説明

タッチパネル用光導波路の製造方法

【課題】ボイドの発生が抑制され、生産効率の向上を実現してなるタッチパネル用光導波路の製造方法を提供する。
【解決手段】オーバークラッド層の形成が、コア部3が形成されたアンダークラッド層2面上に、オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層4aを形成する。ついで、上記塗工層4aに、光透過性材料にて形成されてなる成形型6の所定の型面を合わせて加圧した後、上記成形型6を介して上記塗工層4aを露光する。露光後,成形型を離型することにより上記コア部3を埋設した状態でオーバークラッド層を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タッチパネル用光導波路の製造方法に関するものである。
【背景技術】
【0002】
光導波路は、光導波路デバイス、光集積回路、光配線基板等に組み込まれており、光通信、光情報処理、その他一般光学の分野で広く用いられている。そして、このような光導波路としては、近年、紫外線硬化性樹脂等の感光性樹脂を用いて製造することが実施されている。例えば、基板上にアンダークラッド層を形成した後、このアンダークラッド層上に感光性樹脂層を形成する。ついで、所定パターンのフォトマスクを通して上記感光性樹脂からなる層面に光を照射して露光し、露光部分を現像液を用いて現像・除去することにより所定パターンのコア部を形成する。つぎに、上記コア部上にオーバークラッド層を形成することにより光導波路を作製する方法があげられる(例えば、特許文献1参照)。
【0003】
上記特許文献1等に記載された光導波路の製造方法は、上記アンダークラッド層およびオーバークラッド層の両クラッド層、上記コア部をそれぞれ形成する際に、形成材料の塗布や、露光,現像および乾燥の各工程が行われている。しかし、上記コア部,アンダークラッド層およびオーバークラッド層をそれぞれ形成する毎に、上記塗布,露光,現像および乾燥の各工程を行なうと、多くの工数を要するために、製造コストが高くなる。なかでも、露光および現像の各工程は、さらに細かい多くの工程から構成されており、この点で、なお改善の余地がある。
【0004】
そこで、工程数低減のために、例えば、オーバークラッド層を、つぎのように型成形する方法が、考えられる。すなわち、図9(a)に示すように、まず、基板1上に、アンダークラッド層2およびコア部3を順に形成する。そして、オーバークラッド層4〔図9(b)参照〕の表面形状に対応する型面21aを有する凹部21が形成されている成形型20を準備し、また、オーバークラッド層4の形成材料として熱硬化性樹脂シート40を準備する。ついで、その熱硬化性樹脂シート40を、上記アンダークラッド層2およびコア部3の上方に位置決めする。つぎに、図9(b)に示すように、アンダークラッド層2上において、上記熱硬化性樹脂シート40を、上記成形型20でプレスし、その状態で加熱して硬化させることにより、オーバークラッド層4を形成する。その後、脱型する。この方法によりオーバークラッド層4を形成すると、上記塗布,露光,現像等の工程が不要となるため、オーバークラッド層4の形成に要する工数およびコストを低減することができる。
【0005】
しかしながら、熱硬化性樹脂シート40を成形型20でプレスする上記方法では、アンダークラッド層2と成形型20との間に熱硬化性樹脂シート40を挟むため、形成されたオーバークラッド層4の端縁に、ばり41が発生し易い。このため、そのばり41を除去する工程が必要となり、工数低減およびコスト低減が不充分となっている。しかも、このようにして製造される光導波路がタッチパネル用途の場合、コア部3の先端部に対応するオーバークラッド層4の部分が、図示のようにレンズ形状(曲面)4aに形成されるため、そのレンズ形状4a部分の端部に上記ばり41が存在すると、光の集光等に障害が生じる。
【0006】
このような問題点を改善するために、本出願人は、つぎのような光導波路の製造方法を提案し出願している。この製造方法は、基板1の表面に、アンダークラッド層2と所定パターンのコア部3とオーバークラッド層4とからなる光導波路〔図10(c)参照〕を製造するに際し、上記オーバークラッド層4の形成に特殊な成形型を用いるという特徴を備えた方法である。すなわち、まず、基板1面にアンダークラッド層2および所定パターンのコア部3を上記と同様、塗布,露光,現像および乾燥の各工程を経由することにより形成する〔図10(a)参照〕。ついで、図10(a)に示すように、オーバークラッド層4の表面形状に対応する型面を有する凹部とこの凹部に連通する貫通孔12とが形成されている光透過性材料製の成形型10を準備し、その成形型10の上記凹部の開口面をアンダークラッド層2の表面に密着させる。そして、その状態で、上記凹部の型面とアンダークラッド層2の表面とで囲まれる成形空間に、オーバークラッド層4の形成材料である液状の樹脂を上記貫通孔12から注入した後、図10(b)に示すように、紫外線等の照射線を照射し成形型を透過させて露光し、注入した形成材料を硬化させる。つぎに、上記成形型10を離型させることにより、図10(c)に示すように、所定パターンのコア部3を埋設した状態でオーバークラッド層4を形成するという製造方法である(特許文献2参照)。
【特許文献1】特開2005−165138号公報
【特許文献2】特願2007−123830号
