説明

内燃機関用点火装置

【課題】寒冷時であっても機関を始動した直後のアイドリング運転を安定に行わせることができるようにした内燃機関用点火装置を提供する。
【解決手段】正方向電圧からなる半波とその前後に現れる第1及び第2の負方向電圧からなる半波とを有する波形の交流電圧をエキサイタコイルから発生させる。内燃機関の始動完了直後のアイドル回転を安定化するために機関の始動完了直後のアイドル時の点火位置を進角させる制御を行うことを許可するための条件が成立しているか否かを判定するアイドル進角制御条件判定手段27と、アイドル進角制御条件が成立していると判定されているときに内燃機関の始動完了直後のアイドル時の点火位置を進角させるアイドル進角制御手段28とを設けた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、コンデンサ放電式の内燃機関用点火装置に関するものである。
【背景技術】
【0002】
コンデンサ放電式の内燃機関用点火装置は、点火コイルと、点火コイルの一次側に設けられて点火用電源の出力で一方の極性に充電される点火用コンデンサと、点火信号が与えられたときに導通状態になって点火用コンデンサに蓄積された電荷を点火コイルの一次コイルを通して放電させる放電用スイッチと、内燃機関の点火位置で放電用スイッチに点火信号を与える点火制御部とにより構成される。点火用電源としては、機関に取り付けられた磁石式交流発電機に設けられたエキサイタコイルが多く用いられている。
【0003】
最近の内燃機関駆動車両や内燃機関駆動機器においては、機関が発生する騒音の低減、排気ガスの浄化、効率のよい運転などを可能にするために、機関の回転速度を含む各種の制御条件に対して機関の点火位置(点火動作を行なわせるクランク角位置)を複雑に制御することが必要になっている。そのため、低コストであることを重視する内燃機関においても、マイクロプロセッサを用いた点火制御部を備えた点火装置が用いられるようになっている。
【0004】
マイクロプロセッサを用いて、点火位置を制御する場合には、何らかの方法で機関の特定のクランク角位置の情報、例えば、機関のクランク角位置が上死点位置(ピストンが上死点に達した時のクランク角位置)に対して一定の関係を有する基準クランク角位置に一致したことを示すクランク角情報を得て、そのクランク角情報に基づいて機関の回転速度を演算し、演算された回転速度を含む各種の制御条件に対して機関の点火位置を演算する。機関の点火位置は、基準クランク角位置から点火位置までの角度、または、機関の上死点から点火位置までの進角度として演算される。演算された点火位置を示す角度は、その時の機関の回転速度を用いて点火位置検出用計時データに変換される。点火位置検出用計時データは、その時の回転速度で基準クランク角位置から点火位置まで機関が回転するのに要する時間(マイクロプロセッサ内のタイマに計測させる時間)である。点火制御部は、基準クランク角位置を示す信号が発生したときに機関のクランク角位置が基準クランク角位置に一致したと認識して点火位置計測用データを点火位置計測用タイマ(点火タイマという。)にセットし、点火タイマがセットした計時データの計測を完了したときに点火信号を発生させる。
【0005】
機関のクランク角情報を得るための信号源としては、機関の基準クランク角位置でパルス信号を発生するパルサ(パルス信号発生器)が用いられている。しかし、低コストであることを重視する場合には、パルサを省略することを要請される場合がある。
【0006】
パルサを省略した、いわゆるパルサレス方式の点火装置として、例えば特許文献1に示されているように、本来は点火用コンデンサの充電用電源として設けられているエキサイタコイルの出力電圧からクランク角情報を得るようにしたものがある。エキサイタコイルの出力電圧からクランク角情報を得る場合には、図23に示したように、エキサイタコイルが、点火用コンデンサを充電するために十分な大きさの波高値を有する正方向電圧Vp1からなる半波と、この正方向電圧の前後にそれぞれ発生する第1及び第2の負方向電圧Vn1及びVn2からなる半波とを有する波形の交流電圧を、機関の正回転時にクランク軸が1回転する間に1気筒に対して1回だけ発生するように磁石発電機が構成される。
【0007】
特許文献1に示された点火装置においては、第2の負方向電圧Vn2が機関の上死点位置(機関のピストンが上死点に達したときのクランク角位置)TDCの直前に発生するように設定されていて、第2の負方向電圧Vn2の大きさがピークを過ぎた後設定レベルVs1まで低下した時のクランク角位置θi0を始動時の点火位置とし、第2の負方向電圧Vn2のピーク位置の直後のクランク角位置θi1をアイドル運転時の点火位置としている。また正方向電圧Vp1を設定電圧Vs2と比較して、正方向電圧Vp1が設定電圧Vs2に等しくなる時のクランク角位置を基準クランク角位置θsとして検出するようにしている。基準クランク角位置θsは、機関の回転速度を求めるための時間データの取り込みと、演算された点火位置の計測の開始とを行なう位置であり、進角幅が最大になったときの点火位置よりも更に進角側の位置に設定される。
【0008】
マイクロプロセッサは、基準クランク角位置θsが検出される毎にタイマが計測している時間を取り込んで前回基準クランク角位置が検出されてから今回基準クランク角位置が検出されるまでの時間(クランク軸が1回転するのに要した時間)を回転速度検出用時間データとして求め、この時間データから機関の回転速度を演算する。マイクロプロセッサはまた、演算された回転速度を含む制御条件に対して機関の点火位置を演算するとともに、その時の回転速度で基準クランク角位置から演算した点火位置まで機関が回転するのに要する時間を点火位置検出用計時データとして求め、基準クランク角位置でこの計時データを点火タイマにセットしてその計測を開始させる。
【0009】
従来のこの種の点火装置では、機関の始動時に始動時点火制御を行い、機関の始動が完了したことが検出されたときに直ちに定常運転時点火制御に移行するようにしている。始動時点火制御では、クランク角位置θi0が検出されたときに点火信号を発生させて点火動作を行なわせ、機関の回転速度が始動完了判定速度以上になったときに定常運転時点火制御に移行させる。定常運転時点火制御においては、機関のアイドル運転時に、クランク角位置θi1で点火信号を発生させて点火動作を行なわせ、非アイドル運転時には機関の回転速度等の制御条件に対して演算された点火位置で点火信号を発生させて点火動作を行なわせる。
【0010】
なお本明細書において、内燃機関の始動時とは、始動操作の開始時から機関の始動が完了して機関が回転を維持できるようになるまでの過渡期間を意味する。
【特許文献1】特開2003−307171号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
従来のパルサレス方式の点火装置において、図23の基準クランク角位置θsで点火タイマにセットする点火位置検出用計時データは、機関の1回転前に計測された回転速度検出用時間データから演算された回転速度に基づいて演算された計時データであった。機関の定常運転時には、クランク軸の回転速度が安定しているため、1回転前に計測された回転速度検出用時間データから演算された回転速度に基づいて求めた点火位置検出用計時データを用いてもなんら問題がないが、機関の始動時には、クランク軸の回転速度が機関の行程変化に伴って細かく変動するため、機関の1回転前に計測された回転速度検出用時間データから演算された回転速度に基づいて点火位置検出用計時データを求めた場合には、機関の始動時の点火位置が的確性を欠き、機関の始動性が悪くなるのを避けられなかった。
【0012】
そこで、本出願人は先に、特願2005−27649において、機関の始動時に、点火位置の直前で求めた機関の回転速度情報に基づいて点火位置を決定することができるようにして、機関の始動性を向上させたパルサレス方式の内燃機関用点火装置を提案した。この既提案の点火装置においては、内燃機関が始動時の状態にあるときに、第2の負方向電圧の発生位置において第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間を計測して、この時間から得られる機関の回転速度の情報を用いて機関の始動時の点火位置検出用計時データを求め、この計時データの計測を直ちに開始させることにより始動時の点火位置を検出して点火信号を発生させるようにしている。
