説明

内燃機関の排気再循環システム

【課題】低圧EGR装置を用いて厳しいNOx低減要求に応えつつ主要部品の腐食を有効に抑制することのできる内燃機関の排気再循環システムを提供する。
【解決手段】低圧EGR装置17と、排気浄化ユニット44のPM再生処理の制御および低圧EGR装置17における排気ガス還流量の制御をそれぞれに実行するECU50と、を備えた内燃機関の排気再循環システムであって、ECU50は、低圧側排気再循環経路L2中に閾値量以上の凝縮水が発生するか否かを判定する凝縮水発生判定部51と、凝縮水発生判定部51により閾値量以上の凝縮水が発生すると判定されたことを条件として、PM再生処理の実行期間内にその再生処理の実行開始時点からの一定時間内に含まれるEGR制限期間を設定し、再生処理の実行期間内の残余の期間に比較してそのEGR制限期間中は低圧EGR装置17における排気ガス還流量を制限する還流量制限部52と、を有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関の排気再循環システムに関し、特にその排気還流通路中における凝縮水の発生を抑制する制御を実行する内燃機関の排気再循環システムに関する。
【背景技術】
【0002】
車両用のエンジン(内燃機関)においては、NOx(窒素酸化物)の低減に効果的な排気再循環を行うEGR(排気再循環)システムを装着したものが多くなっており、希薄燃焼が可能でEGR流量が多くなるエンジンにおいては、排気再循環される排気ガス、すなわちEGRガスの温度を下げるEGRクーラ(排気冷却器)が多用されている。また、ディーゼルエンジンにおいては、ポスト噴射や燃料添加等により排気温度を昇温状態にすることにより、PMフィルタに堆積したPM(粒子状物質)を酸化し除去するPM再生手段を備えたものが普及している。さらに、高温の排気ガスの一部を吸気側に還流させるHPL(高圧ループ)−EGR回路とは別に、排気後処理装置を通過した後の排気ガスをターボ過給機のコンプレッサより上流側に還流させることで低温かつ大量の排気再循環を可能にしたLPL(低圧ループ)−EGR回路を装備するものも普及し始めている。
【0003】
このような内燃機関の排気再循環システムとしては、例えばHPL−EGR回路およびLPL−EGR回路を併有し、排気絞り弁が所定開度より閉じ側に絞られる運転条件下では、排気行程から吸気行程にかけて気筒内に残留する内部EGRガスの量と外部EGRガスの量とを合計した全EGRガス量が他の運転条件下での全EGRガス量よりも少なくなるようにLPL弁開度を制御して、PM再生時でも十分なEGR制御精度を確保できるようにしたものが知られている(例えば、特許文献1参照)。
【0004】
NOx吸蔵還元触媒およびフィルタに吸蔵されたNOxをN、COおよびHOに還元して放出させるNOx還元制御を実行する一方、触媒コンバータ内のフィルタへの硫黄化合物、特にサルフェートの堆積量を燃料噴射弁からの燃料量および触媒床温等に基づいて計算し、その計算結果に応じて添加弁からの比較的時間をおいた間欠的な燃料添加を実行することで触媒床温を比較的低温(例えば、摂氏250〜500度)にしつつ、空燃比をストイキまたはストイキよりも低下させ、PMを浄化するのと同時にサルフェートを放出させるようにしたものが知られている(例えば、特許文献2参照)。
【0005】
その他に、例えばセンサにより検出されるNOx吸蔵還元触媒の触媒床温の昇温度合に基づいてNOx吸蔵還元触媒の硫黄推定度合を推定するようにしたもの(例えば、特許文献3参照)、あるいは、PM再生モードではストイキより高い空燃比で添加弁からの燃料添加を繰り返して触媒床温を高温(例えば、摂氏600〜700度)にし、S(硫黄)被毒回復制御モードでは、添加弁からの燃料添加を繰り返して触媒床温を高温化するとともに空燃比をストイキまたはストイキよりもわずかに低い空燃比とすることで、S被毒過多により触媒表面に堆積したS成分を離脱させて除去するようにしたもの(例えば、特許文献4参照)が知られている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−261256号公報
【特許文献2】特開2006−291823号公報
【特許文献3】特開2009−138525号公報
【特許文献4】特開2005−076505号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、上述のような従来の内燃機関の排気再循環システムにあっては、触媒表面に堆積した硫黄化合物等の堆積量を触媒床温の昇温によって減少させることが可能になるものの、EGR回路中の凝縮水が溜まり易い箇所等において凝縮水の酸性度が高くなり、EGR配管やアルミナ系材料を用いる酸化触媒等の腐食が生じ易くなるという問題があった。
【0008】
すなわち、PM捕集フィルタ等の表面に付着し堆積した硫黄化合物がPM再生処理のための燃料添加等によって温度上昇すると、硫黄化合物から水に溶け易い硫黄成分(を含む微粒子)が脱離する離脱反応が生じる。この脱離した硫黄成分は水に溶け易いため、硫黄成分が溶け込んだ酸性の凝縮水が発生し、この凝縮水がEGR回路中の特定の箇所に溜まると、そこで凝縮水の蒸発が進むのと同時にその凝縮水の酸性度が高くなる。
【0009】
特に、低圧EGR装置が装備される排気再循環システムにあっては、低温かつ大量の排気再循環によって厳しいNOx低減要求に応え得る一方で、PM再生処理中であっても低圧EGRを実行することが要求されるため、凝縮水の発生量および還流排気ガス量が共に多くなり、LPL−EGR回路中に硫黄成分が溶け込んだ凝縮水が多量に発生し易い。そして、その多量の凝縮水の蒸発が進行する運転状態になると、その凝縮水の酸性度が高くなり、凝縮水の溜まり易い個所でEGR配管やアルミナ系材料を用いる酸化触媒等の腐食を招き易くなる。
【0010】
本発明は、上述のような従来技術の不具合に鑑みてなされたものであり、低圧EGR装置を用いて厳しいNOx低減要求に応えながら、主要部品の腐食を有効に抑制することのできる内燃機関の排気再循環システムを提供するものである。
【課題を解決するための手段】
【0011】
