説明

免震装置回転量制御機構

【課題】地震時に発生する杭頭曲げモーメントに対して杭頭接合部の回転剛性を制御し、免震装置に有害な回転を発生させない簡易で信頼性の高い免震装置回転制御機構を提供する。
【解決手段】パイルキャップ3とパイルキャップ定着部7とは接合鉄筋9により接合され、接合鉄筋9は、パイルキャップ3内のコンクリート19に定着する第1接合鉄筋部9aと、基礎杭4内のコンクリート19に定着する第2接合鉄筋部9bと、杭頭接合部12に設けられ、杭頭曲げモーメントにより接合鉄筋9に発生する引張力が所定の値を越えた場合に内部に引張降伏によるヒンジを形成させる回転量制御部6とを備え、回転量制御部6内部のヒンジにより杭頭接合部12の回転剛性を所定の値に低減させ、地震時の免震装置2の回転量を許容回転量以内に制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、免震装置回転量制御機構に係り、特に、建物の上部構造を支持し、上部構造を地震動から免震する免震装置に対し、地震時に基礎杭の杭頭部に発生する曲げモーメントにより生じる免震装置の回転量を制御する免震装置回転量制御機構に関する。
【背景技術】
【0002】
免震装置は、地盤から建物への地震動入力を低減させ、地震時の建物の構造安全性を高める。そのために、建物の重量を支えて安定させ、かつ水平方向に大きく変形してゆっくり動くという特性が要求される。これらの特性を満たす免震装置として、例えば、積層ゴム支承を用いた免震装置、或いはすべり支承を用いた免震装置などがある。本発明では、免震装置は積層ゴム支承を用いた免震装置を対象とするが、この積層ゴムには、例えば、天然ゴムを使用した天然ゴム系積層ゴム、中心部に鉛プラグを挿入した鉛入り積層ゴム、ゴム自体の添加物により減衰性をもたせた高減衰積層ゴムなどが用いられる。
【0003】
これらの積層ゴム免震装置は、複数のゴムシートと鋼板とが交互に積層され、高温、高圧で接着した構造となっている。この積層ゴム免震装置は、内部に鋼板が挟み込まれていることで鉛直方向に大きな剛性が得られ、鉛直方向の沈み込み量が極めて少なくなる。そして、地震時の水平方向の変形を積層された複数のゴムシートのせん断変形により吸収することができる。このように、積層ゴム支承は、地震時に鉛直方向の高い剛性で建物の重量を支えて安定させ、水平方向の大きなせん断変形により建物を地盤から免震(アイソレート)する。
【0004】
これらの積層ゴム支承が機能するには、積層ゴム免震装置自体に大きな曲げ変形による回転が生じないことが前提となる。非特許文献1には、「高減衰ゴム系積層ゴム支承の水平2方向加力時における限界性能に関する新たな知見について」と題し、高減衰ゴム系積層ゴム支承が2方向曲げ変形を受けた場合の限界性能について報告されている。ここでは、積層ゴム支承の曲げによる傾きが、例えば1/100程度を越えると高減衰ゴムがはがれてしまい、積層ゴム支承として機能しなくなることが示されている。このように、地震時に地盤から建物への地震動入力を低減させる目的で設置される積層ゴム支承を用いた免震装置自体が機能しなくなることは重大な問題となる。
【0005】
従来、積層ゴム免震装置を建物の基礎部に設置する場合には、杭の柱頭部に設けられた巨大なフーチング基礎などの上に免震装置を設置するのが一般的であった。これは、フーチング基礎は極めて曲げ剛性が高く、地震時に発生する杭頭曲げモーメントによる杭の変形の影響をほとんど受けず、免震装置の回転量は問題となるレベルにはならない。従って、積層ゴム免震装置が支承として機能しなくなる虞が極めて少なく安定的に免震効果を発揮できるからである。
【0006】
図8に、積層ゴム免震装置102を建物の基礎部に設置する場合の従来構法の一つの実施例を示す。内部にコンクリートを充填した鋼管113による基礎杭104の柱頭部112には基礎杭104を保護するパイルキャップ103が設けられる。そして、パイルキャップ103上に積層ゴム免震装置102が設置され、積層ゴム免震装置102は、柱材などの上部構造111を支持する。パイルキャップ103には、隣接する基礎杭104同士を繋ぐ基礎梁105及び基礎スラブ118が接続される。そして、基礎杭104の主筋110はパイルキャップ103に連続して配筋され、パイルキャップ103と基礎杭104の杭頭接合部112とは、ほとんど回転角を生じない剛接合となる。このように、基礎杭104の杭頭接合部112はパイルキャップ103に対して剛接合とされるのが一般的である。従って、地震時にはこの基礎梁105に大きな曲げモーメントが発生し、基礎梁105は梁成が大きくなり曲げ剛性も大きくなる。そして、このような基礎梁105が接続されるパイルキャップ103自体も高い曲げ剛性を有する。
【0007】
このように、フーチングやパイルキャップ103と、基礎杭104の杭頭接合部112とは回転角を生じない剛接合であり、積層ゴム免震装置102が設置されるフーチングやパイルキャップ103の回転剛性が高いことから、地震時に積層ゴム免震装置102には、上述したような有害な回転が発生する虞は少なかった。しかし、地震時に発生する大きな杭頭曲げモーメントにより、基礎杭104、フーチング、基礎梁105、パイルキャップ103等の基礎構造が過大な部材断面となり、施工の工期がかかり工事費用が嵩むという問題が生じていた。
【0008】