【0013】
この既提案の点火装置によれば、クランク軸の回転速度が細かく変動する機関の始動時に、点火位置の直前に求めた機関の回転速度情報に基づいて点火位置を定めることができるため、始動時の点火位置を正確に定めて機関の回転を安定させ、機関の始動性を向上させることができる。
【0014】
ところが、既提案の点火装置では、内燃機関が始動を完了した状態にあるときに直ちに定常時の制御に移行していたため、寒冷時に機関が暖まるまでの間アイドリングが安定しないという問題があった。
【0015】
本発明の目的は、機関の始動時の点火位置を正確に定めて機関の始動性を向上させるとともに、寒冷時であっても機関の始動直後のアイドリング回転を安定に行わせることができるようにした内燃機関用点火装置を提供することにある。
【課題を解決するための手段】
【0016】
本発明は、内燃機関と同期回転する交流発電機内に設けられて、正方向電圧からなる半波と該正方向電圧からなる半波の前後にそれぞれ現れる第1及び第2の負方向電圧からなる半波とを有する交流電圧を前記内燃機関のクランク軸の1回転当たり1回発生するエキサイタコイルと、点火コイルの一次側に設けられて前記正方向電圧により一方の極性に充電される点火用コンデンサと、点火信号が与えられたときに導通して前記点火用コンデンサに蓄積された電荷を前記点火コイルの一次コイルを通して放電させるように設けられた放電用スイッチと、前記内燃機関の点火位置で前記放電用スイッチに点火信号を与える点火制御部とを備えた内燃機関用点火装置を対象とする。
【0017】
本発明において用いる点火制御部は、内燃機関が始動時の状態にあるか始動を完了した状態にあるかを判定する始動完了判定手段と、内燃機関が始動時の状態にあるときに第1の負方向電圧が発生してから第2の負方向電圧が発生するまでの時間から求めた回転速度で内燃機関が第2の負方向電圧の発生位置から始動時に適した点火位置まで回転するのに要する時間を点火位置検出用計時データとして、第2の負方向電圧の発生位置で演算して、演算した点火位置検出用計時データの計測を直ちに開始させることにより内燃機関の点火位置を始動時に適した位置とするように点火信号の発生位置を制御する始動時点火制御手段と、内燃機関の始動完了直後のアイドル回転を安定化するために内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるアイドル進角制御を行うことを許可するための条件であるアイドル進角制御条件の成立の有無を判定するアイドル進角制御条件判定手段と、アイドル進角制御条件判定手段によりアイドル進角制御条件が成立していると判定されているときに内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるように点火信号の発生位置を制御するアイドル進角制御手段と、始動完了判定手段により内燃機関が始動を完了した状態にあると判定され、かつアイドル進角制御条件判定手段によりアイドル進角制御条件が成立していないと判定されているときに点火位置を内燃機関の定常運転時に適した位置とするように点火信号の発生位置を制御する定常運転時点火制御手段とを備えている。
【0018】
なお本明細書において、エキサイタコイルが出力する交流電圧の各半波の電圧の正負の極性は、波形図上の極性を意味するのではなく、エキサイタコイルが出力する交流電圧の一方の極性の半波の電圧及び他方の極性の半波の電圧の内、点火回路の点火用コンデンサを充電するために用いられる極性の半波の電圧を正方向電圧とし、点火用コンデンサを充電するために用いられる極性と反対の極性の半波の電圧を負方向電圧としている。
【0019】
本発明の好ましい態様では、上記点火制御部が、以下の要素により構成される。
(a)点火位置検出用計時データを計測する点火タイマを備えて該点火タイマが点火位置検出用計時データの計測を完了したときに点火信号を発生する点火信号発生手段。
(b)第1の負方向電圧の発生位置と第2の負方向電圧の発生位置とを検出する負方向電圧発生位置検出手段。
(c)内燃機関が始動時の状態にあるのか始動を完了した状態にあるのかを判定する始動完了判定手段。
(d)始動完了判定手段により内燃機関が始動時の状態にあると判定されているときに第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間T1と第1の負方向電圧の発生位置から第2の負方向電圧の発生位置までの角度とから求まる内燃機関の回転速度で内燃機関が第2の負方向電圧の発生位置から始動時に適した点火位置まで回転するのに要する時間を点火位置検出用計時データTigsとして第2の負方向電圧の発生時に演算して演算した点火位置検出用計時データの計測を点火タイマに直ちに開始させることにより、内燃機関の点火位置を始動時に適した位置とするように制御する始動時点火制御手段。
(e)内燃機関の始動完了直後のアイドル回転を安定化するために内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角した位置とするアイドル進角制御を行うことを許可するための条件であるアイドル進角制御条件が成立しているか否かを判定するアイドル進角制御条件判定手段。
(f)アイドル進角制御条件判定手段によりアイドル進角制御条件が成立していると判定されているときに内燃機関の始動完了直後のアイドル時での点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるように点火信号の発生位置を制御するアイドル進角制御手段。
(g)始動完了判定手段により内燃機関が始動を完了した状態にあると判定され、かつアイドル進角制御条件判定手段によりアイドル進角制御条件が成立していないと判定されているときに点火位置を内燃機関の定常運転時に適した位置とするように点火信号の発生位置を制御する定常運転時点火制御手段。
【0020】
本発明の好ましい態様では、上記アイドル進角制御手段が、第1の負方向電圧の発生位置が検出される周期から求められた内燃機関のアイドル回転速度で内燃機関が第1の負方向電圧の発生位置から内燃機関の定常運転時の当該アイドル回転速度における点火位置よりも進角した位置に設定されたアイドル進角制御時の点火位置まで回転するのに要する時間を点火位置検出用計時データとして第2の負方向電圧の発生位置で演算して、演算した点火位置検出用計時データの計測を点火タイマに直ちに開始させることにより、内燃機関の点火位置を定常運転時のアイドル状態での点火位置よりも進角させる制御を行うように構成されている。
【0021】
本発明の他の好ましい態様では、上記アイドル進角制御手段が、第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間と第1の負方向電圧の発生位置から第2の負方向電圧の発生位置までの角度とから求まる内燃機関の回転速度で内燃機関が第2の負方向電圧の発生位置から内燃機関の定常運転時の当該アイドル回転速度における点火位置よりも進角した位置に設定されたアイドル進角制御時の点火位置まで回転するのに要する時間をアイドル進角制御時の点火位置検出用計時データとして第2の負方向電圧の発生位置で演算して、演算した点火位置検出用計時データの計測を点火タイマに直ちに開始させることにより、内燃機関の点火位置を定常運転時のアイドル状態での点火位置よりも進角させる制御を行うように構成される。
【0022】
本発明の好ましい態様では、上記アイドル進角制御条件判定手段が、アイドル進角制御手段による点火回数が設定値以下のときにアイドル進角制御条件が成立していると判定し、アイドル進角制御手段による点火回数が設定値を超えているときにアイドル進角制御条件が成立していないと判定するように構成される。
【0023】
本発明の他の好ましい態様では、上記アイドル進角制御条件判定手段が、アイドル進角制御手段による点火位置の制御が開始されてからの経過時間が設定時間以下のときにアイドル進角制御条件が成立していると判定し、アイドル進角制御手段による点火位置の制御が開始されてからの経過時間が設定時間を超えているときにアイドル進角制御条件が成立していないと判定するように構成される。