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、上記特許文献2に記載の製造方法では、成形型10内にオーバークラッド層4形成材料を貫通孔12を通して注入する必要があり、また上記形成材料を注入してから硬化完了までに一定の時間を要するため、生産効率という点に関して充分満足のいくというものではなく、この改良が求められている。また、タッチパネル用途の光導波路として考慮した場合、オーバークラッド層4形成材料を上記貫通孔12を通して注入する際に、成形空間に空気を巻き込みボイドが生じる可能性があり、製品の信頼性という点に関しても改善が要望されている。
【0008】
本発明は、このような事情に鑑みなされたもので、ボイドの発生が抑制され、生産効率の向上を実現してなるタッチパネル用光導波路の製造方法の提供をその目的とする。
【課題を解決するための手段】
【0009】
上記の目的を達成するため、本発明のタッチパネル用光導波路の製造方法は、基板面にアンダークラッド層を形成する工程と、上記アンダークラッド層上に所定パターンのコア部を形成する工程と、上記コア部が形成されたアンダークラッド層面上に,オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層を形成する工程と、上記オーバークラッド層形成材料からなる塗工層に,光透過性材料にて形成されてなる成形型の所定の型面を合わせて加圧する工程と、上記成形型を介して上記塗工層を露光する工程と、露光後,成形型を離型することにより上記コア部を埋設した状態でオーバークラッド層を形成する工程とを備えたという構成をとる。
【0010】
すなわち、本発明者は、ボイド発生を抑制することができ、しかも製造効率の向上を実現可能とするタッチパネル用光導波路の製造方法を得るべく鋭意検討を重ねた。その結果、基板面に、アンダークラッド層および所定パターンのコア部を形成した後、上記コア部が形成されたアンダークラッド層面上に,特定範囲の粘度を有するオーバークラッド層形成材料からなる樹脂部を設ける。ついで、上記樹脂部の上方から,光透過性材料にて形成されてなる成形型を加圧し、この加圧状態を保持した状態で露光した後,成形型を離型することにより上記コア部を内包するようオーバークラッド層を形成すると、前述の方法のように、貫通孔を通して成形型内に樹脂材料を充填することなくオーバークラッド層を形成できることから、ボイド形成を抑制することが可能となる。しかも、製造工程数の低減化を実施できることも見出し本発明に到達した。
【発明の効果】
【0011】
このように、本発明は、基板面に形成されたアンダークラッド層上に、所定パターンのコア部を形成する。ついで、上記コア部が形成されたアンダークラッド層面上に、オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層を形成した後、上記オーバークラッド層形成材料からなる塗工層に、光透過性材料にて形成されてなる成形型の所定の型面を合わせて加圧する。つぎに、上記成形型を介して上記塗工層を露光した後、成形型を離型することにより上記コア部を埋設した状態でオーバークラッド層を形成することによりタッチパネル用光導波路を製造する方法である。このため、オーバークラッド層形成の際にボイドの発生を抑制することができる。しかも、オーバークラッド層の形成が型成形であるため、従来のオーバークラッド層の製造工程に比べて、露光後の現像工程等が不要となり、工程数の削減が図られ、信頼性に優れたタッチパネル用光導波路を効率良く製造することが可能となり、製造コストの低減が実現する。
【0012】
そして、上記コア層が形成されたアンダークラッド層面上に、オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層を形成する工程が、コア部が形成されたアンダークラッド層面上に、上記コア部を埋設するよう半硬化あるいは未硬化のオーバークラッド層形成材料用の光重合性樹脂組成物の塗工層を形成する工程であり、上記成形型の所定の型面を合わせて加圧する工程が、成形型全体を120〜180℃に加熱することにより加熱加圧する工程である場合、例えば、熱硬化性樹脂製シートを用いた工程に比べて、可使時間の延長化が図られ、信頼性に優れたタッチパネル用光導波路をより一層効率良く製造することが可能となり、製造コストの低減を図ることができる。
【0013】
また、上記コア層が形成されたアンダークラッド層面上に、オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層を形成する工程が、コア部形成部分以外のアンダークラッド層面上に、未硬化のオーバークラッド層形成材料用の光重合性樹脂組成物を滴下して塗工層を形成する工程であり、上記成形型の所定の型面を合わせて加圧する工程が、成形型全体を20〜80℃に設定して加圧する工程である場合、低温設定での加圧工程であるため、成形物の寸法変化が少なく、信頼性に優れたタッチパネル用光導波路をより一層効率良く製造することが可能となり、製造コストの低減を図ることができる。
【発明を実施するための最良の形態】
【0014】
つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。
【0015】