一方、「杭頭免震」と称され、例えば基礎杭などの杭頭部にフーチング基礎や基礎梁を介さずに積層ゴム免震装置を直接接合する構造が採用されている。例えば、特許文献1には、建物基礎の施工手間や地盤掘削量を削減して短工期化およびコスト低減が図れる免震建物が開示されている。ここでは、免震装置を基礎杭の杭頭部上に固定し、この免震装置上に上部構造であるフーチングや大梁が設置されている。また、基礎杭の杭頭同士が基礎スラブ(連結部材)で連結されている。この基礎スラブ(連結部材)により、地震時に複数の基礎杭がばらばらに水平変位することなく同一方向に変位することができる。また、基礎杭の杭頭部を基礎スラブ(連結部材)から突出させることで地震時に発生する杭頭曲げモーメントを基礎スラブ(連結部材)にて抑え込むことができ、地震時に積層ゴム免震装置に有害な回転が発生する恐れは極めて少ない。このように、パイルキャップを省略し、簡易な基礎スラブ(連結部材)を設けることで、基礎梁や基礎フーチングに要する施工手間や地盤の掘削量が削減される。
【0009】
特許文献2には、適正な杭頭回転を許容しつつ制御し、基礎と免震ピットを簡略化する「杭頭免震構造」が開示されている。ここでは、杭の杭頭部とその上部に設置する免震装置との間に、免震装置と杭頭部との間で軸力を伝達可能かつそれらの間に生じる相対的な杭頭回転を許容しつつ制御する杭頭デバイスを介装する。さらに、上部部材を杭頭部もしくは下部部材に対して連結する連結部材にダンパーとしての機能を持たせることが記載されている。
【0010】
特許文献3には、地震時に杭頭部に発生する曲げモーメントに対して免震装置への負担を軽減した「柱頭免震構造」が開示されている。この柱頭免震構造は、建物の上部構造を基礎部において支持し、上部構造を地震動から免震する免震装置と、基礎杭の杭頭部を相互に連結する基礎梁と、基礎梁が接続され、免震装置と基礎杭の杭頭部とを接続するコンクリート充填鋼管からなる短柱から構成され、短柱は、免震装置に接続する第1短柱と、第1短柱と略同断面を有して上下方向に積層され、杭頭部を保持する第2短柱とからなり、第1短柱の下面に設けられた凹部と、第2短柱の上面に設けられた凸部とが係合する。このように、パイルキャップを省略し、簡易な基礎スラブ(連結部材)を設けることで、基礎梁や基礎フーチングに要する施工手間や地盤の掘削量が削減される。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特許第3899354号
【特許文献2】特開2007−154558号公報
【特許文献3】特許第4672805号
【非特許文献】
【0012】
【非特許文献1】高減衰ゴム系積層ゴム支承の水平2方向加力時における限界性能に関する新たな知見について 技術委員会免震部材部会他 MENSHIN No.87 2010.2
【非特許文献2】新技術調査「杭頭半剛接接合工法」の調査報告 (財)建設コスト管理システム研究会 新技術調査検討会 建設コスト研究 2008WINTER
【発明の概要】
【発明が解決しようとする課題】
【0013】
免震装置、特に積層ゴム免震装置は、建物の自重を支えて安定させ、かつ水平方向に大きくせん断変形してゆっくり動くという特性を利用して建物を免震させる装置である。従って、装置に発生する軸力及びせん断力に対しては機能するが、杭頭曲げモーメントにより装置に発生する回転に対しては原理的に機能しない。従って、例えば地震時において基礎杭などの杭頭に杭頭曲げモーメントが発生し、その杭頭曲げモーメントが免震装置に伝達すると免震装置に有害な回転が発生し、免震装置として機能しなくなる虞がある。
【0014】
従来の積層ゴム免震装置を用いた実施例では、積層ゴム免震装置が設置されるフーチングやパイルキャップと、基礎杭などの杭頭部とは回転を生じない剛接合となっていた。従って、フーチングやパイルキャップの回転剛性が高く、地震時に積層ゴム免震装置には上述したような有害な回転が発生する虞は少なかった。しかし、一方で、地震時に発生する大きな杭頭曲げモーメントにより、基礎杭、フーチング、基礎梁、パイルキャップ等の基礎構造が過大な部材断面となり、施工の工期がかかり工事費用が嵩むという問題が生じていた。
【0015】
そこで、基礎杭、フーチング、基礎梁、パイルキャップ等の基礎構造を経済的な設計にする構法が提案された。例えば、非特許文献2に示すように、杭頭半剛接接合やピン接合とし、杭頭曲げモーメントを低減する杭頭接合工法が提案されている。これらの構法により地震時の杭頭曲げモーメントが低減され、基礎杭、フーチング、基礎梁、パイルキャップ等の基礎構造が経済的な設計となる可能性が生じた。また、「杭頭免震構造」や「柱頭免震構造」などの構法の提案により経済的な基礎構造が可能となった。
【0016】
しかし、これらの基礎構造に積層ゴム免震装置を設置する場合には、経済的な基礎構造とする場合には、上述した積層ゴム免震装置への有害な回転を回避する技術を検討しなければならない。特に、地震時に地盤の液状化が発生した場合には、地盤による杭の水平抵抗が杭頭部において期待できなくなるため、杭頭に過大な曲げモーメント及び変位が生じ、それにより積層ゴム免震装置に過大な回転が生じてしまう虞がある。
【0017】