本発明に係る内燃機関の排気再循環システムは、上記課題解決のため、(1)過給用のコンプレッサが装着された吸気管および排気浄化装置が設けられた排気管を有する内燃機関に装備され、前記内燃機関の前記排気浄化装置を通過した後の低圧側の排気ガスを前記排気浄化装置より下流側の排気管から前記コンプレッサより上流側の吸気管に還流させる低圧側排気再循環経路を形成する低圧EGR装置と、前記排気浄化装置の内部に堆積した堆積物を該内部を設定温度に昇温させる再生処理により除去する制御および前記低圧EGR装置における排気ガスの還流量の制御をそれぞれに実行する制御装置と、を備えた内燃機関の排気再循環システムであって、前記制御装置は、前記低圧側排気再循環経路中に予め設定した閾値量以上の凝縮水が発生するか否かを判定する凝縮水発生判定部と、前記凝縮水発生判定部により前記閾値量以上の凝縮水が発生すると判定されたことを条件として、前記再生処理の実行期間内に該再生処理の実行開始時点からの一定時間内に含まれるEGR制限期間を設定し、前記再生処理の実行期間内の残余の期間に比較して該EGR制限期間中は、前記低圧EGR装置における排気ガスの還流量を制限する還流量制限部と、を有していることを特徴とする。
【0012】
この構成により、低圧側排気再循環経路中に閾値量以上の凝縮水が発生している状態で再生処理が開始されるときには、再生処理の実行開始時点から一定期間内のEGR制限期間中、低圧EGR装置における排気ガスの還流量が制限されることになる。したがって、排気浄化装置内で脱離する硫黄成分等の濃度が高まるときには排気ガスの還流量が制限され、低圧側排気再循環経路中の凝縮水に硫黄成分等が多量に溶け込むことが抑制され、凝縮水の酸性度が高くなることが有効に抑制されることになる。しかも、低圧EGR装置の作動の制限期間が一定期間内に制限されるので、厳しいNOx低減要求に応えることができる。
【0013】
本発明においては、(2)前記EGR制限期間は、前記再生処理の実行開始によって前記排気浄化装置の内部が前記実行開始時点の温度から前記設定温度まで昇温する間に始まり、前記再生処理の実行期間中に終了することが好ましい。この場合、再生処理の開始によって排気浄化装置の内部温度が上昇し、堆積物からの硫黄成分の離脱反応速度が高まるとき、低圧EGR装置における排気ガスの還流量が制限されることになり、低圧側排気再循環経路中の凝縮水に硫黄成分が多量に溶け込むことが有効に抑制されるとともに、低圧EGR装置の作動制限期間を狭めることで厳しいNOx低減要求に応えることができる。
【0014】
本発明においては、(3)前記制御装置は、前記再生処理を予め設定された再生処理周期で実行し、前記EGR制限期間は、前記再生処理周期に応じて設定されていることが好ましい。この場合、再生処理周期が長く堆積物の堆積量が多いか、再生処理周期が短く堆積物の堆積量が少ないかによって、EGR制限期間の長さが的確に制御されることになる。すなわち、堆積物の堆積量が多ければEGR制限期間が長く設定され、堆積物の堆積量が少なければEGR制限期間が短く設定されることになる。
【0015】
上記(3)の内燃機関の排気再循環システムにおいては、(4)前記制御装置は、前記再生処理周期中における前記堆積物の堆積量を推定する堆積量推定部を有し、該堆積量推定部の推定結果に応じて前記EGR制限期間を設定することが好ましい。この場合、堆積物の堆積量に応じてEGR制限期間を最適な時間に設定できる。
【0016】
上記(4)の内燃機関の排気再循環システムにおいては、(5)前記制御装置は、前記内燃機関の燃料消費量を検出する燃料消費量検出部を有し、前記堆積量推定部は、前記再生処理周期中における前記燃料消費量検出部の検出情報に基づいて前記堆積物の堆積量を推定することが好ましい。この場合、堆積物の堆積量を精度良く推定でき、EGR制限期間を最適な時間に設定できる。
【0017】
上記(4)または(5)の内燃機関の排気再循環システムにおいては、(6)前記制御装置は、前記排気浄化装置の内部の温度を検出する温度センサを有し、前記堆積量推定部は、前記再生処理周期中における前記温度センサの検出情報に基づいて前記堆積物の堆積量を推定することを特徴とする。この場合、排気浄化装置の内部の温度に応じて変化する硫黄成分等の脱離濃度を的確に把握でき、EGR制限期間を最適な時間に設定できる。
【0018】
本発明においては、(7)前記制御装置は、前記堆積物から脱離する硫黄成分の濃度値が所定濃度値を超えると推定される期間として、前記EGR制限期間を設定することが好ましい。これにより、EGR制限期間を短時間に抑えることができ、厳しいNOx低減要求に応えることができる。
【発明の効果】
【0019】
本発明によれば、低圧側排気再循環経路中に閾値量以上の凝縮水が発生している状態で再生処理が開始されるときには、再生処理の実行開始時点から一定期間内のEGR制限期間中は低圧EGR装置における排気ガスの還流量が制限されるようにしているので、低圧側排気再循環経路中に硫黄成分が溶け込んだ凝縮水が多量に発生して低圧側排気再循環経路中に溜まる凝縮水の酸性度が高くなることを有効に抑制するとともに、低圧EGR装置の作動の制限期間を一定期間内に制限して厳しいNOx低減要求に応えることができる。その結果、低圧EGR装置を装備して厳しいNOx低減要求に応えつつ主要部品の腐食を有効に抑制することのできる内燃機関の排気再循環システムを提供することができる。
【図面の簡単な説明】
【0020】
【図1】本発明の一実施形態に係る内燃機関の排気再循環システムの概略構成図である。
【図2】本発明の一実施形態に係る内燃機関の制御系のブロック構成図である。
【図3】本発明の一実施形態に係る内燃機関の排気再循環システムにおける制御装置で実行される再生処理中の触媒床温の変化とそれに伴う硫黄成分の脱離反応の速度変化および低圧側排気還流経路(LPL)による排気還流の禁止時間の関係を示すグラフであり、縦軸はその脱離速度および触媒床温を、横軸は時間を示している。
【図4】本発明の一実施形態に係る内燃機関の排気再循環システムにおける制御装置で実行されるEGR制御の概略手順を示すフローチャートである。
【発明を実施するための形態】