まず、本発明のタッチパネル用光導波路の製造方法について、その概略を述べる。本発明のタッチパネル用光導波路は、例えば、つぎのようにして製造される。すなわち、従来と同様にして、基板面にアンダークラッド層形成材料を塗布し、紫外線露光等による光照射により硬化させアンダークラッド層を形成する。ついで、上記アンダークラッド層上にコア部形成材料を塗布してコア層を形成した後、所定パターンのフォトマスクを介して紫外線露光等の光照射を行ない、コア層を所定パターンに露光硬化する。つぎに、コア層を所定パターンに露光した後、現像液を用いて、上記コア層の未露光部分を溶解し現像を行なうことによって、所定パターンのコア部を形成する。このように従来と同様の製造工程を経由して、基板面に、アンダークラッド層および所定パターンのコア部を形成する。そして、本発明では、上記コア部が形成されたアンダークラッド層面上に、オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層を形成した後、上記塗工層に、光透過性材料にて形成されてなる成形型の所定の型面を合わせて加圧する。つぎに、上記成形型を介して上記塗工層を露光した後、成形型を離型することにより上記コア部を埋設した状態でオーバークラッド層を形成する。このようにしてタッチパネル用光導波路を製造するというものであって、前記従来の方法のように、成形型の貫通孔を通して形成材料を型内に注入することなくオーバークラッド層を形成するものであり、このオーバークラッド層の形成方法が本発明の特徴である。
【0016】
そして、本発明のタッチパネル用光導波路の製造方法は、使用するオーバークラッド層形成材料の種類、および、オーバークラッド層形成材料を用いた塗工層の形成工程等に応じて二通りの方法に大別される。
【0017】
上記二通りの方法のうち、第1のタッチパネル用光導波路の製造方法は、コア部が形成されたアンダークラッド層面上に、上記コア部を埋設するよう半硬化あるいは未硬化のオーバークラッド層形成材料用の光重合性樹脂組成物の塗工層を形成する工程を経由することを特徴とするものである。
【0018】
上記第1のタッチパネル用光導波路の製造方法の一実施形態について、図面に基づき詳述する。
【0019】
すなわち、まず、基板1(図1参照)を準備する。上記基板1としては、特に限定されるものではなく、その形成材料としては、例えば、樹脂,ガラス,シリコン,金属等があげられ、上記樹脂としては、例えば、ポリエチレンテレフタレート,ポリエチレンナフタレート,ポリイミド等があげられ、金属としては、例えば、ステンレス等があげられる。また、基板1の厚みは、特に限定されないが、通常、50〜200μmの範囲内に設定される。
【0020】
ついで、図1に示すように、上記基板1の所定領域表面にアンダークラッド層2を形成する。このアンダークラッド層2の形成材料としては、感光性エポキシ樹脂組成物,ポリイミド樹脂組成物等があげられる。そして、アンダークラッド層2の形成は、つぎのようにして行われる。すなわち、まず、上記樹脂組成物が溶媒に溶解しているワニスを基板1上に塗布する。このワニスの塗布は、例えば、スピンコート法,ディッピング法,キャスティング法,インジェクション法,インクジェット法、マルチコーター等の塗工機によりロール・トゥ・ロール(roll to roll)で連続的に塗工する方法等により行われる。ついで、これを硬化させる。この硬化に際して、アンダークラッド層2の形成材料として感光性エポキシ樹脂組成物が用いられる場合は、所望のアンダークラッド層2の形状に対応する開口パターンが形成されているフォトマスクを介して照射線により露光する。この露光された部分がアンダークラッド層2となる。また、アンダークラッド層2の形成材料としてポリイミド樹脂組成物が用いられる場合は、通常、300〜400℃×60〜180分間の加熱処理により硬化させる。アンダークラッド層2の厚みは、通常、5〜50μmの範囲内に設定される。このようにして、アンダークラッド層2を作製する。
【0021】
つぎに、図2に示すように、上記アンダークラッド層2の表面に、コア部形成材料を用いて樹脂層3′を形成する。このコア部形成材料としては、通常、感光性樹脂組成物があげられ、上記アンダークラッド層2および後述のオーバークラッド層4〔図6参照〕の形成材料よりも屈折率が大きい材料が用いられる。この屈折率の調整は、例えば、上記アンダークラッド層2,コア部3,オーバークラッド層4の各形成材料の種類の選択や組成比率を調整して行なうことができる。そして、コア部3の形成は、つぎのようにして行われる。すなわち、まず、上記アンダークラッド層2と同様、感光性樹脂組成物が溶媒に溶解しているワニスをアンダークラッド層2上に塗布する。このワニスの塗布は、上記と同様、例えば、スピンコート法,ディッピング法,キャスティング法,インジェクション法,インクジェット法、マルチコーター等の塗工機によりロール・トゥ・ロール(roll to roll)で連続的に塗工する方法等により行われる。ついで、これを乾燥し、樹脂層3′を形成する。この乾燥は、通常、50〜120℃×10〜30分間の加熱処理により行われる。
【0022】
そして、図3に示すように、上記樹脂層3′を、所望のコア部3パターンに対応する開口パターンが形成されているフォトマスク7を介して照射線により露光する。この露光された部分が、未露光部分の溶解除去工程を経て、コア部3(図4参照)となる。これについて詳しく説明すると、上記露光に際しては、特に限定するものではなく、コンタクト露光、フォトマスク7を樹脂層3′から僅かに離して行なうプロキシミティ露光、投影露光法等があげられるが、より精度の向上を図る点から、コンタクト露光やプロキシミティ露光を採用することが好ましい。また、上記紫外線の露光に際しては、フィルター等を使用して平行光を用いることが好ましい。上記露光用の照射線としては、例えば、可視光,紫外線,赤外線,X線,α線,β線,γ線等が用いられる。好適には、紫外線が用いられる。すなわち、紫外線を用いると、大きなエネルギーを照射して、大きな硬化速度を得ることができ、しかも、照射装置も小型かつ安価であり、生産コストの低減化を図ることができるからである。紫外線の光源としては、例えば、低圧水銀灯,高圧水銀灯,超高圧水銀灯等があげられ、紫外線の照射量は、通常、10〜10000mJ/cm2 、好ましくは、50〜3000mJ/cm2 である。