【0024】
本発明の更に他の好ましい態様では、内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達していないときにアイドル進角制御条件が成立していると判定し、内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達したときにアイドル進角制御条件が成立しなくなったと判定するようにアイドル進角制御条件判定手段が構成される。
【0025】
本発明の更に他の好ましい態様では、内燃機関の回転速度が継続して設定されたアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達しておらず、かつアイドル進角制御手段による点火回数が設定値以下のときにアイドル進角制御条件が成立していると判定し、内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が一定の期間に達したとき、及び内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が一定の期間に達してはいないが、アイドル進角制御手段による点火回数が設定値に達したときにアイドル進角制御条件が成立しなくなったと判定するようにアイドル進角制御条件判定手段が構成される。
【0026】
上記のように、始動完了判定手段により内燃機関が始動を完了した状態にあると判定され、かつアイドル進角制御条件判定手段によりアイドル進角制御を行う条件が成立していると判定されているときに内燃機関の点火位置を定常運転時のアイドル状態での点火位置よりも進角させるように点火信号の発生位置を制御するアイドル進角制御手段を設けておくと、始動完了直後のアイドル回転時に機関の回転速度が落ち込むのを防いで、機関の回転を維持することができるため、寒冷時など、機関の回転が不安定になる状況下でも、機関の始動直後のアイドル運転を短時間で安定化することができる。
【0027】
本発明においては、所定のアイドル進角制御条件(始動直後のアイドル回転を安定化するために点火位置を定常運転時のアイドル状態での点火位置よりも進角させる制御を許可するための条件)が成立しているときにのみアイドル進角制御を行わせるので、始動直後のアイドル回転速度が必要以上に上昇するなどの事態を生じさせることなく、始動直後のアイドル回転を安定化することができる。
【0028】
特に、本発明において、内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達するようになるまでの間だけアイドル進角制御を行わせるようにした場合、または内燃機関の回転速度が継続して設定されたアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達しておらず、かつアイドル進角制御手段による点火回数が設定値以下のときにアイドル進角制御を行わせるようにした場合には、アイドル進角制御を行うことにより機関の回転速度が急上昇する状態が生じるのを確実に防ぐことができるため、運転者に違和感を与えることなく、始動直後のアイドル回転の安定化を図ることができる。
【0029】
また本発明においては、内燃機関が始動時の状態にあるときに、始動時点火制御手段が、第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間T1を第2の負方向電圧の発生位置で計測して、計測した時間T1から得られる機関の回転速度の情報を用いて機関の始動時の点火位置を検出するための計時データを求め、該計時データの計測を直ちに開始させることにより始動時の点火位置を検出して始動時の点火信号を発生させる。
【0030】
始動時点火制御手段をこのように構成すると、機関のクランク軸の回転速度が細かく変動する機関の始動時に、始動時の点火位置の直前に求めた機関の回転速度情報に基づいて始動時の点火位置を検出することができるため、始動時の点火位置を正確に検出して、機関の始動性を向上させることができる。また始動時点火制御手段を上記のように構成すると、機関の始動時の点火位置を、第2の負方向電圧の発生位置よりも更に遅れた位置(エキサイタコイルが交流電圧を発生する区間を越えた位置)に設定できるため、点火位置の進角幅を広くとることができる。
【0031】
定常運転時の点火位置検出用計時データの演算も第2の負方向電圧の発生位置で行なわせるようにしてもよいが、演算された定常運転時の点火位置の計測を正確に行なわせるためには、点火位置の計測を開始する位置の直前に求めた回転速度から機関の点火位置を検出するための計時データを演算するのが好ましい。従って、定常運転時に点火位置検出用計時データの演算と、点火タイマに該計時データの計測を開始させるための処理とを行なうタイミングは、第1の負方向電圧が発生するタイミングとするのが好ましい。
【0032】
そのため、本発明の好ましい態様では、上記定常運転時点火制御手段が、第1の負方向電圧の発生周期から求められた内燃機関の回転速度に対して演算された内燃機関の定常運転時の点火位置と第1の負方向電圧の発生周期から求められた内燃機関の回転速度で第1の負方向電圧の発生位置から演算された定常運転時の点火位置まで機関が回転するのに要する時間を定常運転時の点火位置検出用計時データとして演算する過程と該定常運転時の点火位置検出用計時データの計測を前記点火タイマに開始させる過程とを第1の負方向電圧の発生位置が検出されたときに行なうように構成される。
【0033】
上記のように、機関の始動時の点火位置を計測するための処理を行なう第2の負方向電圧の発生位置よりも前の、第1の負方向電圧の発生位置で定常時の点火位置を計測するための処理を行なう(第1の負方向電圧の発生位置を定常運転時の点火位置を定めるための基準クランク角位置とする)ようにすると、点火位置の進角幅を広くとることができるだけでなく、演算された点火位置の検出を正確に行なわせて、点火位置の制御を高精度で行なわせることができる。
【0034】
上記負方向電圧発生位置検出手段は、第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間と第2の負方向電圧の発生位置が検出されてから次の第1の負方向電圧の発生位置が検出されるまでの時間との長短から第1の負方向電圧の発生位置及び第2の負方向電圧の発生位置を検出するように構成することができる。
【0035】
本発明の好ましい態様では、エキサイタコイルの出力電圧を入力として負方向電圧の発生位置に立下がりを有する矩形波信号に変換する波形整形回路と、矩形波信号の立下がりをクランク信号として認識して該クランク信号を認識する毎にタイマの計測値を読み込んで前回のクランク信号が発生してから今回のクランク信号が発生するまでの経過時間を計測する経過時間計測手段とが設けられる。この場合、負方向電圧発生位置検出手段は、経過時間計測手段が前回検出した経過時間Toldと今回検出した経過時間Tnewとを比較して、Tnew<Told/k(kは1以上の定数)の関係が成立しないときにクランク信号の今回の発生位置が第1の負方向電圧の発生位置であることを検出し、Tnew<Told/kの関係が成立したときにクランク信号の今回の発生位置が第2の負方向電圧の発生位置であることを検出するように構成することができる。
【0036】
上記定数kの値は、1よりは大きく、内燃機関の正転時に発生する第2の負方向電圧の発生位置から次の第1の負方向電圧の発生位置までの角度を第1の負方向電圧の発生位置から第2の負方向電圧の発生位置までの角度で除した値よりは小さく設定する。定数kの値を適当な値に設定することにより、機関の急加速時や急減速時に第1の負方向電圧の発生位置と第2の負方向電圧の発生位置とを誤って検出するおそれを無くすことができる。
【0037】
また本発明の他の好ましい態様では、エキサイタコイルの出力電圧を負方向電圧の発生位置に立上がりを有する矩形波信号に変換する波形整形回路と、該矩形波信号の立上がりをクランク信号として認識して該クランク信号を認識する毎にタイマの計測値を読み込んで前回のクランク信号が発生してから今回のクランク信号が発生するまでの経過時間を計測する経過時間計測手段とが設けられる。この場合も、負方向電圧発生位置検出手段は、経過時間計測手段が前回検出した経過時間Toldと今回検出した経過時間Tnewとを比較して、Tnew<Told/k(kは1以上の定数)の関係が成立しないときにクランク信号の今回の発生位置が第1の負方向電圧の発生位置であることを検出し、Tnew<Told/kの関係が成立したときにクランク信号の今回の発生位置が第2の負方向電圧の発生位置であることを検出するように構成することができる。