【0021】
以下、本発明の好ましい実施形態について、図面を参照しつつ説明する。
【0022】
(一実施形態)
図1〜図4は、本発明に係る内燃機関の排気再循環システムの一実施形態を示しており、この実施形態は、本発明を多気筒内燃機関である直列4気筒のディーゼルエンジン10(以下、単にエンジン10という)に適用したものである。
【0023】
図1に示すように、本実施形態のエンジン10は、その本体ブロック10Mに複数の気筒11を有しており、このエンジン10には、各気筒11内の燃焼室(詳細を図示していない)に燃料を噴射するコモンレール型の燃料噴射装置12と、燃焼室に空気を吸入させる吸気装置13と、燃焼室からの排気ガスを排気させる排気装置14と、排気装置14内の排気エネルギを利用して吸気装置13内で吸入空気を圧縮し燃焼室に空気を過給するターボ過給機15と、このターボ過給機15より上流側の高圧側の排気ガスの一部を吸気側に還流させ再循環させる高圧EGR装置であるHPL−EGR装置16と、このターボ過給機15より下流側の低圧側の排気ガスの一部を吸気側に還流させ再循環させる低圧EGR装置であるLPL−EGR装置17とが装備されている。
【0024】
燃料噴射装置12は、図外の燃料タンクから燃料を汲み上げて高圧の燃圧(燃料圧力)に加圧し吐出するサプライポンプ21と、そのサプライポンプ21からの燃料が導入されるコモンレール22と、このコモンレール22を通して供給される燃料を後述する電子制御ユニット50(制御装置;以下、ECU50という)からの噴射指令信号に対応するタイミングおよび開度(デューティー比)で燃焼室内に噴射する燃料噴射弁23とを含んで構成されている。なお、サプライポンプ21は、例えばエンジン10の回転動力を利用して駆動され、コモンレール22はサプライポンプ21から供給された高圧燃料を均等な圧力に保ちながら複数の燃料噴射弁23に分配・供給する。燃料噴射弁23は、電磁駆動される公知のニードル弁で構成され、噴射指令信号に応じてその開弁時間を制御されることにより噴射指令信号に応じた噴射量の燃料(例えば軽油)を燃焼室内に噴射・供給することができる。
【0025】
吸気装置13には、吸気マニホールド31と、それより上流側の吸気管32と、吸気管32の最上流部でフィルタにより吸入空気を清浄化するエアクリーナ33と、ターボ過給機15より下流側の吸気管部32b内で吸入空気コンプレッサ15aによる圧縮により昇温した過給空気を冷却するインタークーラ34(冷却器)と、新気の吸入流量を検出するエアフローメータ35と、エンジン10内への吸気量を調整するスロットル弁36と、吸気マニホールド31より上流側で吸気温度を検出する吸気温度センサ37(図2参照)とが、それぞれ装着されている。
【0026】
排気装置14は、排気マニホールド41と、それより下流側の排気管42と、アイドル時に排気温度を上げることができるとともにLPL−EGR装置17の背圧を制御することができる排気絞り弁43と、ターボ過給機15より下流側の排気管42に装着された公知の酸化触媒44aおよびDPF(ディーゼルパティキュレートフィルタ)44bからなる排気浄化ユニット44と、排気浄化ユニット44の内部に流入する排気ガスの排気空燃比を検出するA/Fセンサ46と、排気浄化ユニット44の内部の排気ガスの温度を検出する排気温度センサ47と、排気浄化ユニット44のDPF44bの前後の差圧を検出するDPF前後差圧センサ48と、排気浄化ユニット44を通過した排気ガスの温度を検出する排気温度センサ49とを含んで構成されている。
【0027】
ターボ過給機15は、互いに回転方向一体に結合された吸入空気コンプレッサ15aおよび排気タービン15bを有し、排気エネルギにより排気タービン15bを回転させるとともに吸入空気コンプレッサ15aを回転させることで、この吸入空気コンプレッサ15aにより吸入空気を圧縮してエンジン10内に正圧の空気を供給することができる。
【0028】
HPL−EGR装置16は、排気マニホールド41および吸気管32の間に介装されたHPL−EGRパイプ61と、このHPL−EGRパイプ61の途中に装着されて排気ガスの還流量を調整することができるHPL−EGR弁62(高圧EGR弁)と、を有している。
【0029】
HPL−EGRパイプ61は、排気マニホールド41の内部あるいは排気管42内の排気通路のうち排気タービン15bより上流側の上流側排気管部42aと、吸気管32のうち吸入空気コンプレッサ15aより下流側の下流側吸気管部32bまたは吸気マニホールド31の内部とを連通させ、排気タービン15bや排気浄化ユニット44を抵抗要素としてそれらより上流側で高圧となる高圧側の排気ガスをエンジン10の吸気マニホールド31の直前または内部に還流させることができるようになっている。すなわち、HPL−EGRパイプ61は、還流させた高圧側の排気ガスを吸入空気コンプレッサ15a側から過給される空気と共にエンジン10に吸入させることができるようになっている。このHPL−EGRパイプ61は、吸気マニホールド31および排気マニホールド41と共にエンジン10に高圧側の排気ガスを再循環させる高圧側排気再循環経路L1を形成するとともに、その内部に高圧側排気再循環経路L1の主要部をなす高圧側排気還流通路61wを形成している。また、HPL−EGR弁62は、HPL−EGRパイプ61内の高圧側排気還流通路61wを開通させる開弁状態と、この高圧側排気還流通路61wの開通を制限(例えば遮断)する閉弁状態とに切替え可能になっている。
【0030】
LPL−EGR装置17は、排気管42および吸気管32の間に介装されたLPL−EGRパイプ71(低圧側の排気還流管)と、このLPL−EGRパイプ71の途中に装着されて排気ガスの還流量を調整することができるLPL−EGR弁72(低圧EGR弁)と、LPL−EGRパイプ71内を通る排気ガスをその途中で冷却水等との熱交換により冷却することができる排気冷却器としてのLPL−EGRクーラ73と、下流側の排気管42内の排気通路42wのうち排気浄化ユニット44より下流側の排気通路部分でその通路断面積を絞るように開度を縮小させることができる前述の排気絞り弁43と、を有している。