従って、経済的に設計された基礎構造に積層ゴム免震装置を設置する場合には、積層ゴム免震装置に有害な回転を発生させないように、地震時に積層ゴム免震装置の回転量を制御する機構を設けることが必須となる。そして、この制御機構は、地震動により地盤が液状化しても積層ゴム免震装置に有害な回転を発生させない信頼性の高い技術であることが要求される。
【0018】
本願の目的は、かかる課題を解決し、地震時に発生する杭頭曲げモーメントに対して杭頭接合部の回転剛性を制御し、免震装置に有害な回転を発生させない簡易で信頼性の高い免震装置回転制御機構を提供することである。
【課題を解決するための手段】
【0019】
上記目的を達成するため、本発明に係る免震装置回転量制御機構は、建物の上部構造を支持し、上部構造を地震動から免震する免震装置と、免震装置を支持し、基礎杭上部のパイルキャップ定着部に接続するパイルキャップと、パイルキャップに接続して基礎杭相互を連結する扁平基礎梁と、を備え、パイルキャップとパイルキャップ定着部とは、杭頭接合部において接合鉄筋により相互に接合され、接合鉄筋は、上部構造からの軸力と地震時に発生する杭頭曲げモーメントを短柱として受けるパイルキャップ内に埋め込まれてコンクリートに定着する第1の接合鉄筋部と、パイルキャップ定着部内で基礎杭のコンクリートに定着する第2の接合鉄筋部と、杭頭接合部に設けられ、第1の接合鉄筋部及び第2の接合鉄筋部にそれぞれ接続し、地震時の杭頭曲げモーメントにより接合鉄筋に発生する引張力が所定の値を越えた場合に内部に引張降伏によるヒンジを形成させる回転量制御部と、を備え、回転量制御部内部に形成されたヒンジにより杭頭接合部の回転剛性を所定の値に低減させ、地震時の免震装置の回転量を許容回転量以内に制御することを特徴とする。
【0020】
上記構成により、免震装置回転量制御機構は、例えば、地盤の液状化などにより地震時に基礎杭の杭頭接合部に過大な曲げモーメントが発生し、それにより積層ゴム免震装置に有害な回転が発生じる虞がある場合には、パイルキャップとパイルキャップ定着部とを相互に接続し、第1の接合鉄筋部及び第2の接合鉄筋部にそれぞれ接続した回転量制御部において引張降伏によるヒンジが形成される。そして、このヒンジを発生させることにより杭頭接合部の回転剛性を所定の値に低減させ、免震装置の回転量を許容回転量以内に簡易で信頼性の高い制御をすることができる。
【0021】
すなわち、パイルキャップは、そのコンクリート及び接合鉄筋により上部構造の長期軸力、及び地震時の杭頭曲げモーメントに抵抗する短柱として機能する。そして、上部構造の自重よりも地震時の杭頭曲げモーメントが卓越している場合には、杭頭接合部において圧縮力を負担するコンクリート及び引張力を負担する接合鉄筋による回転剛性を有し、この回転剛性は地震時の杭頭部の回転変形に対して回転バネとして機能する。従って、この回転剛性が十分に高いとパイルキャップが杭頭部の回転を拘束する。そして、パイルキャップに支持されている免震装置は杭頭部の回転変形に追従して積層ゴム免震装置に有害な回転が生じる虞がある。本発明では、地震時に免震装置に有害な回転を発生させるような過大な曲げモーメントに対しては回転量制御部に引張降伏によるヒンジを形成させて杭頭部の回転変形を吸収し、積層ゴム免震装置の回転量を簡易に抑えることができる。なお、回転量制御部以外の接合鉄筋は、設計上要求される断面を確保しているため、例えば、圧縮力、せん断力、コンクリートとの付着力、鉄筋コンクリートとしての剛性などの他の性能は十分に保持される。
【0022】
また、引張降伏によりヒンジが形成される箇所を回転量制御部に設定することで、ヒンジ発生個所を特定させ、信頼性の高い免震装置の回転量制御を行うことができる。つまり、杭頭接合部は、接合鉄筋に引張力が発生した場合に、接合鉄筋の引張歪みが最大になる箇所であることが実験的に明らかになっている。この位置に回転量制御部を設置することでヒンジ発生個所がかなり厳密に特定される。また、ヒンジ発生個所が特定されるということは、ヒンジ発生時の引張降伏荷重も理論値に対してより少ない誤差となり、信頼性の高い制御を行うことができる。
【0023】
また、免震装置回転量制御機構は、杭頭接合部には、外輪の板状部が厚み方向に伸縮自在であり、外輪に囲まれた空隙部がパイルキャップのコンクリートとパイルキャップ定着部のコンクリートとが接続する環状の回転剛性調整シートが敷設され、回転剛性調整シートが、杭頭接合部において圧縮力を負担するコンクリートの範囲を制限して接合鉄筋に発生する引張力の値を制御することが好ましい。これにより、厚み方向に伸縮自在なシートの外輪の板状部では地震時にコンクリートは圧縮力を十分に負担できない。接合鉄筋に引張力を発生させるか、或いは引張力を増加させることができ、より効果的に接合鉄筋の引張力を制御することができる。
【0024】
また、免震装置回転量制御機構は、回転剛性制御シートが、押出ポリスチレンからなるシートであることが好ましい。これにより、外輪の板状部が厚み方向に伸縮自在であり、外輪に囲まれた空隙部がパイルキャップのコンクリートとパイルキャップ定着部のコンクリートとが接続するという、上述した回転剛性制御シートに要求される性能を満たすことができ、回転剛性制御シートの一つの実施例とすることができる。
【0025】