【0023】
上記露光後、光反応を完結させるために、加熱処理を行なう。この加熱処理は、80〜250℃、好ましくは、100〜200℃にて、10秒〜2時間、好ましくは、5分〜1時間の範囲内で行なう。その後、現像液を用いて現像を行なうことにより、樹脂層3′における未露光部分を溶解させて除去し、残存した樹脂層3′を所望のコア部3のパターンに形成する。なお、上記現像は、例えば、浸漬法,スプレー法,パドル法等が用いられる。また、現像剤としては、例えば、γ−ブチロラクトン水溶液、水酸化テトラメチルアンモニウム等のような有機アルカリ水溶液、水酸化ナトリウム、水酸化カリウム等の無機アルカリ水溶液が用いられる。アルカリ濃度は、通常、2〜5重量%であり、必要に応じて、アルカリ水溶液には、メタノール、エタノール、n−プロパノール、イソプロパノール等の低級脂肪族アルコールを添加することができる。なお、このような現像剤および現像条件は、感光性樹脂組成物の組成によって、適宜選択される。
【0024】
そして、上記コア部3のパターンに形成された残存樹脂層中の現像液を加熱処理により除去する。この加熱処理は、通常、80〜120℃×10〜30分間の範囲内で行われる。これにより、上記コア部3のパターン形成された残存樹脂層を、コア部3に形成する。また、各コア部3の厚みは、通常、5〜30μmの範囲内に設定され、その幅は、通常、5〜30μmの範囲内に設定される。さらに、タッチパネル用途という観点から、各コア部3の先端から出射する光の発散を防止したり、各コア部3の先端に入射する光を集束させたりして、光伝送効率をより高めることができるという観点から、コア部3の先端は、レンズ形状に形成されることが好ましい。
【0025】
本発明における、前記第1のタッチパネル用光導波路の製造方法は、上記の工程の後に、後述の図4〜図6に示す工程を経由して、オーバークラッド層4を形成(プレス成形)するものであり、これが大きな特徴である。すなわち、図4に示すように、上記所定パターンのコア部3が形成されたアンダークラッド層2面上に、上記コア部3を被覆するように、オーバークラッド層4形成材料である半硬化もしくは未硬化の光重合性樹脂組成物を塗工することにより塗工層4aを形成する。上記塗工層4aの形成方法としては、上記オーバークラッド層4形成材料を塗工した後、例えば、所望の粘性を有するように、露光照射した後、加熱して半硬化状態(Bステージ)とすることにより上記塗工層4a(半硬化状態)を形成する方法があげられる。他方、塗工層4aの形成方法としては、オーバークラッド層4形成材料として、例えば、高分子量のエポキシ樹脂を用い高粘度のオーバークラッド層4形成材料を調製し、さらに有機溶剤等の希釈剤にて粘度を調整してこれを塗工した後、加熱乾燥することにより上記溶剤を揮発させて未硬化状態のフィルム層状に形成する方法があげられる。上記高分子量のエポキシ樹脂としては、例えば、数平均分子量(Mn)が1000〜5000程度のエポキシ樹脂を用いることが好ましい。そして、上記調整してなる粘度(25℃における)としては、例えば、40重量%ブチルカルビトール溶液において、300〜2000mPa・sの範囲に設定することが好ましい。このようにして形成される塗工層4aの厚みは、100〜500μmの範囲に設定することが好ましい。すなわち、上記範囲内に設定することにより、後述の成形型による加圧成形の際に塗工層4aが成形型による成形領域から横洩れするのを抑制することができるからである。
【0026】
ついで、図5に示すように、半硬化状態もしくは未硬化状態の塗工層4aに、石英ガラス製等の光透過性形成材料にて形成されてなる成形型6の型面を合わせて上方から加圧するとともに加熱する。そして、その状態を保持したまま、成形型6を介して照射線により露光する。照射線による露光に続いて、さらに加熱することにより、塗工層4aが完全に硬化し、オーバークラッド層4が形成される。そして、図6に示すように、上記成形型6を離型することにより、コア部3を埋設した状態で、上記コア部3先端部を被覆する部分が、所望の表面形状の曲面(レンズ曲面)8に形成されたオーバークラッド層4を得る。このオーバークラッド層4の厚みは、通常、50〜2000μmの範囲内に設定される。
【0027】
そして、上記第1のタッチパネル用光導波路の製造方法での実施の態様では、上記成形型6の型面のうち、コア部3先端部に対応する部分が、レンズ曲面に形成されている。
【0028】
上記成形型6による加圧条件としては、2〜10MPaのプレス圧で、真空プレス(例えば、1.33×10-2〜1.33×10-4kPa)と設定することが好ましい。また、上記加圧とともに加熱条件としては、上記成形型6全体を120〜180℃の範囲内に設定することが好ましい。さらに、上記加熱方法としては、成形型6の上部に加熱板を接触させて成形型6を介して加熱する方法や、上下の加熱板にて全体を挟持し、上下双方の加熱板にて加熱する方法、また基板1の下部側に設置された加熱板のみで加熱する方法等を採用することができる。
【0029】