【0031】
LPL−EGRパイプ71は、排気管42のうち排気タービン15bより下流側の下流側排気管部42bと吸気管32のうち吸入空気コンプレッサ15aより上流側の上流側吸気管部32aとを連通可能に接続させ、排気タービン15bや排気浄化ユニット44を抵抗要素としてそれらより下流側で低圧となる低圧側の排気ガスを上流側吸気管部32a内に還流させることができるようになっており、還流させた排気ガスを上流側吸気管部32a内に導入された吸入空気と共に吸入空気コンプレッサ15aにより圧縮させた後にエンジン10に再度吸入させることができるようになっている。
【0032】
また、LPL−EGRパイプ71は、そのLPL−EGRパイプ71が吸気管32に接続される位置J1より下流側の吸気管32およびLPL−EGRパイプ71が排気管42に接続される位置J2より上流側の排気管42と共に、エンジン10に低圧側の排気ガスを再循環させる低圧側排気再循環経路L2を形成するとともに、その内部に低圧側排気再循環経路L2の主要部をなす低圧側排気還流通路71wを形成している。
【0033】
LPL−EGR弁72は、LPL−EGRクーラ73と吸気管32の上流側吸気管部32aとの間に配置されて低圧側の排気ガスの還流量を制御する、開閉および開度制御可能な弁であり、低圧側排気還流通路71wを開通させる開弁状態と、この低圧側排気還流通路71wの開通を制限(例えば遮断)する閉弁状態とに切替え可能になっている。
【0034】
LPL−EGRクーラ73は、詳細を図示しないが、低圧側排気還流通路71wの一部を形成するガス管部と、そのガス管部の周囲に冷却用流体通路73wpを形成するハウジング部とを有しており、ハウジング部に導入される冷却用流体(例えば、エンジン冷却水)とガス管部内の低圧側排気還流通路71wの一部を通る還流排気ガスとの間における熱交換によって、低圧側の還流排気ガスを冷却できるようになっている。
【0035】
インタークーラ34は、LPL−EGR装置17によって形成される低圧側排気再循環経路L2のうち吸入空気コンプレッサ15aより下流側の第3区間内において、吸入空気コンプレッサ15aからの過給空気(圧縮により昇温した空気)を冷却するようになっている。このインタークーラ34は、詳細を図示しないが、低圧側排気再循環経路L2の一部となる吸気通路32wの第3区間の一部を形成するガス管部と、そのガス管部の周囲に冷却用流体通路を形成するハウジング部とを有しており、ハウジング部に導入される冷却用流体(例えば、エンジン冷却水)とガス管部内を通る低圧側の還流排気ガスとの間における熱交換によって、低圧側の還流排気ガスを冷却できるようになっている。
【0036】
HPL−EGR装置16およびLPL−EGR装置17は、ECU50によりHPL−EGR弁62およびLPL−EGR弁72の開閉動作および開度を制御されることで、吸気管32の下流側吸気管部32bへの高圧側排気ガスの還流量(以下、HP流量ともいう)と、吸気管32の上流側吸気管部32aへの低圧側排気ガスの還流量(以下、LP流量ともいう)とをそれぞれに制御するようになっている。
【0037】
ECU50は、詳細なハードウェア構成を図示しないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM(Electronically Erasable and Programmable Read Only Memory)等の不揮発性メモリ、A/D変換器やバッファ等を有する入力インターフェース回路、および、駆動回路等を有する出力インターフェース回路を含んで構成されている。
【0038】
図2に示すように、ECU50の出力インターフェース回路側には、例えばサプライポンプ21の吐出制御(例えば、その電磁スピル弁の制御)を行うポンプ制御回路24や、燃料噴射弁23の他、スロットル弁36、HPL−EGR弁62、LPL−EGR弁72および排気絞り弁43(具体的には、これらの電磁駆動部(符号無し))等が接続されている。
【0039】
ECU50の入力インターフェース回路側には、エアフローメータ35、吸気温度センサ37、A/Fセンサ46、排気温度センサ47,49およびDPF前後差圧センサ48の他に、図外のアクセルペダルの踏み込みを検出するアクセル開度センサ101、スロットル弁36の開度を検出するスロットル開度センサ102、所定角度単位のクランク軸回転信号を出力するクランク角センサ103、エンジン10の冷却水温を検出する水温センサ104、吸気マニホールド31の入口付近でエンジン10の過給圧を検出する吸気管内圧力センサ105、外気温度を検出する外気温度センサ106、低圧側排気還流通路71wの両端(図1中の位置j1、j2)の間の差圧を検出するLP差圧センサ107、エンジン10が搭載された車両の走行速度または車輪回転速度を検出する車速センサ108等がそれぞれ接続されている。そして、これらのセンサ群35,37,46〜49および101〜108からのセンサ情報がECU50に取り込まれるようになっている。
【0040】
また、ECU50のROMには、入力インターフェース回路に取り込まれるアクセル開度センサ101からの加速要求やクランク角センサ103からのエンジン回転数等を所定時間毎に取り込んでエンジン10の燃焼室内への燃料噴射量等を算出するための演算処理プログラムやマップ等が格納されている。
【0041】
さらに、ECU50のROMには、排気浄化ユニット44におけるPM堆積量を許容範囲内に抑えるべく、予め設定された繰返し周期および実行条件で公知のポスト噴射あるいは図示しない燃料添加弁からの燃料添加を実行するPM再生処理プログラムが格納されており、このポスト噴射や燃料添加により生じる未燃HC(炭化水素)を排気浄化ユニット44の酸化触媒44aにより燃焼させて排気浄化ユニット44の内部温度を上昇させ、排気浄化ユニット44のDPF44bに堆積したPMを燃焼により除去することができるようになっている。なお、PM再生処理プログラム自体は公知であり、詳述しないが、予め設定された一定の周期で実行されてもよいし、エンジン10の運転状態と燃料噴射量の積算値や排気浄化ユニット44におけるDPF44bの前後差圧とを基にマップを参照し、その燃料噴射量の積算値やDPF44bの前後差圧が所定値に達したときにPM再生処理が実行されてもよい。ここでは、後者の場合とする。