また、免震装置回転量制御機構は、回転量制御部が、第1の接合鉄筋部及び第2の接合鉄筋部を連結するカップラーを備え、カップラーは降伏点が接合鉄筋の鋼材の降伏点より低い値に調整された鋼材からなり、地震時の杭頭曲げモーメントにより接合鉄筋に所定の値を越えた引張力が発生した場合に、カップラー内に引張降伏によるヒンジが形成されることが好ましい。これにより、接合鉄筋相互を接続するカップラーにヒンジを容易に形成させ、簡易で信頼性の高い免震装置の回転量制御とすることができる。
【0026】
また、免震装置回転量制御機構は、カップラーが、接合鉄筋の鋼材の降伏点より低い極軟鋼又は低降伏点鋼からなることが好ましい。これにより、極軟鋼又は低降伏点鋼という通常の鋼材の降伏点より低い値に調整された鋼材をカップラーに用いることでヒンジを容易に形成させ、簡易で信頼性の高い免震装置の回転量制御とすることができる。
【0027】
また、免震装置回転量制御機構は,回転量制御部には、第1の接合鉄筋部及び第2の接合鉄筋部を連結するカップラーが設けられ、カップラーの少なくとも一部には断面積が低減された絞り部が設けられ、地震時の杭頭曲げモーメントにより接合鉄筋に所定の値を越えた引張力が発生した場合に、絞り部周辺に引張降伏によるヒンジが形成されることが好ましい。接合鉄筋相互を接続するカップラーの一部にヒンジを容易に形成させ、簡易で信頼性の高い免震装置の回転量制御とすることができる。
【0028】
また、免震装置回転量制御機構は,回転量制御部には、第1の接合鉄筋部又は第2の接合鉄筋部のいずれかに、接合鉄筋の断面積が減少された絞り部が形成され、地震時の杭頭曲げモーメントにより接合鉄筋に所定の値を越えた引張力が発生した場合に、絞り部周辺にヒンジが形成されることが好ましい。これにより、例えば、異径鉄筋に対して切削により接合鉄筋の断面積が減少された絞り部を形成することができ、簡易で信頼性の高い免震装置の回転量制御とすることができる。
【0029】
また、免震装置回転量制御機構は,回転量制御部には、第1の接合鉄筋部又は第2の接合鉄筋部のいずれかに、接合鉄筋の側面を貫通する空洞部が設けられ、地震時の杭頭曲げモーメントにより接合鉄筋に所定の値を越えた引張力が発生した場合に、空洞部周辺にヒンジが形成されることが好ましい。これにより、例えば、異径鉄筋の側面にドリルにより接合鉄筋の断面積が減少された空洞部を形成することができ、簡易で信頼性の高い免震装置の回転量制御とすることができる。
【0030】
さらに、免震装置回転量制御機構は,回転制御部が、杭頭接合部に配設されたシース管内を貫通することが好ましい。これにより、回転制御部がコンクリートの付着力に影響されずにヒンジを発生させるという免震装置回転量制御機構としての機能を十分に発揮することができる。
【発明の効果】
【0031】
以上のように、本発明に係る免震装置回転量制御機構によれば、地震時に発生する杭頭曲げモーメントに対して杭頭接合部の回転剛性を制御し、免震装置に有害な回転を発生させない簡易で信頼性の高い免震装置回転制御機構を提供することができる。
【図面の簡単な説明】
【0032】
【図1】本発明に係る免震装置回転量制御機構の1つの実施形態の概略構成を示す断面図である。
【図2】図1に示す免震装置回転量制御機構の扁平基礎梁、及びパイルキャップの結合鉄筋の配置を示すA−A断面図、及びB−B断面図である。
【図3】図1に示す免震装置回転量制御機構のパイルキャップ定着部の結合鉄筋の配置を示すC−C断面図である。
【図4】接合鉄筋相互をカップラーにより接続する機械式継手の場合の回転量制御部の構成を示す詳細図である。
【図5】接合鉄筋を切削する場合の回転量制御部の構成を示す詳細図である。
【図6】図6(a)にパイルキャップ及びパイルキャップ定着部の拡大された断面図を示し、図6(b)は、図6(a)の回転剛性評価断面(L)における応力分布を示す説明図である。
【図7】杭頭曲げモーメントを受けた場合の柱頭接合部の回転力−回転角関係をBi−Linearモデルにより単純化して示す説明図である。
【図8】積層ゴム免震装置を建物の基礎部に設置する場合の従来構法の一つの実施例を示す一部断面図である。
【発明を実施するための形態】
【0033】
(免震装置回転量制御機構の構成)
以下に、図面を用いて本発明に係る免震装置回転量制御機構1の実施形態につき、詳細に説明する。図1に、免震装置回転量制御機構1の1つの実施形態の概略構成を示す。また、図2(a)に、図1の免震装置回転量制御機構1の扁平基礎梁5a,5b、及びパイルキャップ3の第1接合鉄筋部9aの配置を断面で示す。また、図2(b)に、図1の免震装置回転量制御機構1の回転量制御部6及び回転剛性調整シート10の配置を断面で示す。さらに、図3に、図1の免震装置回転量制御機構1のパイルキャップ定着部7の第2接合鉄筋部9bの配置を示す。
【0034】
免震装置回転量制御機構1は、積層ゴム免震装置2、パイルキャップ3、基礎杭4、扁平基礎梁5、及びパイルキャップ定着部9から構成される。また、免震装置回転量制御機構1は、地震時に積層ゴム免震装置2の回転量を制御する回転量制御部6、及びパイルキャップ3の回転剛性を調整する回転剛性調整シート10を備える。
【0035】