このような製造工程を経由することにより得られるタッチパネル用光導波路の一例として、図6に示す構成のものがあげられる。このタッチパネル用光導波路は、基板1上にアンダークラッド層2が積層形成され、さらに上記アンダークラッド層2上に所定パターンのコア部3が形成され、このコア部3を埋設した状態でオーバークラッド層4が形成されている。
【0030】
つぎに、本発明のタッチパネル用光導波路の製造方法である二通りの方法のうち、第2のタッチパネル用光導波路の製造方法の一実施形態について、図面に基づき詳述する。上記第2のタッチパネル用光導波路の製造方法は、コア部形成部分以外のアンダークラッド層面上に、未硬化のオーバークラッド層形成材料用の光重合性樹脂組成物を滴下して塗工層を形成する工程を経由することを特徴とするものである。
【0031】
上記第2のタッチパネル用光導波路の製造方法において、基板1面にアンダークラッド層2が、さらに、上記アンダークラッド層2の表面に所定パターンのコア部3が形成された構成の中間製品は、前述の第1のタッチパネル用光導波路の製造方法と同様の工程、すなわち、前記基板1の所定領域表面にアンダークラッド層2を形成する工程、および、上記アンダークラッド層2表面にコア部3を形成する工程を経由することにより作製される(図1〜図3参照)。
【0032】
つぎに、第2のタッチパネル用光導波路の製造方法は、上記工程の後に、後述の図7〜図8に示す工程を経由して、オーバークラッド層4を形成(プレス成形)するのであり、これが大きな特徴である。すなわち、図7に示すように、上記所定パターンのコア部3が形成されたアンダークラッド層2面上の、上記コア部3形成部分以外のアンダークラッド層2面上に、オーバークラッド層4形成材料である光重合性樹脂組成物を滴下して塗工層(樹脂部)4aを形成する。上記塗工層4aの形成材料となる光重合性樹脂組成物は、滴下可能な液状を示すものであればよく、具体的には、無溶剤タイプで、25℃における粘度が500〜3000mPa・sの範囲であるものを用いることが好ましい。すなわち、上記範囲内の粘度を有するものを用いることにより、後述の成形型による加圧成形の際に塗工層4aが成形領域から横洩れするのを抑制することができるからである。
【0033】
ついで、図8に示すように、上記滴下して形成された未硬化状態の塗工層4aに、石英ガラス製等の光透過性形成材料にて形成されてなる成形型6の型面を合わせて加圧する。そして、その状態を保持したまま、成形型6を介して照射線により露光する。照射線による露光に続いて、さらに加熱することにより、塗工層4aが完全に硬化し、オーバークラッド層が形成される。そして、上記成形型6を離型することにより、コア部3を埋設した状態で、上記コア部3先端部を被覆する部分が、所望の表面形状の曲面(レンズ曲面)8に形成されたオーバークラッド層4を得る(図6参照)。このオーバークラッド層4の厚みは、前述と同様、通常、50〜2000μmの範囲内に設定される。
【0034】
そして、上記第2のタッチパネル用光導波路の製造方法での実施の態様では、前記第1のタッチパネル用光導波路の製造方法の場合と同様、上記成形型6の型面のうち、コア部3先端部に対応する部分が、レンズ曲面に形成されている。
【0035】
上記成形型6による加圧条件としては、0.5〜2MPaのプレス圧で、常圧下(101.3kPa程度)と設定することが好ましい。また、上記加圧の際に、上記成形型6全体を20〜80℃の範囲に設定される。
【0036】
このような製造工程を経由することにより得られるタッチパネル用光導波路の一例として、図6に示す構成のものがあげられる。このタッチパネル用光導波路は、基板1上にアンダークラッド層2が積層形成され、さらに上記アンダークラッド層2上に所定パターンのコア層3が形成され、このコア層3を埋設した状態でオーバークラッド層4が形成されている。
【0037】
なお、上記実施の形態では、コア部3の先端部に対応するオーバークラッド層4の部分をレンズ形状(曲面)8に形成したが、これに限定されるものではなく、平面状等の非レンズ形状に形成してもよい。
【0038】
本発明のタッチパネル用光導波路の製造方法において、上記アンダークラッド層2およびオーバークラッド層4の形成材料としては、好ましくは両者とも同じ形成材料のものが用いられる。そして、上記形成材料としては、例えば、熱硬化性樹脂、熱可塑性樹脂等各種高分子材料が用いられるが、なかでも、光重合性樹脂組成物が好適に用いられる。
【0039】
また、上記コア部形成材料としては、上記と同様、光重合性樹脂組成物が好ましく用いられる。そして、上記いずれの形成材料においても、その配合成分としては、例えば、各種エポキシ化合物とともに光酸発生剤を配合したものがあげられる。さらに、これに各種希釈溶剤を配合して、適宜粘度を調整することが行われる。
【0040】
そして、上記クラッド層(アンダークラッド層2,オーバークラッド層4)は、コア部3よりも屈折率を小さくする必要がある。具体的には、上記アンダークラッド層2およびオーバークラッド層4それぞれの屈折率と、コア部3の屈折率の差が、波長830nmにおいて、1〜7%となるよう設定することが好ましい。さらには、波長830nmにおける、アンダークラッド層2およびオーバークラッド層4それぞれの屈折率が、1.50〜1.54に、かつコア部3の屈折率が1.56〜1.60に設定することが好ましい。
【0041】