【0042】
一方、エンジン10においては、HPL−EGR装置16およびLPL−EGR装置17により排気管42側から吸気管32側に排気ガスを還流させてエンジン10に再度吸入させる高圧側排気再循環経路L1および低圧側排気再循環経路L2を形成し、かつ、低圧側排気再循環経路L2中の排気ガスをLPL−EGRクーラ73により冷却するとともに、吸気管32内の吸気通路のうち吸入空気コンプレッサ15aより下流側の過給空気をインタークーラ34により冷却するようにしている。したがって、LPL−EGRクーラ73やインタークーラ34により還流排気ガスやそれが混じった吸入空気(以下、双方を指してEGRガスという)が冷却され、EGRガス中の水分が冷やされることで、酸性の凝縮水が発生し易くなる。また、特に、排気浄化ユニット44の内部の表面に付着し堆積した硫黄化合物がPM再生処理によって温度上昇するとき、特に酸化触媒44aの表面温度である触媒床温が所定温度に達して水に溶け易い硫黄成分の離脱反応の速度が急に大きくなる期間において、凝縮水の酸性度が高められ易くなる。
【0043】
そこで、HPL−EGR装置16およびLPL−EGR装置17を制御するECU50は、次に述べる凝縮水発生判定部51および還流量制限部52(EGR制限期間設定部)の機能を発揮するように、ROM内にこれらの機能部に対応する制御プログラムを内蔵している。
【0044】
凝縮水発生判定部51は、少なくとも低圧側排気再循環経路L2のうちLPL−EGRクーラ73の付近に、あるいはインタークーラ34の付近に予め設定した閾値水量以上の凝縮水が発生するか否かを判定するようになっており、還流量制限部52は、凝縮水発生判定部51により閾値水量以上の凝縮水が発生すると判定されたことを条件として、再生処理の実行期間内にその再生処理の実行開始時点からの一定時間内に含まれるLPL禁止時間TP2(EGR制限期間)を設定し、再生処理の実行期間内の残余の期間に比較してそのLPL禁止時間TP2中は低圧EGR装置における排気ガスの還流量を禁止(制限)するようになっている。
【0045】
具体的には、凝縮水発生判定部51は、低圧側排気再循環経路L2中に発生する凝縮水量の概略値を公知の方法により推定するもの、例えば排気管温度が所定値より低い時間が継続した低温継続時間に応じて凝縮水量の概略値を推定するもの(特開2007−205303号公報参照)、さらにLPL−EGRクーラ73やEGR配管の管壁温度等を考慮して凝縮水量を算出・推定するもの(特開2009−228564号公報参照)であってもよいが、ECU50の処理負荷や装置コストを抑えつつ凝縮水量をある程度精度良くかつ安定して推定できる推定モデルを用いるのがより好ましい。
【0046】
すなわち、凝縮水発生判定部51は、凝縮水量をエンジン10に対応する算出モデルで精度良く算出するもの、例えば、吸入空気の温度(外気温度)や大気圧、吸気マニホールド31の入口付近の吸入空気の温度および圧力等を基に、吸入空気中の水分量(蒸気/空気)および露点温度を算出するとともに吸入空気の組成(各気体分子および水のモル比)を求める一方、センサ情報として得られる吸入空気量および制御値として把握している燃料噴射量から求まる空燃比と既知の燃料および吸入空気組成成分の分子量とに基づいて、燃焼前後のガスの組成と既燃ガスの分子量とを算出し、それらの算出結果と既燃ガス(EGRガス)の温度および圧力とから求まる既燃ガスの蒸気圧、分子量および密度等に基づいて、既燃ガス中の水分量(既燃ガスの絶対湿度)を算出することで、その水分量と冷却時における相対湿度100%の既燃ガス中の水分量との差として、凝縮水量を算出するようなものである。
【0047】
この凝縮水発生判定部51は、例えばA/Fセンサ46で検出される排気空燃比に基づいて算出される排気ガス中の水分濃度と、LPL−EGRクーラ73やインタークーラ34における冷媒温度(例えば、LPL−EGRクーラ73に供給される冷却水の温度、インタークーラ34に供給される大気の温度)およびガス温度等に基づいて、インタークーラ34についてはさらにLPL−EGR装置17におけるLPL−EGR率(インタークーラ34に基づいて、凝縮水量を算出することができる。すなわち、排気ガス中の水分は略A/Fで算出できるので、吸気の温度と圧力のセンサ情報から水分濃度を算出して、その算出値と参照情報M1の一部として予め記憶された飽和水蒸気濃度に基づいて、凝縮水の発生の有無を判定することができる。
【0048】
凝縮水発生判定部51は、また、予めの実験結果を基に作成したマップとその引数となるセンサ情報とにより、単位時間毎に発生する凝縮水量のうち下流側に持ち去られる凝縮水量を推定して、凝縮水の発生量の推定値からその持ち去られる凝縮水量の推定値を差し引いて実際に発生したことになる凝縮水量を算出・推定するものであってもよい。
【0049】
凝縮水発生判定部51は、さらに、予め設定され計算周期毎の単位期間内において発生する凝縮水量[g/s]またはその発生量と計算対象通路区間内の残存量を含むトータルの凝縮水量を推定する算出処理を実行し、その算出した凝縮水量を吸気系部品の腐食防止等のために抑制すべき水量の上限値に相当する基準発生量または基準残存量(以下、単に基準量という)と比較することにより、低圧側排気再循環経路L2中に基準量以上の凝縮水が存在することになるか否かを判定するものであってもよい。
【0050】
還流量制限部52は、凝縮水発生判定部51により判定閾値水量である基準量以上の凝縮水が発生すると判定されたことを条件として、図3に示すように、PM再生処理の実行期間内にそのPM再生処理の実行開始時点p1からの一定時間内に含まれるLPL禁止時間TP2(EGR制限期間)を設定し、PM再生処理の実行期間内の残余の期間TP1,TP3に比較してそのLPL禁止時間TP2中は低圧EGR装置における排気ガスの還流量を制限、例えば排気ガスの還流を禁止するようになっている。
【0051】