【0038】
上記始動完了判定手段は、内燃機関の回転速度が始動判定速度未満の時に内燃機関が始動時の状態にあると判定し、内燃機関の回転速度が始動判定速度以上を一定期間継続したときに内燃機関が始動を完了した状態にあると判定するように構成することができる。始動判定速度は、内燃機関が始動を完了した状態にあるときの回転速度に等しく設定しておく。
【0039】
上記始動完了判定手段はまた、内燃機関の回転速度が始動判定速度未満で、かつ内燃機関の始動操作が開始された後の該機関のクランク軸の回転回数が設定回数以下であるときに内燃機関が始動時の状態にあると判定し、内燃機関の回転速度が始動判定速度以上を一定期間継続したとき、及び内燃機関の回転速度が始動判定速度未満であるが内燃機関の始動操作が開始された後の該機関のクランク軸の回転回数が前記設定回数を超えているときには前記内燃機関が始動を完了した状態にあると判定するように構成することもできる。この場合、上記設定回数は、内燃機関が始動できない状態で(例えば、点火装置の点火動作を停止させた状態で)人力によりクランキングを行なった際のクランク軸の最大回転回数に相当する値に設定する。
【0040】
上記のように始動完了判定手段を構成すると、リコイルスタータ等の人力による始動装置により機関を始動させる場合には、内燃機関の始動操作が開始された後のクランク軸の回転回数が設定回数を超えることはないため、機関の回転速度が始動判定速度未満のときに機関が始動状態にあると判定され、機関の回転速度が始動判定速度以上を一定期間継続したときに始動が完了している(定常運転時の状態にある)と判定される。従って人力により機関を始動させる場合には、始動時の点火位置を上死点位置付近の始動時に適した位置として、機関の始動性を向上させることができる。
【0041】
これに対し、スタータモータを用いてクランキングを行なうことにより機関を始動させる場合には、機関は自発的に回転しなくても、スタータモータによりその回転が維持される。この場合、始動時に適した点火位置(始動時用点火位置)を上死点位置に近い位置に一つだけ設定しておいて、始動時に回転速度が設定回転速度未満であると判定されているときに設定された始動時用点火位置で点火を行なわせ、回転速度が設定回転速度に達したときに定常時の点火に移行させるようにすると、クランキングの脈動により、ケッチン(ピストンが上死点を越えることができなくなって押し戻される現象)が発生する可能性が高くなる。
【0042】
上記のような問題が生じるのを防ぐため、本発明の好ましい態様では、始動時用点火位置が予め複数個設定されていて、第1の負方向電圧の発生位置が検出される周期から演算された回転速度に応じて始動時用点火位置として設定されている複数の点火位置の中から最適の点火位置が選択される。
【0043】
例えば、始動時に適した点火位置として、上死点位置に近い第1の始動時用点火位置と、この第1の始動時用点火位置よりも進角した第2の始動時用点火位置(アイドル回転時の点火位置として適した点火位置)との2つの始動時用点火位置を設定するとともに、始動時用点火位置を切り換える点火位置切換回転速度IGCHNEと、機関が始動時の運転状態にあるか否かを判定するための始動判定速度SNCHNEとを設定しておいて、IGCHNE<回転速度のときに上死点位置に近い第1の始動時用点火位置で点火を行なわせ、IGCHNE≦回転速度<SNCHNEのときに第2の始動時用点火位置で点火動作を行なわせるようにするのが好ましい。
【0044】
上記のように構成すると、例えば、始動開始時の点火位置と初爆が行なわれた後の点火位置とを異ならせて、始動開始時の点火位置及び初爆後の点火位置をそれぞれ最適の位置に設定することができるため、機関の始動性を向上させるとともに、機関が始動した後アイドル運転に移行する過程での機関の回転を安定にすることができる。
【0045】
本発明の他の好ましい態様では、始動時点火制御手段が、第2の負方向電圧の発生位置が検出されてから次の第1の負方向電圧の発生位置が検出されるまでの時間T0と第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間T1との比T0/T1が設定値以上であるときに始動時の点火信号の発生を許可し、比T0/T1が設定値未満であるときに始動時の点火信号の発生を禁止する点火許否手段を更に備えている。
【0046】
始動時点火制御手段に上記のような点火許否手段を設けておくと、始動操作を開始した後、操作力の不足によりクランキング速度が不足する場合に点火動作が行なわれるのを禁止することができるため、リコイルスタータやキックスタータを用いて人力により機関を始動する際にピストンが上死点を越えることができなくなって押し戻される現象(ケッチン)が生じるのを防ぐことができる。
【0047】
上記点火許否手段は、第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間T1が設定値以下であるときに始動時の点火信号の発生を許可し、時間T1が設定値を超えているときに始動時の点火信号の発生を禁止するように構成してもよい。
【発明の効果】
【0048】
以上のように、本発明によれば、内燃機関が始動を完了した状態にあると判定され、かつアイドル進角制御条件判定手段によりアイドル進角制御を行う条件が成立していると判定されているときに内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるように点火信号の発生位置を制御するアイドル進角制御手段を設けたので、始動完了直後のアイドル回転時に機関の回転速度が落ち込むのを防いで、機関の回転を維持することができ、寒冷時など、機関の回転が不安定になる状況下でも、機関の始動直後のアイドル運転を短時間で安定化することができる。
【0049】
また本発明においては、所定のアイドル進角制御条件が成立しているときにのみアイドル進角制御を行わせるので、始動直後のアイドル回転速度が不必要に上昇するのを防ぐことができる。
【0050】
特に、本発明において、内燃機関の回転速度がアイドル進角制御判定速度以上になっている状態が設定された判定時間の間継続するようになるまでの間だけアイドル進角制御を行わせるようにした場合、または内燃機関の回転速度が継続して設定されたアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達しておらず、かつアイドル進角制御手段による点火回数が設定値以下のときにのみアイドル進角制御を行わせるようにした場合には、アイドル進角制御を行うことにより機関の回転速度が急上昇する事態が生じるのを確実に防ぐことができるため、運転者に違和感を与えることなく、機関の始動直後のアイドル運転を短時間で安定化することができる。
【0051】
また本発明においては、第2の負方向電圧の発生位置において第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間を計測して、この時間から得られる機関の回転速度の情報を用いて機関の始動時の点火位置を検出するための計時データを求め、該計時データの計測を直ちに開始させることにより始動時の点火位置を検出して始動時の点火信号を発生させるので、機関のクランク軸の回転速度が細かく変動する機関の始動時に、始動時の点火位置の直前に求めた機関の回転速度情報に基づいて始動時の点火位置を正確に定めて、機関の回転を安定させ、機関の始動性を向上させることができる。
【発明を実施するための最良の形態】
【0052】
以下図面を参照して本発明の好ましい実施形態を詳細に説明する。
図1は本実施形態のハードウェアの構成を概略的に示したもので、同図において1は図示しない内燃機関により駆動される磁石発電機、2はコンデンサ放電式の点火回路、3はマイクロプロセッサ、4は波形整形回路、5はマイクロプロセッサ3及び波形整形回路4に電源電圧Vccを与える電源回路である。
【0053】