本発明において免震装置は積層ゴム免震装置2である。積層ゴム免震装置2は、例えば、柱材や梁材などの建物の上部構造11を支持し、上部構造11からの自重を基礎杭4に伝達する。そして、上部構造11を基礎杭4などの下部構造から絶縁(アイソレート)して上部構造11を地震動から免震する。地震動を受けると積層ゴム免震装置2は、せん断変形することで絶縁(アイソレート)の効果を発揮する。そのために、積層ゴム免震装置2には、建物の自重を支えて安定させ、かつ水平方向に大きく変形してゆっくり動くという特性が要求される。これらの特性を満たす免震装置2として、例えば、積層ゴム支承を用いた免震装置2、或いは、すべり支承を用いた免震装置などがある。本発明では、免震装置2は積層ゴム支承を用いた積層ゴム免震装置2を対象とするが、この積層ゴムには、例えば、天然ゴムを使用した天然ゴム系積層ゴム、中心部に鉛プラグを挿入した鉛入り積層ゴム、ゴム自体の添加物により減衰性をもたせた高減衰積層ゴムなどが含まれる。
【0036】
図3に示すように、本実施形態では建物の基礎構造として円形断面の基礎杭4を用いるが、基礎杭4は円形以外の断面、例えば、矩形断面であっても良い。また、本実施形態では、基礎杭4はコンクリート杭であるが、基礎杭4以外の杭形式、例えば、鋼管コンクリート杭などであっても良い。この基礎杭4の内部には円周方向に定着筋である複数の第2接合鉄筋部9bが配置される。図1に示すように、この第2接合鉄筋部9bの最下部には、コンクリート19bへの定着力を増強するために下部アンカー8bが設けられる。本明細書では、「杭頭部」とは、基礎杭4の頂部をいい、地震時に基礎杭4の杭頭曲げモーメント(M)が発生する部分を指す。また、杭頭接合部12とは、パイルキャップ3とパイルキャップ定着部7とが接合される部分をいう。また、本発明では、杭頭接合部12から下部アンカー8bの先端部までをパイルキャップ定着部7と称する。
【0037】
扁平基礎梁5は、各基礎杭4に設けられるパイルキャップ3に接続して基礎杭4相互を連結する。すなわち、地震時に、基礎杭4の杭頭部の変位がばらばらにならないように、杭頭部を相互に連結して相互の間隔を保持させる。本実施形態では、従来の基礎梁と異なり、梁成の小さな扁平基礎梁5を採用する。また、図2に示すように、一般的に扁平基礎梁5は、平面的に交差するX方向扁平基礎梁5a及びY方向扁平基礎梁5bから構成され、格子状に配置される。そして、この扁平基礎梁5は、厚みが薄くて幅の広い平板に近い断面を有し、地震時に基礎杭4の杭頭部に発生するせん断力を伝達する。また、このX方向扁平基礎梁5a及びY方向扁平基礎梁5bは、基礎杭4を支持点とする連続梁を構成する。
【0038】
パイルキャップ3は、積層ゴム免震装置2を支持する。また、パイルキャップ3は、パイルキャップ定着部7を介して基礎杭4と接続し、基礎杭4の杭頭部を保護する。図1に示すように、本実施形態ではパイルキャップ3は、円形の基礎杭4の直径(D)に両側の縁部の幅(α)を加えた値(D+2α)を一辺とする矩形断面である。本実施形態では、このパイルキャップ3は、両側の縁部の幅(α)として略100mm程度を仮想の鉄筋コンクリート柱(RC柱)として機能する範囲とする。この鉄筋コンクリート柱(RC柱)は高さが短く座屈荷重が極めて高いことから短柱として扱われる。また、本実施形態では、パイルキャップ3は、基礎杭4の杭頭接合部12から埋め込み部の深さ(β)だけ被さっている。本実施形態では、この埋め込み部の深さ(β)は少なくとも略100mmとする。これにより、仮想鉄筋コンクリート柱(RC柱)の縁部の幅(α)100mmと相まって、基礎杭4の圧縮側端部から杭頭接合部12にかけて略45度の角度で圧縮力が伝達される。なお、縁部の幅(α)及び埋め込み部の深さ(β)は、これらの値(100mm)に限らない。
【0039】
また、パイルキャップ3の厚さは、扁平基礎梁5の厚みに埋め込み部の深さ(β)を加えた厚さよりも大きい。このように、パイルキャップ3は、縁部及び埋め込み部により基礎杭4の杭頭部を包み込み、基礎杭4の杭頭部を保護する。すなわち、パイルキャップ3は、建物の上部構造11からの自重を基礎杭4にスムーズに伝達し、地震時に発生する杭頭曲げモーメント(M)に対して杭頭接合部12の回転剛性を所定の値に低減させ回転バネとして機能する。同時に、地震時に発生するせん断力を安全に伝達して内部のコンクリート19aを保護する。図1に示すように、このパイルキャップ3は、コンクリート19a及び第1接合鉄筋部9aから構成され、この第1接合鉄筋部9aの最上部には上部アンカー8aが設けられる。
【0040】
パイルキャップ3とパイルキャップ定着部7とは接合鉄筋9により接合され、接合鉄筋9は、パイルキャップ3内でコンクリート19a定着し、引張力に対して抵抗する第1接合鉄筋部9aと、パイルキャップ定着部7内で基礎杭4のコンクリート19bに定着する第2接合鉄筋部9bとから構成される。そして、パイルキャップ3は、コンクリート19a及び第1接合鉄筋部9aにより構成される短柱として機能する。すなわち、パイルキャップ3は、建物の上部構造11からの自重(N)、及び地震動により発生する杭頭曲げモーメント(M)に対し、圧縮側コンクリート、又は引張鉄筋である第1接合鉄筋部9aにより抵抗モーメント(Ma)を発生する。この抵抗モーメント(Ma)は回転バネとして機能してパイルキャップ3の回転変形が決定される。このように、パイルキャップ3は、地震時の積層ゴム免震装置2の回転量を制御することができる。
【0041】
パイルキャップ定着部7は、パイルキャップ3の第1接合鉄筋部9aに接続する第2接合鉄筋部9bにより、パイルキャップ3を基礎杭4に定着する。第2接合鉄筋9bは、コンクリート19bとの付着力及び下部アンカー8bにより基礎杭4に定着する。従って、基礎杭4内の埋め込み長さは、コンクリート19bとの必要な付着力により決定される。
