
98C 端部ポスト部分用貫通孔
98D 上辺ビーム部分用貫通孔
98E 上方突出部分用貫通孔
101 電解メッキ用コモン電極層
102、107 積層体
102A ポスト部分形成用貫通孔
103 ニッケルメッキ層
104 ビーム部分形成用コモン電極層
105 ビーム部分用レジスト層
106、108 金属層

【特許請求の範囲】
【請求項1】
基板の上面上に、上方に伸びるポスト部分と、このポスト部分に一体に連続して当該基板の表面方向に伸びるビーム部分とよりなり、当該ビーム部分が上下方向に湾曲するよう弾性的に変形可能である金属製可変形要素を含む電気機械的機能素子を形成する方法であって、
基板に対して中間体形成工程が行われることにより、ポスト部分およびビーム部分が型体に形成されてなる中間体が形成され、
当該中間体形成工程は、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、得られた中間体における型体を形成する硬化樹脂を除去する型体除去処理が行われることを特徴とする金属製電気機械的機能素子の形成方法。
【請求項2】
基板が回路基板であり、ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることを特徴とする請求項1に記載の金属製電気機械的機能素子の形成方法。
【請求項3】
中間体形成工程の金属部分形成手段においては、金属部分形成用凹所の内面上に無電解メッキ法によってメッキ基層が形成され、このメッキ基層の上に、電解メッキ工程による金属付着操作が1回以上繰り返されることを特徴とする請求項1または請求項2に記載の金属製電気機械的機能素子の形成方法。
【請求項4】
基板の上面上に、上方に伸びる第1のポスト部分と、この第1のポスト部分に一体に連続して当該基板の表面方向に伸びる第1のビーム部分と、この第1のビーム部分の上面から上方に伸びる第2のポスト部分と、この第2のポスト部分に一体に連続して前記第1のビーム部分と平行に伸びる第2のビーム部分とよりなり、第1のビーム部分および第2のビーム部分がいずれも上下方向に湾曲するよう弾性的に変形可能である金属製可変形要素複合体を含む電気機械的機能素子を形成する方法であって、
基板に対して第1の中間体形成工程が行われることにより、第1のポスト部分および第1のビーム部分が第1の型体に形成されてなる第1の中間体が形成され、
この第1の中間体に対して第2の中間体形成工程が行われることにより、第2のポスト部分および第2のビーム部分が第2の型体に形成されてなる第2の中間体が形成され、
第1の中間体形成工程および第2の中間体形成工程は、いずれも、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とする金属製電気機械的機能素子の形成方法。
【請求項5】
基板が回路基板であり、第1の中間体における第1のポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることを特徴とする請求項4に記載の金属製電気機械的機能素子の形成方法。
【請求項6】
基板の上面上に、上方に伸びるポスト部分と、一端部がこのポスト部分に一体に連続して当該基板の表面方向に伸びるビーム部分とを備えてなり、当該ビーム部分の他端部が上下方向に弾性的に変位可能である金属製可変形要素を含むマイクロスプリングの製造方法であって、
基板に対して中間体形成工程が行われることにより、ポスト部分およびビーム部分が型体に形成されてなる中間体が形成され、
当該中間体形成工程は、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を合む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、得られた中間体における型体を形成する硬化樹脂を除去する型体除去処理が行われることを特徴とするマイクロスプリングの製造方法。
【請求項7】
基板が回路基板であり、ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることを特徴とする請求項6に記載のマイクロスプリングの製造方法。
【請求項8】
基板の上面上に、上方に伸びる第1のポスト部分と、一端部がこの第1のポスト部分に一体に連続して当該基板の表面方向に伸びる第1のビーム部分と、この第1のビーム部分の他端部の上面から上方に伸びる第2のポスト部分と、一端部がこの第2のポスト部分に一体に連続して前記第1のビーム部分と平行に伸びる第2のビーム部分とよりなり、第1のビーム部分および第2のビーム部分の他端部がいずれも上下方向に弾性的に変位可能である金属製可変形要素を含むマイクロスプリングを製造する方法であって、
基板に対して第1の中間体形成工程が行われることにより、第1のポスト部分および第1のビーム部分が第1の型体に形成されてなる第1の中間体が形成され、
この第1の中間体に対して第2の中間体形成工程が行われることにより、第2のポスト部分および第2のビーム部分が第2の型体に形成されてなる第2の中間体が形成され、
第1の中間体形成工程および第2の中間体形成工程は、いずれも、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とするマイクロスプリングの製造方法。
【請求項9】
基板が回路基板であり、第1の中間体の第1のポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることを特徴とする請求項8に記載のマイクロスプリングの製造方法。
【請求項10】
基板の上面上に、上方に伸びるポスト部分と、一端部がこのポスト部分に一体に連続して当該基板の表面方向に伸びるビーム部分と、このビーム部分の他端部の下面から下方に突出する下方突出部分とよりなり、当該ビーム部分の他端部が上下方向に弾性的に変位可能である金属製可変形要素を合むマイクロスイッチを製造する方法であって、
基板に対して中間体形成工程が行われることにより、ポスト部分、下方突出部分およびビーム部分が型体に形成されてなる中間体が形成され、