図2(A)に示されているように、本実施形態で用いている磁石式交流発電機1は、内燃機関(図示せず。)のクランク軸10に取り付けられた磁石回転子11と、固定子12とからなっている。磁石回転子11は、クランク軸10に取り付けられたアルミニウム製のフライホイール13と、フライホイールの径方向に着磁されてN極及びS極をそれぞれ外部に露呈させた状態でフライホイール13内に鋳込まれた永久磁石14及び15と、永久磁石14及び15とともにフライホイール13内に鋳込まれて永久磁石14のS極と永久磁石15のN極との間を接続する図示しない磁路構成部材とからなっている。また固定子12は、磁石14及び15の磁極に対向する磁極部16a,16bを両端に有するコの字形の電機子鉄心16と、電機子鉄心16に巻回されたエキサイタコイルEXとからなっていて、内燃機関のケースやカバーなどに設けられた固定子取付部に固定されている。
【0054】
エキサイタコイルEXは、図4(A)に示されているように、機関が正回転しているときに、正方向電圧Vp1からなる半波と、正方向電圧Vp1からなる半波の前後にそれぞれ現れる第1及び第2の負方向電圧Vn1及びVn2からなる半波とを有する交流電圧を内燃機関の正転時に該機関のクランク軸の1回転当たり1回発生する。本実施形態で用いているエキサイタコイルEXは、更に第1の負方向電圧Vn1に先行して正方向電圧Vp1よりも波高値が低い正方向電圧Vpoを発生する。本実施形態では、機関の上死点位置(機関のピストンが上死点に達したときのクランク角位置)TDCよりも十分に進角した位置で第2の負方向電圧Vn2が発生するように固定子12の取り付け位置が設定されている。
【0055】
エキサイタコイルEXの一端はアノードが接地されたダイオードD1のカソードに接続され、エキサイタコイルの他端は、同じくアノードが接地されたダイオードD2のカソードに接続されている。図1に示した点火回路2は、一次コイルW1及び二次コイルW2の一端が接地された点火コイルIGと、点火コイルIGの一次コイルの非接地側の端子に一端が接続された点火用コンデンサCiと、点火用コンデンサCiの他端と接地間にカソードを接地側に向けて接続された放電用スイッチとしてのサイリスタThiと、点火火花の放電時間を延ばすためにサイリスタThiの両端に逆並列接続されたダイオードD3とからなっている。エキサイタコイルEXの一端が、アノードを該エキサイタコイル側に向けたダイオードD4を通して点火用コンデンサCiの他端に接続され、エキサイタコイルが正方向電圧を出力したときに、エキサイタコイルEX−ダイオードD4−点火用コンデンサCi−点火コイルの一次コイルW1−ダイオードD2−エキサイタコイルEXの回路からなるコンデンサ充電回路に電流が流れて点火用コンデンサCiが図示の極性に充電される。
【0056】
放電用スイッチを構成するサイリスタThiのゲートは、マイクロプロセッサ3のポートBに接続されている。後述するように、マイクロプロセッサ3は、エキサイタコイルEXの負方向電圧から内燃機関の回転情報を得て内燃機関の点火位置(点火動作を行なわせるクランク角位置)を定め、定めた点火位置を検出したときにポートBからサイリスタThiのゲートに点火信号Siを与える。サイリスタThiに点火信号Siが与えられると、サイリスタThiが導通して点火用コンデンサCiに蓄積されている電荷を点火コイルの一次コイルW1を通して放電させるため、点火コイルIGの一次コイルに高い電圧が誘起し、この電圧が更に点火コイルの一次、二次間の昇圧比により昇圧されて点火コイルの二次コイルW2に点火用の高電圧が誘起する。この高電圧は、内燃機関の気筒に取り付けられた点火プラグPLに印加されるため、該点火プラグで火花放電が生じて機関が点火される。
【0057】
本実施形態では、説明を簡単にするために、内燃機関が単気筒であるとしている。機関が多気筒である場合には、例えば、点火回路2を気筒数分設けるとともに、エキサイタコイルEXを備えた固定子を気筒数分設けて、各気筒用のエキサイタコイルが出力する正方向電圧で各気筒用の点火回路の点火用コンデンサを充電するとともに、各気筒用のエキサイタコイルからマイクロプロセッサ3に各気筒用の回転情報を与えて、マイクロプロセッサ3から各気筒の点火位置で各気筒用の点火回路のサイリスタに点火信号を与えるようにすればよい。また内燃機関が2気筒である場合には、点火コイルIGの二次コイルW2の一端及び他端をそれぞれ異なる気筒の点火プラグの非接地側端子に接続して、機関の2つの気筒の点火プラグで同時に火花放電を生じさせる同時発火コイルの構成をとるようにしてもよい。
【0058】
電源回路5は、エキサイタコイルEXが出力する負方向電圧で電源コンデンサを充電する回路と、該電源コンデンサの両端の電圧を一定値に保つように制御するレギュレータとからなっていて、マイクロプロセッサ3と波形整形回路4とに電源電圧を与える。図1に示した波形整形回路4は、エキサイタコイルEXが出力する負方向電圧Vn1及びVn2をマイクロプロセッサ3が認識し得る信号に変換する回路で、本実施形態の波形整形回路4は、図4(B)に示したように、エキサイタコイルEXが発生する負の半波の電圧を波形整形して負方向電圧Vn1及びVn2が発生している期間低レベル(Lレベル)を保持し、負方向電圧Vn1及びVn2が発生していないときに高レベル(Hレベル)を保持する矩形波信号Vqを発生して、この矩形波信号Vqの立下がりをクランク信号としてマイクロプロセッサ3のポートAに入力する。このような矩形波信号は、例えば、負方向電圧Vn1及びVn2が発生している間だけオン状態を保持するスイッチ手段の両端に得ることができる。
【0059】
矩形波信号Vqは、エキサイタコイルが出力する第1の負方向電圧Vn1の発生位置及び第2の負方向電圧Vn2の発生位置で立下がり、第1の負方向電圧Vn1及び第2の負方向電圧がそれぞれ消滅する位置で立上がる信号となる。本実施形態では、機関のクランク軸が1回転する間に2回現れる矩形波信号Vqの立下がりをクランク信号としてマイクロプロセッサに認識させることにより機関の回転情報を得るものとする。第1の負方向電圧Vn1の発生位置(第1のクランク信号の発生位置)及び第2の負方向電圧Vn2の発生位置(第2のクランク信号の発生位置)にそれぞれ符号CRin及びCRoutを付けて2つの負方向電圧の発生位置(クランク信号の発生位置)を識別する。
【0060】
本実施形態では、第1の負方向電圧Vn1の発生位置CRinを、機関の回転速度を求めるための時間データの取り込みと、機関の定常運転時の点火位置の計測の開始とを行なうタイミングを定める基準クランク角位置として用い、第2の負方向電圧Vn2の発生位置CRoutを機関の始動時の点火位置の計測を開始する位置として用いる。
【0061】
マイクロプロセッサ3は、所定のプログラムを実行することにより各種の機能実現手段を構成して、内燃機関の点火位置で放電用スイッチに点火信号を与える点火制御部を構成する。点火制御部の構成例を示すブロック図を図3に示した。図3において1は図2(A)に示すように構成されて内燃機関ENGにより駆動される磁石式交流発電機、2は点火コイルIGと点火用コンデンサCiとサイリスタからなる放電用スイッチThiとを備えた点火回路、2aは磁石式交流発電機内に設けられたエキサイタコイルの正方向電圧により点火用コンデンサCiを充電するコンデンサ充電回路である。
【0062】
20は点火制御部で、この点火制御部は、点火信号発生手段21と、経過時間計測手段22と、負方向電圧発生位置検出手段23と、始動完了判定手段24と、回転速度演算手段25と、始動時点火制御手段26と、アイドル進角制御条件判定手段27と、アイドル進角制御手段28と、定常運転時点火制御手段29とにより構成される。
【0063】
更に詳細に説明すると、点火信号発生手段21は、点火位置検出用計時データを計測する点火タイマを備えていて、該点火タイマが点火位置検出用計時データの計測を完了したときに点火信号Siを発生する。
【0064】
経過時間計測手段22は、波形整形回路4が出力する矩形波信号Vqの前回の立下がり(クランク信号)が検出されてから今回の立下がり(クランク信号)が検出されるまでの経過時間を計測する手段で、この経過時間計測手段22は、波形整形回路4が出力する矩形波信号Vqの立下がりを検出する毎にマイクロプロセッサ内のタイマの計測値を読み込んで矩形波信号Vqの前回の立下がり(CRinまたはCRout)が検出されてから今回の立下がり(CRoutまたはCRin)が検出されるまでの時間を検出するように構成される。