【0042】
図1に示すように、第1接合鉄筋部9aと第2接合鉄筋部9bとの境界近傍の杭頭接合部12には、地震時に発生する杭頭曲げモーメント(M)により生じる所定の値を越えた引張力(T)に降伏するヒンジを形成する回転量制御部6が設けられる。ここで、この第1接合鉄筋部9aと第2接合鉄筋部9bとの境界近傍の杭頭接合部12、すなわち、パイルキャップ3とパイルキャップ定着部7との接続面を回転剛性評価断面(L)と称する(図6参照)。地震時に接合鉄筋9に引張力が発生した場合、接合鉄筋9の歪度はこの回転剛性評価断面(L)の近傍で最大値となることが実験などにより確認されている。従って、地震時に発生する杭頭曲げモーメント(M)により生じる引張力により降伏するヒンジを形成する回転量制御部6をこの回転剛性評価断面(L)に設けることで、ヒンジ発生個所を特定することができる。さらに、降伏する引張力を想定可能とすることで、地震時の積層ゴム免震装置2の回転量をより厳密に制御することができる。
【0043】
この回転制御部6は、パイルキャップ3とパイルキャップ定着部7との境界に配設されたシース管内を貫通させても良い。これにより、回転制御部6がコンクリート19aの付着力に影響されずに十分に機能を果たすことができる。
【0044】
(回転量制御部の構成)
図4(a),(b)に、接合鉄筋9相互をカップラー13により接続する機械式継手の場合の回転量制御部6a,6bの構成を示す。本実施形態では接合鉄筋9は異径鉄筋とするが、これに限らず、棒状の鋼材であれば、例えば丸鋼、角鋼、平鋼などであっても良い。接合鉄筋9相互の機械式継手にはカップラー13が設けられるのが一般的である。そして、このカップラー13は接続する接合鉄筋9の引張強度以上の引張強さを有するように鋼材の降伏耐力と断面積とが選択されて設計される全強設計が一般的である。しかし、本発明では、地震時に基礎杭4の杭頭部に発生する曲げモーメントによる回転力を制御するために、回転量制御部6a,6bにおいて部分的にこの全強設計とは異なる設計を行う。また、本回転量制御部6には、カップラー13のネジの締め付け後にカップラー13内部にモルタルが充填される機械式継手も含まれる。
【0045】
図4(a),(b)の回転量制御部6a,6bの場合では、第1接合鉄筋部9a及び第2接合鉄筋部9b相互を接続するカップラー13は降伏点が所定値の範囲に調整された鋼材からなり、所定の値を越えた引張力に対してカップラー13内にヒンジが形成される。すなわち、このカップラー13には、接合鉄筋9に用いられる一般的な鋼材と比べて降伏点の低い鋼材、例えば、低降伏点鋼、極軟鋼が用いられる。或いは、第1接合鉄筋部9a及び第2接合鉄筋部9bに高強度鋼が用いられる場合に、カップラー13にはそれよりも降伏点のより低い一般的な鋼材が用いられる。
【0046】
図4(a),(b)のカップラー13において、よりヒンジを形成し易くするために図4(a)では、カップラー13のクリアランス部15の近傍に外面絞り部16aを設け、図4(b)では、カップラー13のクリアランス部15の近傍に内面絞り部16bを設ける。接合鉄筋9に用いられる一般的な鋼材と比べて降伏点の低い鋼材、例えば、低降伏点鋼、極軟鋼を使用し、かつこれらの絞り部16a,16bを設けても良く、接合鉄筋9に用いられる一般的な鋼材と同様な降伏点を有する鋼材を使用するが、これらの絞り部16a,16bを設けてヒンジを形成させても良い。
【0047】
これにより、接合鉄筋9に地震時に過度の引張力が発生した場合に、接合鉄筋9ではなくカップラー13において鋼材が降伏してヒンジが形成される。つまり、第1接合鉄筋部9a又は第2接合鉄筋9bうちの任意の位置で降伏してヒンジが発生するのではなく、回転量制御部6という所定の位置においてヒンジが発生する。この回転量制御部6をパイルキャップ3内で最も引張応力が大きくなる位置にセットすることで、ヒンジの発生箇所及び降伏する引張力を制御することができる。
【0048】
図5(a),(b)に、接合鉄筋9を削り出して回転量制御部6c,6dとする場合の構成を示す。図5(a)の回転量制御部6cの場合は、回転量制御部6c内に接合鉄筋9を削り出す切削部14を設定し、絞り部17に示すように接合鉄筋9の外面を削り出して接合鉄筋9の断面積を低減させる。図5(b)の回転量制御部6dの場合は、回転量制御部6c内に接合鉄筋9を削り出す切削部14を設定して接合鉄筋9の外面を削り出し、接合鉄筋9に空洞部18を設けて接合鉄筋9の断面積を低減させる。このように、接合鉄筋9それ自体の一部を切削などの機械加工により処理してヒンジが発生する箇所を設定する。
【0049】
(免震装置の回転量制御方法)
図6(a)にパイルキャップ3及びパイルキャップ定着部7の拡大された断面図を示す。図6(b),(c)に図6(a)の回転剛性評価断面(L)における応力図を示す。また、図6(a)には地震動により発生する杭頭曲げモーメント(M)を示し、図6(b),(c)には、杭頭曲げモーメント(M)を受けた場合のコンクリート19及び接合鉄筋9による抵抗モーメント(Ma)を示す。図6(b)は、パイルキャップ3に発生する軸力(N)が杭頭曲げモーメント(M)よりも卓越し、回転剛性評価断面(L)の接合鉄筋9に引張力が発生しない場合である。すなわち、軸力による圧縮応力度をfc=N/Aとし、杭頭曲げモーメント(M)による最外縁の曲げ応力度をfb=M/Zとしたときに、fc>fbとなる場合である。図6(c)は、パイルキャップ3に発生する杭頭曲げモーメント(M)が軸力(N)よりも卓越し、回転剛性評価断面(L)の接合鉄筋9に引張力が発生する場合を示す。すなわち、fc<fbとなる場合である。例えば、地震時に地盤の液状化が発生した場合などには、地盤による基礎杭4の水平抵抗が杭頭部において期待できなくなるため、杭頭部に過大な曲げモーメントが生じ、接合鉄筋9に対して大きな引張力(T)が発生する。