ここで、LPL禁止時間TP2は、PM再生処理の実行開始によって排気浄化ユニット44の内部が実行開始時点p1の温度th0から設定温度th1まで昇温する昇温期間中に始まり、実行開始時点p1から一定時間(TP1+TP2)経過後の再生処理の実行期間TP3中に終了するように設定されている。
【0052】
より具体的には、LPL禁止時間TP2は、排気浄化ユニット44の酸化触媒44aの内部に堆積した硫黄化合物等の堆積物からの硫黄成分の離脱反応速度および離脱濃度[mol/m]が予め設定された或る一定の濃度値(以下、所定濃度値という)を超えて上昇し始める離脱濃度上昇開始時点p2から始まり、その硫黄成分離脱速度rdが所定濃度値以下に低下し始める離脱濃度低下時点p3で終了するようになっている。ここにいう硫黄化合物等の堆積物からの硫黄成分の離脱反応速度は、例えば次式(1)により算出される硫黄成分離脱速度rdであり、触媒床温Tが高くなるとその離脱反応速度値が高まることになる。
【0053】
rd=k1・σ・exp(−Ed/RT)・・・ ・・・ 式(1)
なお、この式(1)中において、k1は、硫黄成分の離脱反応の頻度因子であり、σは、硫黄成分の堆積量であり、Edは、硫黄成分の脱離に必要な活性化エネルギである。また、式(1)中において、Rは気体定数、Tは触媒床温としての排気浄化ユニット44の内部の温度である。頻度因子k1および活性化エネルギEdは、それぞれ予めの実験結果に基づいて設定され、ECU50のROM内に予め格納されている。離脱濃度上昇開始時点p2は、硫黄成分の離脱濃度が前記所定濃度値に近い値となる触媒床温thaとして決定することも可能である。
【0054】
図3に示す再生処理の実行開始時点p1から離脱濃度上昇開始時点p2までの待ち時間TP1は、実行開始時点p1後の硫黄成分離脱速度rdの所定時間毎の変化から硫黄成分の離脱濃度を所定時間毎に求めていき、その離脱濃度が所定濃度値に達するまでの時間である。LPL禁止時間TP2の設定については、後述する。
【0055】
ECU50は、さらに、ROM内に予め格納された制御プログラムによって、PM再生処理の周期中における硫黄成分の堆積物の堆積量σを推定する堆積量推定部53と、エンジン10の燃料噴射装置12における燃料消費量を検出する燃料消費量算出部54(燃料消費量検出部)との機能を発揮するようになっている。
【0056】
堆積量推定部53は、PM再生処理の周期中における燃料消費量算出部54の検出情報および排気温度センサ47の検出情報に基づいて、堆積量推定部53によって硫黄化合物等の堆積物の堆積量σを推定するようになっている。
【0057】
そして、還流量制限部52は、凝縮水発生判定部51により判定閾値水量である基準量以上の凝縮水が発生すると判定されたことを条件として、例えば堆積量推定部53による堆積量σの推定結果に応じたLPL禁止時間TP2を予めの実験等により最適値に設定したマップM2を参照し、LPL禁止時間TP2を設定するようになっている。この場合、堆積量σ(硫黄成分等の吸着量)が大きく、触媒床温Tが高いほど、硫黄成分の離脱速度rdや離脱量[mol]が大きくなり、PM再生直後であって触媒床温Tが高いほど硫黄成分の離脱量および離脱濃度が増大するので、LPL禁止時間TP2が長く設定されることとなる。すなわち、堆積量σが大きければLPL禁止時間TP2が長く設定され、堆積物の堆積量が少なければLPL禁止時間TP2が短く設定されることになる。なお、堆積量σは、PM再生処理を実行する周期が長ければ増加し、PM再生処理を実行する周期が短ければ減少する傾向となるので、堆積量推定部53により堆積量σを推定しない場合に、LPL禁止時間TP2を再生処理周期に応じて設定してもよい。
【0058】
次に、作用について説明する。
【0059】
図4は、ECU50で所定時間毎に実行される制御プログラムの概略の処理手順を示すフローチャートである。この制御プログラムは、ECU50により上述した燃料噴射量の制御等を実行させるための制御プログラムと並行して、ECU50に凝縮水発生判定部51、還流量制限部52および堆積量推定部53のそれぞれの機能を発揮させるべく、所定時間毎に繰り返し実行される。
【0060】
図4に示すように、この制御においては、まず、各種センサ群35,37,46〜49および101〜108からのセンサ情報がECU50に取り込まれて、エンジン10の運転状態が取得される(ステップS11)。
【0061】
次いで、PM再生処理の条件が成立するか否かが判定され(ステップS12)、例えばエンジン10の或る運転状態で燃料噴射量の積算値またはDPF44bの前後差圧が所定値に達したとき、PM再生条件が成立する。
【0062】
この場合(ステップS12でYESの場合)、次いで、凝縮水発生判定部51によって少なくとも低圧側排気再循環経路L2のうちLPL−EGRクーラ73の付近に基準値以上の凝縮水が発生するか否かが判定され(ステップS13)、その判定結果がYESであれば、次いで、排気温度センサ47の検出温度から触媒床温Tが検出される(ステップS14)。
【0063】
なお、ステップS12、S13のいずれかで判定結果がNOであれば、ステップS11に戻る。
【0064】
触媒床温Tが検出されると、次いで、堆積量推定部53により、PM再生処理の周期中における燃料消費量算出部54の検出情報および排気温度センサ47の検出情報に基づいて硫黄化合物等の堆積物の堆積量σが算出されるとともに、硫黄化合物等の堆積物の堆積量σの算出値および触媒床温Tの検出値に応じた長さのLPL禁止時間TP2が設定される(ステップS15)。
【0065】
次いで、その堆積量σの算出値および触媒床温Tの検出値と、ROM内に予め格納された頻度因子k1および活性化エネルギEdの値とに基づいて、硫黄成分離脱速度rdが算出されるとともに、PM再生処理の実行開始時点p1後の硫黄成分離脱速度rdの変化から硫黄成分の離脱濃度が求められる(ステップS16)。
【0066】
次いで、硫黄成分の離脱濃度が所定濃度値に達したか否かが判定され(ステップS17)、その判定結果がYESになるまで、すなわち、PM再生処理の実行開始時点p1から待ち時間TP1が経過するまで、触媒床温Tの検出から硫黄成分の離脱濃度の算出までの処理が繰り返し実行される(ステップS14〜S17)。