【0065】
負方向電圧発生位置検出手段23は、第1の負方向電圧Vn1の発生位置CRinと第2の負方向電圧Vn2の発生位置CRoutとを検出する手段で、第1の負方向電圧Vn1の発生位置CRinが検出されてから第2の負方向電圧の発生位置CRoutが検出されるまでの時間T1と第2の負方向電圧の発生位置CRoutが検出されてから次の第1の負方向電圧の発生位置CRinが検出されるまでの時間T0との長短から第1の負方向電圧Vn1の発生位置CRin及び第2の負方向電圧Vn2の発生位置CRoutを検出する。
【0066】
図示の負方向電圧発生位置検出手段23は、経過時間計測手段22が前回検出した時間Toldと今回検出した時間Tnew(図4参照)とを比較して、Tnew<Told/k(kは1以上の定数)の関係が成立しないときに矩形波信号の今回の立下がり位置が第1の負方向電圧Vn1の発生位置であることを検出し、Tnew<Told/kの関係が成立したときに矩形波信号の今回の立下がり位置が第2の負方向電圧Vn2の発生位置であることを検出する。経過時間計測手段22は、負方向電圧発生位置検出手段23が第1の負方向電圧の発生位置(クランク信号CRin)を検出したときに、今回取り込んだ経過時間がT0であることを認識し、負方向電圧発生位置検出手段23が第2の負方向電圧の発生位置(クランク信号CRout)を検出したときに、今回取り込んだ経過時間がT1であることを認識する。
【0067】
始動完了判定手段24は、内燃機関が始動時の状態にあるのか始動を完了した状態にあるのかを判定する手段である。図示の始動完了判定手段24は、第1の負方向電圧Vn1の発生位置(CRin)が検出される回数から内燃機関の始動操作が開始された後機関のクランク軸の回転回数Pulse−cntを検出して、この回転回数Pulse_cntが設定値STARTNUM以下のとき(Pulse_cnt≦STARTNUMのとき)に内燃機関が始動時の状態にある(始動が完了していない)と判定し、内燃機関の始動操作が開始された後該機関のクランク軸の回転回数Pulse_cntが設定値STARTNUMを超えたとき(STARTNUM<Pulse_cntのとき)に内燃機関が始動を完了した状態にあると判定するように構成されている。
【0068】
回転速度演算手段25は、第1の負方向電圧Vn1の発生位置CRinが検出される周期T2から内燃機関の回転速度を演算する手段である。図示の回転速度演算手段25は、第1の負方向電圧の発生位置CRinが検出される毎に経過時間計測手段22が計測した時間T0とT1とを加算して前回第1の負方向電圧の発生位置CRinが検出されてから今回第1の負方向電圧の発生位置CRinが検出されるまでの経過時間T2(第1の負方向電圧の発生位置CRinが検出される周期)を求め、この経過時間T2から機関の回転速度を演算する。
【0069】
始動時点火制御手段26は、始動完了判定手段24により内燃機関が始動時の状態にあると判定されているときに点火信号の発生位置を制御する手段で、この始動時点火制御手段は、始動完了判定手段24により内燃機関が始動時の状態にあると判定されているときに第1の負方向電圧Vn1の発生位置が検出されてから第2の負方向電圧Vn2の発生位置が検出されるまでの時間T1と第1の負方向電圧Vn1の発生位置から第2の負方向電圧Vn2の発生位置までの角度(発電機の構成により決まる角度。)とから求まる内燃機関の回転速度で内燃機関が第2の負方向電圧Vn2の発生位置から始動時に適した点火位置θigs(図5参照)まで回転するのに要する時間Tigsを点火位置検出用計時データとして演算して該点火位置検出用計時データTigsの計測を点火タイマに直ちに開始させる過程を、第2の負方向電圧Vn2の発生位置が検出されたときに行なって、内燃機関の点火位置を始動時に適した位置とするように制御する。
【0070】
図示の始動時点火制御手段26は、第1の負方向電圧Vn1の発生位置CRinが検出されてから第2の負方向電圧Vn2の発生位置CRoutが検出されるまでの経過時間T1と第1の負方向電圧の発生位置CRinから第2の負方向電圧の発生位置CRoutまでの角度α(図5参照)とから求まる内燃機関の回転速度で内燃機関が第2の負方向電圧の発生位置から始動時に適した点火位置まで回転するのに要する時間を点火位置検出用計時データTigsとして演算する始動時点火位置検出用計時データ演算手段30と、点火許否手段31と、点火位置検出用計時データTigsを点火信号発生手段21を構成する点火タイマにセットしてその計測を開始させる点火タイマ制御手段32とにより構成されている。
【0071】
上死点位置TDCから第2の負方向電圧Vn2の発生位置CRoutまでの角度をθoutとし、始動時の点火位置θigsを上死点位置TDCから進角側に測った進角度で表すものとすると、始動時点火位置検出用計時データTigsは下記の式により演算される。
Tigs=T1・(θout−θigs)/α …(1)
【0072】
点火許否手段31は、機関の始動時に点火動作を許可するか否かを決定する手段で、第2の負方向電圧の発生位置CRoutが検出されてから次の第1の負方向電圧の発生位置CRinが検出されるまでの時間T0と第1の負方向電圧の発生位置CRinが検出されてから第2の負方向電圧の発生位置CRoutが検出されるまでの時間T1との比T0/T1が設定値以上であるとき(クランキング速度が十分に速いとき)に点火タイマ制御手段32が点火タイマに計時データをセットするのを許容して始動時の点火信号の発生を許可し、比T0/T1が設定値未満であるとき(クランキング速度が遅すぎるとき)には、点火タイマに計時データがセットされるのを禁止して始動時の点火信号の発生を禁止する。
【0073】
本実施形態では、始動時に適した点火位置として、始動開始時に適した点火位置(上死点位置付近の位置)θigs1と、始動開始後アイドル運転に移行する際の点火位置として適した点火位置(上死点位置よりも僅かに進んだ位置)θigs2との2つの点火位置が予め設定されてROMに記憶されている。始動時点火位置検出用計時データ演算手段30は、回転速度演算手段25により演算された回転速度に応じて、始動時に適した点火位置として設定された2つの点火位置θig1及びθig2の中から最適の点火位置をθigsとして選択して、(1)式により始動時点火位置検出用計時データTigsを演算する。始動時点火位置検出用計時データTigsが演算されると、点火タイマ制御手段32が直ちに点火タイマにその計時データTigsをセットしてその計測を開始させる。
【0074】
時間T1を取り込んでから始動時点火位置検出用計時データTigsを演算するまでの過程は瞬時に行なわれるため、計時データTigsの計測は、第2の負方向電圧Vn2の発生位置CRoutで開始されると見なすことができる。従って、機関の始動時には、図5に示したように、第2の負方向電圧Vn2の発生位置CRoutが検出された時刻から始動時点火位置検出用計時データTigsにより与えられる時間が経過した時点のクランク角位置θigsで点火回路2のサイリスタThiに点火信号が与えられて点火動作が行なわれる。
【0075】
アイドル進角制御条件判定手段27は、内燃機関の始動完了直後のアイドル回転を安定化するために内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角した位置とするアイドル進角制御を行うことを許可するための条件であるアイドル進角制御条件が成立しているか否かを判定する手段で、本実施形態では、このアイドル進角制御条件判定手段が、アイドル進角制御手段28による点火回数が設定値以下のときにアイドル進角制御条件が成立していると判定し、アイドル進角制御手段28による点火回数が設定値を超えているときにアイドル進角制御条件が成立していないと判定するように構成される。即ち、本実施形態では、点火回数によりアイドル進角制御に制限をかけ、アイドル進角制御による点火回数が設定値に達したときに該アイドル進角制御を終了させるようにしている。
【0076】