【0050】
図6(c)に示すように、地震動による杭頭曲げモーメント(M)を受けるパイルキャップ3の回転剛性評価断面(L)には、杭頭曲げモーメント(M)の回転方向により圧縮側と引張側が発生し、それらの位置は中立軸(Xn)により表わされる。杭頭曲げモーメント(M)により引張側となる接合鉄筋9には、引張力(T)が発生する。ここで、コンクリート19の引張応力は無視する。また、杭頭曲げモーメント(M)により圧縮側となるコンクリート19面には、圧縮力(C)が発生する。そして、引張力(T)及び圧縮力(C)それぞれに中立軸からの距離を乗じて足し合わせたのが抵抗モーメント(Ma)となる。
【0051】
この抵抗モーメント(Ma)は、定着筋7の水平間隔(d)により増減し、水平間隔(d)が大きくなると固定度(α)が上がり鋼管杭4の杭頭接合部12は剛接合に近づく。一方、水平間隔(d)が小さくなると固定度(α)が下がり鋼管杭4の杭頭接合部12はピン接合に近くなる。また、中立軸(Xn)の位置、圧縮応力(C)、引張応力(T)などの値は、鋼管杭4の幅(D)により変動する。また、接合鉄筋9の水平間隔(d)を小さくすると、接合鉄筋9に引張力(T)が発生する可能性が大きくなる。
【0052】
このように、パイルキャップ3は、コンクリート19a及び接合鉄筋9により構成される短柱として機能し、地震動により発生する杭頭曲げモーメント(M)に対して抵抗モーメント(Ma)が回転バネとして抵抗する。従って、過大な引張力が発生した場合に降伏してヒンジを形成する回転量制御部6を設けることで、地震時の積層ゴム免震装置2の回転量を制御することができる。
【0053】
図7に、パイルキャップ3の回転力と回転角との関係をBi−Linearモデルにより単純化して示す。図7は、縦軸にパイルキャップ3の回転力をモーメントで示し、横軸にパイルキャップ3の回転角をラジアンで示す。折線Pは、回転バネ剛性による回転剛性が高い場合の回転力と回転角との関係を示す。また、折線Qは、回転バネ剛性による回転剛性が低い場合の回転力と回転角との関係を示す。折線P及び折線Qは、回転量制御部6において引張降伏によるヒンジが発生した場合に回転力がほぼ一定値となり、このときの回転力が、接合鉄筋9が降伏して伸びた際の回転バネの性能を示している。つまり、引張降伏によるヒンジの発生により接合鉄筋9などに伸びが生じ、パイルキャップ3の回転バネの性能が低下する。つまり、パイルキャップ3の回転バネの性能低下によりパイルキャップ3の回転力が減少し、地震時の積層ゴム免震装置2の有害な回転が回避される。
【0054】
図6に示すように、杭頭接合部12の回転剛性評価断面(L)には回転剛性調整シート10が設けられる。この環状の回転剛性調整シート10は、例えば押出ポリスチレンからなる環状のシートである。図2(b)に示すように、回転剛性調整シート10の外輪の板状部20は厚み方向に伸縮自在であり、外輪に囲まれた空隙部21にはパイルキャップ3のコンクリート19a及びパイルキャップ定着部7のコンクリート19bが連続する。回転剛性調整シート10は、杭頭接合部12において圧縮力を負担するコンクリート19の範囲を制限して接合鉄筋9に発生する引張力(T)の値を制御する。従って、この回転剛性調整シート10を回転剛性評価断面(L)に敷設すると、図6(a)に示すように、パイルキャップ定着部7は元々の幅(D)に対してコンクリート19により応力が伝達される空隙部21の幅(D´)に減少される。つまり、図6(c)のコンクリート19による圧縮応力の伝達領域が減少する。従って、回転剛性評価断面(L)における抵抗モーメント(Ma)を保持するために接合鉄筋9が負担する引張力(T)が発生するか、或いは増大する。
【0055】
このように、回転剛性評価断面(L)に回転剛性調整シート10を敷設し、空隙部21の幅(D´)を調節することで、地震時において、回転剛性評価断面(L)における接合鉄筋9に生じる引張力(T)を制御することが可能となる。例えば、軸力(N)が杭頭曲げモーメント(M)に対して大きく、接合鉄筋9に引張力(T)が生じ難い場合には、回転剛性評価断面(L)に回転剛性調整シート10を敷設することでこれを解消することできる。このように、回転剛性調整シート10の設置により、パイルキャップ3の短柱断面において圧縮側のコンクリート19の範囲を制限して接合鉄筋9に発生する引張力(T)を制御することが可能となる。そして、免震装置回転量制御機構1をより効果的に機能させることができる。
【符号の説明】
【0056】