そして、上記のようにして得られたタッチパネル用光導波路は、これをタッチパネル用途に使用する際には、通常、コア部形成部分以外の中央部領域の凹部をレーザーによるカッティング、型での打ち抜き等により、切断して用いられる。あるいは、そのままの状態で使用に供することもできる。また、得られたタッチパネル用光導波路は、基板1をアンダークラッド層2から剥離してタッチパネル用光導波路として供してもよいし、基板1を剥離することなくそのままの状態にてタッチパネル用光導波路として供してもよい。
【0042】
このようにして得られたタッチパネル用光導波路は、タッチパネルにおいて、光の出射や入射作用を有する光導波路として用いられる。
【0043】
つぎに、本発明の実施例について説明する。ただし、本発明は、これら実施例に限定されるものではない。
(1)第1のタッチパネル用光導波路の製造方法に基づく実施例について説明する。
【実施例1】
【0044】
〔コア部形成材料の調製〕
ビスフェノキシエタノールフルオレンジグリシジルエーテル100重量部、1,3,3−トリス{4−〔2−(3−オキセタニル)〕ブトキシフェニル}ブタン30重量部、ビスフェノールフルオレンテトラグリシジルエーテル30重量部、4,4−ビス〔ジ(βヒドロキシエトキシ)フェニルスルフィニオ〕フェニルスルフィド−ビス−ヘキサフルオロアンチモネートの50%プロピオンカーボネート溶液(光酸発生剤:サンアプロ社製、CP−200K)0.5重量部を、希釈溶剤である乳酸エチル20重量部に溶解することにより、コア部形成材料を調製した。
【0045】
〔アンダークラッド層およびオーバークラッド層形成材料の調製〕
脂環骨格を有するエポキシ樹脂(旭電化社製、EP−4080E)100重量部と、光酸発生剤(光重合開始剤)として上記サンアプロ社製のCP−200Kを1重量部とを混合することにより、アンダークラッド層およびオーバークラッド層の形成材料を調製した。
【0046】
〔タッチパネル用光導波路の作製〕
まず、ポリエチレンナフタレートフィルム(基板:100mm×100mm×厚み100μm)表面に、上記アンダークラッド層の形成材料をスピンコート法により塗布した後、形成するアンダークラッド層と同形状の開口パターンが形成されたフォトマスクを介して、1000mJ/cm2 の紫外線照射による露光を行なった。つづいて、80℃×5分間の加熱処理を行なうことにより、アンダークラッド層を形成した。このアンダークラッド層の厚みを接触式膜厚計で測定すると20μmであった。また、硬化後のアンダークラッド層の屈折率は1.510(830nm)であった。
【0047】
そして、上記アンダークラッド層の表面に、コア部形成材料をスピンコート法により塗布した後、100℃×5分間の乾燥処理(乾燥後の塗布厚み50μm)を行なった。ついで、その上方に、コアパターンと同形状の開口パターンが形成された合成石英系のフォトマスクを設置した。そして、その上方から、プロキシミティ露光法(ギャップ50μm)にて3000mJ/cm2 の紫外線照射による露光を行なった後、100℃×10分間の加熱処理を行なった。つぎに、γ−ブチロラクトン水溶液を用いて現像(ディップ方式、2分間)することにより、未露光部分を溶解除去した後、蒸留水で洗浄し、さらに100℃×5分間の加熱乾燥処理を行なうことにより、所望のパターン形状を有するコア部を形成した。硬化後のコア部の屈折率は1.593(830nm)であった。
【0048】
そして、上記コア部が形成されたアンダークラッド層表面に、オーバークラッド層形成材料を、厚み400μmとなるようにスピンコート法により塗工した。ついで、この塗工層に対して、200mJ/cm2 の紫外線照射による露光を行なった後、80℃×10分間の加熱処理を行なうことにより、上記塗工層(オーバークラッド層形成材料)を半硬化状態(Bステージ状)とした。つぎに、位置合わせのためのアライメントマークを施した石英製成形型(周辺厚み:5mm、中央付近厚み:5mm)を準備し、上記塗工層に、この成形型の型面(コア部先端部に対応する部分がレンズ曲面に形成)を合わせて上方から加圧した。ついで、成形型を150℃に加熱し、5MPaのプレス圧にて真空プレス(1.33Pa)を行ない、塗工層を加圧成形した。つぎに、上記成形型を介して1000mJ/cm2 の紫外線照射による露光を行なうことにより、上記コア部の先端部に対応する部分がレンズ形状(曲面)に形成されたオーバークラッド層(硬化後のガラス転移温度:85℃)を形成した。その後、成形型全体を80℃まで冷却した後、成形型を離型した。このアンダークラッド層の厚みを接触式膜厚計で測定すると400μm(コア部形成部分の厚み)であった。
【0049】
このようにして、基板上に、アンダークラッド層,コア部およびオーバークラッド層が、この順で積層されてなるタッチパネル用光導波路を製造することができた(図6参照)。このタッチパネル用光導波路には、オーバークラッド層にボイドは形成されていなかった。
【実施例2】
【0050】
〔コア部形成材料の調製〕
ビスフェノキシエタノールフルオレンジグリシジルエーテル40重量部、1,3,3−トリス{4−〔2−(3−オキセタニル)〕ブトキシフェニル}ブタン30重量部、ビスフェノールフルオレンテトラグリシジルエーテル30重量部、4,4−ビス〔ジ(βヒドロキシエトキシ)フェニルスルフィニオ〕フェニルスルフィド−ビス−ヘキサフルオロアンチモネートの50%プロピオンカーボネート溶液(光酸発生剤:サンアプロ社製、CP−200K)0.5重量部を、希釈溶剤である乳酸エチル30重量部に溶解することにより、コア部形成材料を調製した。
【0051】
〔アンダークラッド層およびオーバークラッド層形成材料の調製〕