アイドル進角制御手段28は、アイドル進角制御条件判定手段27によりアイドル進角制御条件が成立している(アイドル進角制御を行うことが許可されている)と判定されているときに内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるように点火信号の発生位置を制御する。
【0077】
図示のアイドル進角制御手段28は、第1の負方向電圧Vn1の発生位置CRinが検出される周期T2から求められた内燃機関のアイドル回転速におけるアイドル進角制御用の点火位置θigi(図6参照)を、内燃機関の定常運転状態での当該アイドル回転速度における点火位置よりも進角した位置として演算するアイドル進角制御時点火位置演算手段33と、第1の負方向電圧Vn1の発生位置CRinが検出される周期T2から求められた内燃機関のアイドル回転速度で内燃機関が第1の負方向電圧Vn1の発生位置からアイドル進角制御用点火位置θigiまで回転するのに要する時間を点火位置検出用計時データTigiとして演算するアイドル進角制御用の点火位置検出用計時データ演算手段34と、第2の負方向電圧Vn2の発生位置が検出された時に点火位置検出用計時データTigiを点火タイマにセットして、該計時データTigiの計測を開始させる点火タイマ制御手段35とにより構成されていて、アイドル進角制御条件が成立しているときに、始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させる制御を行う。
【0078】
本実施形態で用いるアイドル進角制御時点火位置演算手段33は、第1の負方向電圧Vn1の発生位置CRinが検出される周期T2から求められた内燃機関のアイドル回転速度に対して定常運転時の点火位置を演算する定常運転時用の点火位置演算用マップを検索して求めた定常運転状態での当該アイドル回転速度における点火位置を与える進角度(上死点から進角側に測った角度)に一定の進み角度を加算することによりアイドル進角用の点火位置θigiを演算する。
【0079】
定常運転時点火制御手段29は、始動完了判定手段24により内燃機関が始動を完了した状態にあると判定され、かつアイドル進角制御条件判定手段27によりアイドル進角制御条件が成立していないと判定されているときに点火位置を内燃機関の定常運転時に適した位置とするように点火信号の発生位置を制御する。
【0080】
定常運転時点火制御手段29は、第1の負方向電圧Vn1の発生位置CRinが検出される周期T2から求められた内燃機関の回転速度に対して内燃機関の定常運転時の点火位置θignを演算する過程と、周期T2から求められた内燃機関の回転速度で第1の負方向電圧Vn1の発生位置から演算された定常運転時の点火位置θignまで機関が回転するのに要する時間を点火位置検出用計時データTign(図7参照)として演算する過程と、該点火位置検出用計時データTignの計測を点火タイマに開始させる過程とを第1の負方向電圧の発生位置が検出されたときに行なうように構成されている。
【0081】
図示の定常運転時点火制御手段29は、1回転前に検出された周期T2を用いて回転速度演算手段25により演算された回転速度に対して内燃機関の定常運転時の点火位置θignを演算する点火位置演算手段(図示せず。)と、新たに計測された周期T2から求められる現在の内燃機関の回転速度で第1の負方向電圧の発生位置CRinから演算された定常運転時の点火位置θignまで機関が回転するのに要する時間を点火位置検出用計時データTignとして演算する定常時点火位置検出用計時データ演算手段36と、演算された点火位置検出用計時データTignの計測を点火信号発生手段21を構成する点火タイマにセットしてその計測を開始させる点火タイマ制御手段37とにより構成されている。
【0082】
上死点位置TDCから第1の負方向電圧Vn1の発生位置CRinまでの角度をθinとし、点火位置θignが上死点位置から進角側に測った角度で表されるとすると、定常運転時点火位置検出用計時データTignは下記の式により演算される。
Tign=T2・(θin−θign)/360 …(2)
【0083】
点火タイマ制御手段37は、上記点火位置検出用計時データTignを点火信号発生手段21を構成する点火タイマにセットしてその計測を開始させる。点火信号発生手段21は点火タイマがセットされた計時データTignの計測を完了したときに放電用スイッチに点火信号Siを与えて点火回路2に点火動作を行なわせる。
【0084】
従って、機関の定常運転時には、図7に示したように、第1の負方向電圧Vn1の発生位置CRinが検出された時刻から定常運転時点火位置検出用計時データTignにより与えられる時間が経過した時点のクランク角位置θignで点火回路のサイリスタThiに点火信号Siが与えられて点火動作が行なわれる。点火位置θignは機関の回転速度等の制御条件の変化に応じて変化する。
【0085】
なお図5ないし図7においてθimaxは定常運転時の点火位置の最大進角位置を示している。最大進角位置で点火動作を支障なく行なわせるようにするため、最大進角位置θimaxにおいて、エキサイタコイルの正方向電圧Vp1の瞬時値が、点火用コンデンサCiを点火動作が可能な電圧値まで充電し得る値を有しているように、エキサイタコイルの出力電圧の位相と最大進角位置との関係を設定しておく。本実施形態では、エキサイタコイルが出力する正方向電圧Vp1のピーク位置が最大進角位置となるように設定している。
【0086】
本実施形態において、マイクロプロセッサ3に実行させるプログラムの要部のアルゴリズムを図8ないし図13に示した。図8は、マイクロプロセッサのリセット時(電源投入時)に実行される処理のアルゴリズムを示したもので、この処理においては先ずステップS101でメモリを初期化した後、ステップS102に移行してメインルーチンの処理を行なう。
【0087】
メインルーチンでは、後記する図12のCRin処理で演算された回転速度Neに対する定常時の点火位置θignの演算等を行なう。点火位置θignの演算は例えば、回転速度Neに対してROMに記憶された点火位置演算用マップを検索して、検索した値に補間演算を施すことにより行なう。また必要に応じてスロットルバルブ開度などの他の制御条件に対して点火位置を補正する演算を行なう。
【0088】
図9はメモリ初期化処理のアルゴリズムを示したもので、この初期化処理では、先ずステップS201で、内燃機関の始動操作が開始された後の機関のクランク軸の回転回数Puls_cntを0にクリアするとともに、アイドル進角制御点火回数カウンタの計数値Idle_cntを0にクリアする。本実施形態では、第1の負方向電圧Vn1の発生位置(CRin)が検出される回数を回転回数Pulse_cntとして計数する。ステップS201で回転回数Pulse_cnt及びアイドル進角制御点火回数カウンタの計数値Idle_cntを0とした後、ステップS202で始動時判定フラグを「始動時」にセットし、アイドル進角制御判定フラグをクリアする。ステップS203でその他のメモリの初期化をする。
【0089】
図10は、内燃機関がストールしたか否かを判定するためにマイクロプロセッサが2msec毎に実行する2msec毎処理(エンスト時メモリ初期化処理)のアルゴリズムを示したもので、この処理においては、先ずステップS301で、前回の2msec毎処理から今回の2msec毎処理までの間に後記するCRin処理が行なわれたか否かを判定する。その結果、前回の2msec毎処理から今回の2msec毎処理までの間にCRin処理が行なわれなかったと判定された場合には、ステップS302に移行してエンスト(エンジンストール)の回数を計数するエンストカウンタの計数値をインクリメントする。またステップS301において前回の2msec毎処理から今回の2msec毎処理までの間にCRin処理が行なわれたと判定されたときには、ステップS303に移行してエンストカウンタの計数値をクリアする。ステップS302またはS303を実行した後、ステップS304に移行してエンストカウンタの計数値が設定回数を超えたか否かを判定し、超えていない場合には機関がストールしていないとしてメインルーチンに復帰する。またステップS304において、エンストカウンタの計数値が設定回数を超えたと判定されたときには、ステップS305に移行して図9に示したメモリ初期化処理を行なった後メインルーチンに復帰する。
【0090】