中間体形成工程は、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、得られた中間体における型体を形成する硬化樹脂を除去する型体除去処理が行われることを特徴とするマイクロスイッチの製造方法。
【請求項11】
基板が回路基板であり、ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されると共に、下方突出部分は、当該基板におけるスイッチ用接点部の上方に離間して対向した状態で形成されることを特徴とする請求項10に記載のマイクロスイッチの製造方法。
【請求項12】
基板の上面上に、上方に伸びる中央ポスト部分と、この中央ポスト部分に一体に連続して当該基板の表面方向に伸びる下辺ビーム部分と、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する2つの端部ポスト部分と、これら2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分とよりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能である金属製スプリング要素を含むマイクロスプリングが設けられていることを特徴とする機能性基板。
【請求項13】
基板の上面上に、上方に伸びる中央ポスト部分とこれに接続された矩形枠状体部分とよりなる金属製スプリング要素の複数が一体的に積重されてなるマイクロスプリングが設けられてなり、
各金属製スプリング要素の矩形枠状体部分は、基板の表面方向に伸びる下辺ビーム部分、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する2つの端部ポスト部分およびこれら2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分よりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能であり、
各金属製スプリング要素において、中央ポスト部分に下辺ビーム部分が一体に連続していることを特徴とする機能性基板。
【請求項14】
基板の上面上に、上方に伸びる中央ポスト部分、この中央ポスト部分に一体に連続して当該基板の表面方向に伸びる下辺ビーム部分、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する2つの端部ポスト部分およびこれら2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分よりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能である金属製スプリング要素を含むマイクロスプリングを形成する方法であって、
中央ポスト部分および下辺ビーム部分とが第1の型体に形成されてなる第1の中間体を形成する第1の中間体形成工程と、2つの端部ポスト部分および上辺ビーム部分が第2の型体に形成されてなる第2の中間体を形成する第2の中間体形成工程とよりなる金属製可変形枠状部分形成操作が行われ、
第1の中間体形成工程および第2の中間体形成工程は、いずれも、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とするマイクロスプリングの製造方法。
【請求項15】
基板が回路基板であり、中央ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることを特徴とする請求項14に記載のマイクロスプリングの製造方法。
【請求項16】
基板の上面上に、上方に伸びる中央ポスト部分とこれに接続された矩形枠状体部分とよりなる金属製スプリング要素の複数が一体的に積重されてなるマイクロスプリングが設けられてなり、
各金属製スプリング要素の矩形枠状体部分は、基板の表面方向に伸びる下辺ビーム部分、この下辺ビーム部分の両端部の上面からそれぞれ上方に突出する2つの端部ポスト部分およびこれら2つの端部ポスト部分の上面にそれぞれ両端部が一体に連続する上辺ビーム部分よりなり、下辺ビーム部分および上辺ビーム部分が上下方向に湾曲するよう弾性的に変形可能であり、各金属製スプリング要素において、中央ポスト部分に下辺ビーム部分が一体に連続しているマイクロスプリングを製造する方法であって、
中央ポスト部分および下辺ビーム部分とが第1の型体に形成されてなる第1の中間体を形成する第1の中間体形成工程と、2つの端部ポスト部分および上辺ビーム部分が第2の型体に形成されてなる第2の中間体を形成する第2の中間体形成工程とよりなる金属製可変形枠状部分形成操作が繰り返して行われ、
各金属製可変形枠状部分形成操作における第1の中間体形成工程および第2の中間体形成工程は、いずれも、各々光造形法により成形された硬化樹脂単位層が積層されて形成された、金属部分形成用凹所を有する硬化樹脂よりなる型体を形成し、この型体における金属部分形成用凹所の内面上に無電解メッキ層を形成する過程を含む金属部分形成手段により、当該金属部分形成用凹所内に金属部分を形成して、型体と金属部分とよりなる中間体を形成する工程であり、
その後、すべての金属製可変形枠状部分形成操作における第1の中間体における第1の型体および第2の中間体における第2の型体を形成する硬化樹脂を一括して除去する型体除去処理が行われることを特徴とするマイクロスプリングの製造方法。
【請求項17】
基板が回路基板であり、最初の金属製可変形枠状部分形成操作の第1の中間体形成工程において、中央ポスト部分は、基板における電極部または配線部に電気的に接続された状態で形成されることを特徴とする請求項16に記載のマイクロスプリングの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate


【公開番号】特開2007−85831(P2007−85831A)
【公開日】平成19年4月5日(2007.4.5)
【国際特許分類】
【出願番号】特願2005−273696(P2005−273696)
【出願日】平成17年9月21日(2005.9.21)
【出願人】(000004178)JSR株式会社 (3,320)
【Fターム(参考)】