【0067】
次いで、PM再生処理の実行開始時点p1から待ち時間TP1が経過すると、LPL−EGR弁72が閉弁され(ステップS18)、その閉弁時点からLPL禁止時間TP2が経過するまでその閉弁状態が維持され(ステップS19でNOの場合)、LPL禁止時間TP2が経過すると(ステップS19でYESの場合)、LPL−EGR弁72が再度開弁されて(ステップS20)、今回の処理が終了する。
【0068】
このように、本実施形態では、低圧側排気再循環経路L2中に基準値(閾値量)以上の凝縮水が発生している状態でPM再生処理が開始されるときには、PM再生処理の実行開始時点p1から一定期間(TP1+TP2)内のLPL禁止時間TP2中において、低圧EGR装置17における排気ガスの還流量が制限されることになる。したがって、低圧側排気再循環経路L2中の凝縮水に硫黄成分が多量に溶け込むことが抑制され、凝縮水の酸性度が高くなることが有効に抑制されることになる。しかも、低圧EGR装置17の作動の制限期間が一定の比較的短い期間TP2内に制限されるので、厳しいNOx低減要求に応えることができる。
【0069】
また、低圧EGRの制限期間であるLPL禁止時間TP2が、PM再生処理の実行開始によって排気浄化ユニット44の内部が実行開始時点p1の温度th0から設定温度th1まで昇温する間に始まり、かつ、PM再生処理の実行期間中に終了するので、PM再生処理の開始によって排気浄化ユニット44の酸化触媒44aの内部温度が上昇し、硫黄化合物等の堆積物からの硫黄成分の離脱反応速度が高まるとき、低圧EGR装置16における排気ガスの還流量が制限されることになる。したがって、低圧側排気再循環経路L2中の凝縮水に硫黄成分が多量に溶け込むことが有効に抑制されるとともに、低圧EGR装置16の作動の制限期間を狭めることで厳しいNOx低減要求に応えることができる。
【0070】
しかも、EGR制限期間であるLPL禁止時間TP2は、PM再生処理周期に応じて設定されているので、PM再生処理周期が長く硫黄化合物等の堆積物の堆積量が多いか、PM再生処理周期が短くその堆積物の堆積量が少ないかによって、EGR制限期間が的確に制御されることになる。
【0071】
また、PM再生処理周期中における堆積物の堆積量を推定する堆積量推定部53の推定結果に応じてLPL禁止時間TP2が設定されるので、硫黄化合物等の堆積物の堆積量に応じてLPL禁止時間TP2を最適な時間に設定できる。
【0072】
さらに、堆積量推定部53は、PM再生処理周期中における燃料消費量算出部54の検出情報に基づいて硫黄化合物等の堆積物の堆積量を推定するので、その堆積物の堆積量を精度良く推定でき、LPL禁止時間TP2を最適な時間に設定できる。
【0073】
加えて、堆積量推定部53は、PM再生処理周期中における排気温度センサ47の検出情報に基づいて堆積物の堆積量を推定することで、排気浄化ユニット44の内部の温度に応じて変化する硫黄成分等の脱離速度および濃度を的確に把握でき、EGR制限期間を最適な時間に設定できる。
【0074】
また、ECU50は、堆積物から脱離する硫黄成分の濃度値が所定濃度値を超えると推定される期間としてLPL禁止時間TP2を設定するので、LPL禁止時間TP2を短時間に抑えることができ、厳しいNOx低減要求に応えることができる。
【0075】
このように、本実施形態の排気再循環システムにおいては、低圧側排気再循環経路L2中に閾値量以上の凝縮水が発生している状態でPM再生処理が開始されるときには、PM再生処理の実行開始時点p1から一定期間内のEGR制限期間中は低圧EGR装置16における排気ガスの還流量が制限され、硫黄成分等の濃度が高い排気ガスが低圧側排気再循環経路L2中に進入し難くなるようにしているので、低圧側排気再循環経路L2中に硫黄成分が溶け込んだ凝縮水が多量に発生して低圧側排気再循環経路L2中に溜まる凝縮水の酸性度が高くなることを有効に抑制することができる。しかも、低圧EGR装置16の作動の制限期間は一定期間内に制限されるので、厳しいNOx低減要求に応えることができる。その結果、低圧EGR装置16を装備して厳しいNOx低減要求に応えながらも、主要部品の腐食を有効に抑制することのできる内燃機関の排気再循環システムを提供することができる。
【0076】
また、本実施形態においては、厳しいNOx低減要求に対し大量の排気再循環を実行する場合であっても、低圧側排気再循環経路L2を通る排気ガスのエネルギによって排気タービン15bの回転数[rpm]が十分に確保されるので、車両走行時の良好な加速応答性が得られることになる。
【0077】
なお、上述の各実施形態においては、エンジン10にターボ過給機15が装着されるとともに、排気管42内の排気通路を高圧側と低圧側に区画する抵抗要素がターボ過給機15の排気タービン15bおよび排気浄化ユニット44で構成されていたが、本発明は、ターボ過給機以外の過給機を有する内燃機関についても適用可能である。例えば、排気管42内を通る排気ガスを浄化する排気浄化ユニット44によって本発明にいう抵抗要素が構成され、排気タービン15bを有しないような場合にも本発明は適用可能である。そして、そのような構成を採用する場合においても、PM再生時に凝縮水量が多ければ、硫黄成分のように凝縮水の酸性度を高める脱離成分の濃度が高まるときには低圧EGRが的確に制限されるので、凝縮水の酸性度が高まることを有効に抑制でき、しかも、低圧EGRによるNOx低減効果を十分に確保できる。
【0078】
また、上述の一実施形態は、低圧EGR装置17による排気ガスの還流量を制限するEGR制限期間として、LPL−EGR弁72を閉弁させるLPL禁止時間TP2を設定するものであったが、LPL−EGR弁72を全閉させるのではなく、凝縮水の酸性度を高めるような脱離成分の濃度が高まるときにLPL−EGR弁72の開度を他のPM再生処理期間よりも小開度に制限することができることは勿論である。
【0079】