1 免震装置回転量制御機構、2,102 積層ゴム免震装置、3,103 パイルキャップ、4 基礎杭、5,5a,5b 扁平基礎梁、6,6a,6b,6c,6d 回転量制御部、7 パイルキャップ定着部、8 アンカー、8a 上部アンカー、8b 下部アンカー、9,109 接合鉄筋、9a 第1接合鉄筋部、9b 第2接合鉄筋部、10 回転剛性調整シート、11,111 上部構造(柱)、12,112 杭頭接合部、13 カップラー、14 切削部、15 クリアランス部、16 絞り部、16a 外面絞り部、16b 内面絞り部、17 絞り部、18 空洞部、19 コンクリート、19a パイルキャップのコンクリート、19b 基礎杭のコンクリート、20 板状部、21 空隙部、110 主筋、104 鋼管杭、105 基礎梁、113 鋼管、118 基礎スラブ、C 圧縮力、D コンクリートの幅、d 定着筋の水平間隔、L 回転剛性評価断面、M 杭頭曲げモーメント、Ma 抵抗モーメント、P,Q 折線、T 引張力、Xn 中立軸位置、α 縁部の幅、β 埋め込み部の深さ。

【特許請求の範囲】
【請求項1】
建物の上部構造を支持し、上部構造を地震動から免震する免震装置と、
免震装置を支持し、基礎杭上部のパイルキャップ定着部に接続するパイルキャップと、
パイルキャップに接続して基礎杭相互を連結する扁平基礎梁と、を備え、
パイルキャップとパイルキャップ定着部とは、杭頭接合部において接合鉄筋により相互に接合され、
接合鉄筋は、
上部構造からの軸力と地震時に発生する杭頭曲げモーメントを短柱として受けるパイルキャップ内に埋め込まれてコンクリートに定着する第1の接合鉄筋部と、
パイルキャップ定着部内で基礎杭のコンクリートに定着する第2の接合鉄筋部と、
杭頭接合部に設けられ、第1の接合鉄筋部及び第2の接合鉄筋部にそれぞれ接続し、地震時の杭頭曲げモーメントにより接合鉄筋に発生する引張力が所定の値を越えた場合に内部に引張降伏によるヒンジを形成させる回転量制御部と、を備え、
回転量制御部内部に形成されたヒンジにより杭頭接合部の回転剛性を所定の値に低減させ、地震時の免震装置の回転量を許容回転量以内に制御することを特徴とする免震装置回転量制御機構。
【請求項2】
請求項1に記載の免震装置回転量制御機構であって、杭頭接合部には、外輪の板状部は厚み方向に伸縮自在であり、外輪に囲まれた空隙部はパイルキャップのコンクリートとパイルキャップ定着部のコンクリートとが接続する環状の回転剛性調整シートが敷設され、回転剛性調整シートは、杭頭接合部において圧縮力を負担するコンクリートの範囲を制限して接合鉄筋に発生する引張力の値を制御することを特徴とする免震装置回転量制御機構。
【請求項3】
請求項2に記載の免震装置回転量制御機構であって、回転剛性制御シートは、押出ポリスチレンからなるシートであることを特徴とする免震装置回転量制御機構。
【請求項4】
請求項1乃至3のいずれか1項に記載の免震装置回転量制御機構であって、回転量制御部は、第1の接合鉄筋部及び第2の接合鉄筋部を連結するカップラーを備え、カップラーは降伏点が接合鉄筋の鋼材の降伏点より低い値に調整された鋼材からなり、地震時の杭頭曲げモーメントにより接合鉄筋に所定の値を越えた引張力が発生した場合に、カップラー内に引張降伏によるヒンジが形成されることを特徴とする免震装置回転量制御機構。
【請求項5】
請求項4に記載の免震装置回転量制御機構であって、カップラーは、接合鉄筋の鋼材の降伏点より低い降伏点を有する極軟鋼又は低降伏点鋼からなることを特徴とする免震装置回転量制御機構。
【請求項6】
請求項1乃至3のいずれか1項に記載の免震装置回転量制御機構であって、回転量制御部には、第1の接合鉄筋部及び第2の接合鉄筋部を連結するカップラーが設けられ、カップラーの少なくとも一部には断面積が低減された絞り部が設けられ、地震時の杭頭曲げモーメントにより接合鉄筋に所定の値を越えた引張力が発生した場合に、絞り部周辺に引張降伏によるヒンジが形成されることを特徴とする免震装置回転量制御機構。
【請求項7】
請求項1乃至3のいずれか1項に記載の免震装置回転量制御機構であって、回転量制御部には、第1の接合鉄筋部又は第2の接合鉄筋部のいずれかに、接合鉄筋の断面積が減少された絞り部が形成され、地震時の杭頭曲げモーメントにより接合鉄筋に所定の値を越えた引張力が発生した場合に、絞り部周辺にヒンジが形成されることを特徴とする免震装置回転量制御機構。
【請求項8】
請求項1乃至3のいずれか1項に記載の免震装置回転量制御機構であって、回転量制御部には、第1の接合鉄筋部又は第2の接合鉄筋部のいずれかに、接合鉄筋の側面を貫通する空洞部が設けられ、地震時の杭頭曲げモーメントにより接合鉄筋に所定の値を越えた引張力が発生した場合に、空洞部周辺にヒンジが形成されることを特徴とする免震装置回転量制御機構。
【請求項9】
請求項1乃至8のいずれか1項に記載の免震装置回転量制御機構であって、回転制御部は、杭頭接合部に配設されたシース管内を貫通することを特徴とする免震装置回転量制御機構。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−87484(P2013−87484A)
【公開日】平成25年5月13日(2013.5.13)
【国際特許分類】
【出願番号】特願2011−228360(P2011−228360)
【出願日】平成23年10月17日(2011.10.17)
【特許番号】特許第5082085号(P5082085)
【特許公報発行日】平成24年11月28日(2012.11.28)
【出願人】(511309492)GLプロパティーズ株式会社 (2)
【Fターム(参考)】