脂環骨格を有する高分子量エポキシ樹脂〔数平均分子量(Mn):2395、東都化成社製、ST−4100D〕100重量部と、光酸発生剤(光重合開始剤)として上記サンアプロ社製のCP−200Kを1重量部とを、希釈溶剤であるシクロヘキサノン80重量部に溶解することにより、アンダークラッド層およびオーバークラッド層の形成材料を調製した。
【0052】
〔タッチパネル用光導波路の作製〕
まず、ポリエチレンナフタレートフィルム(基板:100mm×100mm×厚み100μm)表面に、上記アンダークラッド層の形成材料をスピンコート法により塗布した後、100℃×5分間の溶剤乾燥(乾燥後の膜厚20μm)を行ない、さらに形成するアンダークラッド層と同形状の開口パターンが形成されたフォトマスクを介して、1000mJ/cm2 の紫外線照射による露光を行なった。つづいて、80℃×5分間の加熱処理を行なうことにより、アンダークラッド層を形成した。このアンダークラッド層の厚みを接触式膜厚計で測定すると20μmであった。また、硬化後のアンダークラッド層の屈折率は1.530(830nm)であった。
【0053】
そして、上記アンダークラッド層の表面に、コア部形成材料をスピンコート法により塗布した後、100℃×5分間の乾燥処理を行なった(乾燥後の塗布厚み50μm)。ついで、その上方に、コアパターンと同形状の開口パターンが形成された合成石英系のフォトマスクを設置した。そして、その上方から、プロキシミティ露光法(ギャップ50μm)にて3000mJ/cm2 の紫外線照射による露光を行なった後、100℃×10分間の加熱処理を行なった。つぎに、γ−ブチロラクトン水溶液を用いて現像(ディップ方式、2分間)することにより、未露光部分を溶解除去した後、蒸留水で洗浄し、さらに100℃×5分間の加熱乾燥処理を行なうことにより、所望のパターン形状を有するコア部を形成した。硬化後のコア部の屈折率は1.593(830nm)であった。
【0054】
そして、上記コア部が形成されたアンダークラッド層表面に、オーバークラッド層形成材料(未硬化)を、厚み400μmとなるようにスピンコート法により塗工した。ついで、100℃×5分間の溶剤乾燥処理を行なうことにより、塗工層をフィルム状化した。つぎに、位置合わせのためのアライメントマークを施した石英製成形型(周辺厚み:5mm、中央付近厚み:5mm)を準備し、上記フィルム状化した塗工層に、この成形型の型面(コア部先端部に対応する部分がレンズ曲面に形成)を合わせて上方から加圧した。ついで、成形型を120℃に加熱し、5MPaのプレス圧にて真空プレス(1.33Pa)を行ない、塗工層を加圧成形した。つぎに、上記成形型を介して1000mJ/cm2 の紫外線照射による露光を行なうことにより、上記コア部の先端部に対応する部分がレンズ形状(曲面)に形成されたオーバークラッド層(硬化後のガラス転移温度:50℃)を形成した。その後、成形型全体を80℃まで冷却した後、成形型を離型した。このアンダークラッド層の厚みを接触式膜厚計で測定すると400μm(コア部形成部分の厚み)であった。
【0055】
このようにして、基板上に、アンダークラッド層,コア部およびオーバークラッド層が、この順で積層されてなるタッチパネル用光導波路を製造することができた(図6参照)。このタッチパネル用光導波路には、オーバークラッド層にボイドは形成されていなかった。
【0056】
(2)第2のタッチパネル用光導波路の製造方法に基づく実施例について説明する。
【実施例3】
【0057】
〔コア部形成材料の調製〕
ビスフェノキシエタノールフルオレンジグリシジルエーテル40重量部、1,3,3−トリス{4−〔2−(3−オキセタニル)〕ブトキシフェニル}ブタン30重量部、ビスフェノールフルオレンテトラグリシジルエーテル30重量部、4,4−ビス〔ジ(βヒドロキシエトキシ)フェニルスルフィニオ〕フェニルスルフィド−ビス−ヘキサフルオロアンチモネートの50%プロピオンカーボネート溶液(光酸発生剤:サンアプロ社製、CP−200K)0.5重量部を、希釈溶剤である乳酸エチル20重量部に溶解することにより、コア部形成材料を調製した。
【0058】
〔アンダークラッド層およびオーバークラッド層形成材料の調製〕
脂環骨格を有するエポキシ樹脂(旭電化社製、EP−4080E)100重量部と、光酸発生剤(光重合開始剤)として上記サンアプロ社製のCP−200Kを1重量部とを混合することにより、アンダークラッド層およびオーバークラッド層の形成材料を調製した。
【0059】
〔タッチパネル用光導波路の作製〕
まず、ポリエチレンナフタレートフィルム(基板:100mm×100mm×厚み100μm)表面に、上記アンダークラッド層の形成材料をスピンコート法により厚み20μmに塗布した後、形成するアンダークラッド層と同形状の開口パターンが形成されたフォトマスクを介して、1000mJ/cm2 の紫外線照射による露光を行なった。つづいて、80℃×5分間の加熱処理を行なうことにより、アンダークラッド層を形成した。このアンダークラッド層の厚みを接触式膜厚計で測定すると20μmであった。また、硬化後のアンダークラッド層の屈折率は1.510(830nm)であった。
【0060】
そして、上記アンダークラッド層の表面に、コア部形成材料をスピンコート法により塗布した後、100℃×5分間の乾燥処理(乾燥後の塗布厚み50μm)を行なった。ついで、その上方に、コアパターンと同形状の開口パターンが形成された合成石英系のフォトマスクを設置した。そして、その上方から、プロキシミティ露光法(ギャップ50μm)にて3000mJ/cm2 の紫外線照射による露光を行なった後、100℃×10分間の加熱処理を行なった。つぎに、γ−ブチロラクトン水溶液を用いて現像(ディップ方式、2分間)することにより、未露光部分を溶解除去した後、蒸留水で洗浄し、さらに100℃×5分間の加熱乾燥処理を行なうことにより、所望のパターン形状を有するコア部を形成した。硬化後のコア部の屈折率は1.593(830nm)であった。