さらに、上述の実施形態においては、一般に燃料中の硫黄成分の含有量(比率)は比較的安定しているので、硫黄成分の堆積量σをPM再生処理の周期やその周期中におけるエンジン10の燃料消費量に基づいて推定するものとしたが、エンジン10の運転中の複数のセンサ情報を基に燃料中に含まれる硫黄成分の含有量を推定したり燃料中の硫黄成分の含有比率をセンサで検出したりして、硫黄成分の堆積量の算出値を補正するようにすればより高精度に硫黄成分の堆積量を算出できることは、いうまでもない。また、燃料消費量算出部54に代えて、燃料消費量を検出可能な手段により燃料消費量検出部を構成することができることも、勿論である。
【0080】
以上説明したように、本発明に係る内燃機関の排気再循環システムは、低圧側排気再循環経路中に閾値量以上の凝縮水が発生している状態で再生処理が開始されるときには、再生処理の実行開始時点から一定期間内のEGR制限期間中は低圧EGR装置における排気ガスの還流量が制限されるようにしているので、低圧側排気再循環経路中に硫黄成分が溶け込んだ凝縮水が多量に発生して低圧側排気再循環経路中に溜まる凝縮水の酸性度が高くなることを有効に抑制するとともに、低圧EGR装置の作動の制限期間を一定期間内に制限して厳しいNOx低減要求に応えることができ、その結果、低圧EGR装置を装備して厳しいNOx低減要求に応えつつ主要部品の腐食を有効に抑制することのできる内燃機関の排気再循環システムを提供することができるという効果を奏するものであり、排気還流通路中における凝縮水の発生を抑制する制御を実行する内燃機関の排気再循環システム全般に有用である。
【符号の説明】
【0081】
10 エンジン(内燃機関、ディーゼルエンジン)
12 燃料噴射装置
15a 吸入空気コンプレッサ(コンプレッサ)
15b 排気タービン(抵抗要素)
16 HPL−EGR装置(高圧EGR装置)
17 LPL−EGR装置(低圧EGR装置)
32 吸気管
32w 吸気通路
34 インタークーラ(中間冷却器)
42 排気管
43 排気絞り弁
44 排気浄化ユニット(抵抗要素)
44a 酸化触媒
44b DPF(ディーゼルパティキュレートフィルタ)
46 A/Fセンサ(空燃比センサ)
47,49 排気温度センサ(温度センサ)
48 DPF前後差圧センサ
50 ECU(電子制御ユニット、制御装置)
51 凝縮水発生判定部
52 還流量制限部
53 堆積量推定部
54 燃料消費量算出部(燃料消費量検出部)
71w 低圧側排気還流通路
72 LPL−EGR弁(低圧EGR弁)
73 LPL−EGRクーラ(排気冷却器、低圧EGRクーラ)
L1 高圧側排気再循環経路
L2 低圧側排気再循環経路
p1 実行開始時点
p2 離脱濃度上昇開始時点
p3 離脱濃度低下時点
T 触媒床温(排気浄化ユニットの内部の温度)
TP1 待ち時間(残余の期間、昇温期間の一部)
TP2 LPL禁止時間(EGR制限期間)
TP3 残余の期間(昇温後の再生処理実行期間)
σ 堆積量

【特許請求の範囲】
【請求項1】
過給用のコンプレッサが装着された吸気管および排気浄化装置が設けられた排気管を有する内燃機関に装備され、前記内燃機関の前記排気浄化装置を通過した後の低圧側の排気ガスを前記排気浄化装置より下流側の排気管から前記コンプレッサより上流側の吸気管に還流させる低圧側排気再循環経路を形成する低圧EGR装置と、前記排気浄化装置の内部に堆積した堆積物を該内部を設定温度に昇温させる再生処理により除去する制御および前記低圧EGR装置における排気ガスの還流量の制御をそれぞれに実行する制御装置と、を備えた内燃機関の排気再循環システムであって、
前記制御装置は、
前記低圧側排気再循環経路中に予め設定した閾値量以上の凝縮水が発生するか否かを判定する凝縮水発生判定部と、
前記凝縮水発生判定部により前記閾値量以上の凝縮水が発生すると判定されたことを条件として、前記再生処理の実行期間内に該再生処理の実行開始時点からの一定時間内に含まれるEGR制限期間を設定し、前記再生処理の実行期間内の残余の期間に比較して該EGR制限期間中は前記低圧EGR装置における排気ガスの還流量を制限する還流量制限部と、を有していることを特徴とする内燃機関の排気再循環システム。
【請求項2】
前記EGR制限期間は、前記再生処理の実行開始によって前記排気浄化装置の内部が前記実行開始時点の温度から前記設定温度まで昇温する間に始まり、前記再生処理の実行期間中に終了する請求項1に記載の内燃機関の排気再循環システム。
【請求項3】
前記制御装置は、前記再生処理を予め設定された再生処理周期で実行し、
前記EGR制限期間は、前記再生処理周期に応じて設定されていることを特徴とする請求項1または請求項2に記載の内燃機関の排気再循環システム。
【請求項4】
前記制御装置は、前記再生処理周期中における前記堆積物の堆積量を推定する堆積量推定部を有し、
該堆積量推定部の推定結果に応じて前記EGR制限期間を設定することを特徴とする請求項3に記載の内燃機関の排気再循環システム。
【請求項5】
前記制御装置は、前記内燃機関の燃料消費量を検出する燃料消費量検出部を有し、
前記堆積量推定部は、前記再生処理周期中における前記燃料消費量検出部の検出情報に基づいて前記堆積物の堆積量を推定することを特徴とする請求項4に記載の内燃機関の排気再循環システム。
【請求項6】
前記制御装置は、前記排気浄化装置の内部の温度を検出する温度センサを有し、
前記堆積量推定部は、前記再生処理周期中における前記温度センサの検出情報に基づいて前記堆積物の堆積量を推定することを特徴とする請求項4または請求項5に記載の内燃機関の排気再循環システム。
【請求項7】
前記制御装置は、前記堆積物から脱離する硫黄成分の濃度値が所定濃度値を超えると推定される期間として、前記EGR制限期間を設定することを特徴とする請求項1に記載の内燃機関の排気再循環システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−229679(P2012−229679A)
【公開日】平成24年11月22日(2012.11.22)
【国際特許分類】
【出願番号】特願2011−99672(P2011−99672)
【出願日】平成23年4月27日(2011.4.27)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】