【0061】
そして、上記コア部が形成されたアンダークラッド層表面の、コア部形成部分以外のアンダークラッド層面上に、液状のオーバークラッド層形成材料(未硬化)10mlを滴下した。つぎに、位置合わせのためのアライメントマークを施した石英製成形型(周辺厚み:5mm、中央付近厚み:5mm)を準備し、上記滴下したオーバークラッド層形成材料に、この成形型の型面(コア部先端部に対応する部分がレンズ曲面に形成)を合わせて上方から加圧した。ついで、成形型を40℃に加熱し、0.5MPaのプレス圧にて真空プレス(1.33Pa)を行ない、オーバークラッド層形成材料を加圧成形した。つぎに、上記成形型を介して1000mJ/cm2 の紫外線照射による露光を行なうことにより、上記コア部の先端部に対応する部分がレンズ形状(曲面)に形成されたオーバークラッド層(硬化後のガラス転移温度:70℃)を形成した。その後、成形型を離型した。このアンダークラッド層の厚みを接触式膜厚計で測定すると50μm(コア部形成部分の厚み)であった。
【0062】
このようにして、基板上に、アンダークラッド層,コア部およびオーバークラッド層が、この順で積層されてなるタッチパネル用光導波路を製造することができた(図6参照)。このタッチパネル用光導波路には、オーバークラッド層にボイドは形成されていなかった。
【産業上の利用可能性】
【0063】
本発明のタッチパネル用光導波路の製造方法により得られる光導波路は、タッチパネル用途に用いられる。
【図面の簡単な説明】
【0064】
【図1】本発明のタッチパネル用光導波路の製造方法を模式的に示す説明図である。
【図2】本発明のタッチパネル用光導波路の製造方法を模式的に示す説明図である。
【図3】本発明のタッチパネル用光導波路の製造方法を模式的に示す説明図である。
【図4】本発明の第1のタッチパネル用光導波路の製造方法を模式的に示す説明図である。
【図5】本発明の第1のタッチパネル用光導波路の製造方法を模式的に示す説明図である。
【図6】本発明のタッチパネル用光導波路の製造方法により得られるタッチパネル用光導波路の構造を示す横断面図である。
【図7】本発明の第2のタッチパネル用光導波路の製造方法を模式的に示す説明図である。
【図8】本発明の第2のタッチパネル用光導波路の製造方法を模式的に示す説明図である。
【図9】(a),(b)は従来の光導波路の製造方法を模式的に示す説明図である。
【図10】(a),(b),(c)はさらに従来の光導波路の製造方法を模式的に示す説明図である。
【符号の説明】
【0065】
1 基板
2 アンダークラッド層
3 コア部
4 オーバークラッド層
4a 塗工層
6 成形型

【特許請求の範囲】
【請求項1】
基板面にアンダークラッド層を形成する工程と、上記アンダークラッド層上に所定パターンのコア部を形成する工程と、上記コア部が形成されたアンダークラッド層面上に,オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層を形成する工程と、上記オーバークラッド層形成材料からなる塗工層に,光透過性材料にて形成されてなる成形型の所定の型面を合わせて加圧する工程と、上記成形型を介して上記塗工層を露光する工程と、露光後,成形型を離型することにより上記コア部を埋設した状態でオーバークラッド層を形成する工程とを備えたことを特徴とするタッチパネル用光導波路の製造方法。
【請求項2】
上記コア部が形成されたアンダークラッド層面上に、オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層を形成する工程が、コア部が形成されたアンダークラッド層面上に、上記コア部を埋設するよう半硬化あるいは未硬化のオーバークラッド層形成材料用の光重合性樹脂組成物の塗工層を形成する工程であり、上記成形型の所定の型面を合わせて加圧する工程が、成形型全体を120〜180℃に加熱することにより加熱加圧する工程である請求項1記載のタッチパネル用光導波路の製造方法。
【請求項3】
上記コア部が形成されたアンダークラッド層面上に、オーバークラッド層形成材料用の未硬化あるいは半硬化の光重合性樹脂組成物の塗工層を形成する工程が、コア部形成部分以外のアンダークラッド層面上に、未硬化のオーバークラッド層形成材料用の光重合性樹脂組成物を滴下して塗工層を形成する工程であり、上記成形型の所定の型面を合わせて加圧する工程が、成形型全体を20〜80℃に設定して加圧する工程である請求項1記載のタッチパネル用光導波路の製造方法。
【請求項4】
上記成形型の型面のうち、コア部先端部に対応する部分が、レンズ曲面に形成されている請求項1〜3のいずれか一項に記載のタッチパネル用光導波路の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2009−186834(P2009−186834A)
【公開日】平成21年8月20日(2009.8.20)
【国際特許分類】
【出願番号】特願2008−27975(P2008−27975)
【出願日】平成20年2月7日(2008.2.7)
【出願人】(000003964)日東電工株式会社 (5,557)
【Fターム(参考)】