図11は、波形整形回路4が出力する矩形波信号の立下がりを検出する毎にマイクロプロセッサが実行するクランク割込み処理を示し、図12は図11のクランク割込み処理において第1の負方向電圧の発生位置CRinが検出されたときに実行されるCRin処理を示している。また図13は、図11の割込み処理において第2の負方向電圧の発生位置CRoutが検出されたときに実行されるCRout処理を示している。
【0091】
マイクロプロセッサ3に第1の負方向電圧の発生位置CRinでクランク信号が入力されたとき及び第2の負方向電圧の発生位置CRoutでクランク信号が入力されたときに、メインルーチンに割込みがかけられて、図11に示したクランク割込み処理が開始される。この割込み処理のステップS401においては、前回のクランク割込み処理から今回のクランク割込み処理までの時間(クランク信号間経過時間)をTnewとしてRAMに記憶させる。次いでステップS402に進んで、今回計測したクランク信号間経過時間Tnewを、前回のクランク割込み処理において同じように計測されて記憶されてこの割込み処理終了時にToldとされた時間に1/kを乗じた時間Told/kと比較する。この比較の結果、Tnew<Told/kではない(Tnew≧Toldである)と判定された場合には、今回の割込み処理が開始されたクランク角位置が第1の負方向電圧の発生位置である(今回発生したクランク信号が第1のクランク信号CRinである)として、ステップS403に進んで図12に示されたCRin処理を行なう。ステップS402でTnew<Told/kであると判定された場合には、今回の割込み処理が開始されたクランク角位置が第2の負方向電圧の発生位置である(今回発生したクランク信号が第2のクランク信号CRoutである)として、ステップS404に進んで図13に示したCRout処理を行なう。CRout処理またはCRin処理を終了した後、この割込み処理を終了する。
【0092】
図12のCRin処理においては、先ずステップS501において図12の割込み処理のステップ1で計測された時間TnewをToldとして保存し、ステップS502で前回のCRin処理から今回のCRin処理が行なわれるまでの経過時間をT2として演算する。次いでステップS503で経過時間T2(クランク軸が1回転するのに要した時間)から機関の回転速度Neを演算し、ステップS504で始動時判定フラグが「始動時」にセットされているか否かを判定する。ステップS504で「始動時」にセットされていると判定された場合には、ステップS505に進んで機関の回転速度が始動判定速度SNCHNE以上である状態が一定期間継続しているか否かを判定する。その結果、機関の回転速度が始動判定速度以上である状態が一定期間継続していないと判定されたときには、ステップS506に進んで機関の始動操作開始後のクランク軸の回転回数Pulse_cntを1だけインクリメントし、ステップS507で回転回数Pulse_cntが設定回数STARTNUMを超えているか否かを判定する。その結果、回転回数Pulse_cntが設定回数STARTNUMを超えていないときには、以後何もしないでこのCRin処理を終了してメインルーチンに復帰する。
【0093】
ステップS507で回転回数Pulse_cntが設定回数STARTNUMを超えていると判定されたときには、ステップS508で始動時の点火制御を終了し、アイドル進角制御フラグをセットしてアイドル進角制御を開始する。またステップS505で機関の回転速度が始動判定速度以上である状態が一定期間継続していると判定されたときには、ステップS509で始動時判定フラグをリセットして始動時の点火制御を終了し、アイドル進角制御フラグをセットしてアイドル進角制御を開始させる。
【0094】
ステップS508でアイドル進角制御を開始したとき、ステップS509においてアイドル進角制御を開始したとき、及びステップS504で、始動時判定フラグが始動時にセットされていないと判定されときには、次いでS510においてアイドル進角制御フラグが設定されているか否か(アイドル進角制御であるか否か)を判定する。その結果、アイドル進角制御フラグがセットされていると判定された場合には、ステップS511に移行する。ステップS511では、アイドル進角制御カウンタの計数値Idle_cntを1だけインクリメントし、次いでステップS512でアイドル進角制御カウンタの計数値Idle_cntがアイドル進角制御回数設定値IDLENUMを超えているか否かを判定する。その結果、アイドル進角制御カウンタの計数値Idle_cntがアイドル進角制御回数設定値IDLENUMを超えていないと判定されたとき(アイドル進角制御条件が成立しているとき)には、ステップS513に進んで、第1の負方向電圧Vn1の発生位置が検出される周期T2とクランク軸の1回転の角度360°とから求められる回転速度と、アイドル進角制御時の点火位置θigiとから、クランク軸が第1の負方向電圧Vn1の発生位置から点火位置θigiまで回転するのに要する時間を点火位置検出用計時データTigiとして演算する。続いてステップS514で点火位置検出用計時データTigiを点火タイマにセットして図12のCRin処理を終了する。上死点位置TDCから第1の負方向電圧Vn1の発生位置CRinまでの角度をθinとし、点火位置θigiが上死点位置から進角側に測った角度で表されるとすると、アイドル進角制御時の点火位置検出用計時データTigiは下記の式により演算される。
Tigi=T2・(θin−θigi)/360 …(3)
【0095】
ステップS512で、アイドル進角制御カウンタの計数値Idle_cntがアイドル進角制御回数設定値IDLENUMを超えていると判定されたときには、ステップS515に進み、アイドル進角制御フラグをリセットしてアイドル進角制御を終了する。ステップS515でアイドル進角制御を終了するための処理(アイドル進角制御フラグのリセット)を行った後、ステップS516に移行して第1の負方向電圧Vn1の発生周期T2(クランク軸が1回転する間の経過時間)と、前回のCRin処理で演算された回転速度Neと、メインルーチンで演算されている定常運転時の点火位置θignとを用いて、前記(2)式により点火位置検出用計時データTignを演算し、ステップS517でこの計時データTignを点火タイマにセットしてその計測を開始させる。点火タイマがセットされた計時データの計測を完了すると図示しない割込み処理が実行されて、点火回路の放電用スイッチ(サイリスタThi)に点火信号が与えられる。
【0096】
上記のように、本実施形態では、機関の回転速度が始動判定速度に達していない状態でも、始動操作開始後のクランク軸の回転回数Pulse_cntが設定回数STARTNUMを超えていると判定されたときには、機関が始動時の状態にはないと判定して、始動時の点火制御を終了し、アイドル進角制御を開始させる。
【0097】
次に図13のCRout処理においては、先ずステップS601において今回計測したクランク信号間経過Tnewを、前回計測されたクランク信号間経過時間Toldとして保存する。次いでステップS602に進んで、始動時判定フラグが「始動時」にセットされているか否かを判定し、「始動時」にセットされていると判定されたとき(機関が始動時の状態にあると判定されたとき)にステップS603に進んで、演算されている回転速度Neが設定回転速度IGCHNE未満であるか否かを判定する。その結果、回転速度Neが設定回転速度IGCHNE未満であると判定されたときには、ステップS604に進んで第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの経過時間T1(図12のクランク割込み処理を開始する際に計測されたクランク信号間経過時間)と機関の上死点位置付近に設定された第1の始動時用点火位置θigs1とを用いて始動時の点火位置検出用計時データTigsを演算する。これに対し、ステップS603で回転速度Neが設定回転速度IGCHNE以上になっていると判定されたときには、ステップS605に進んで経過時間T1と機関の上死点位置よりも僅かに進角した位置(アイドル回転時の点火位置として適した点火位置)に設定された第2の始動時用点火位置θigs2とを用いて始動時の点火位置検出用計時データTigsを演算する。
【0098】
ステップS604またはS605を行なった後、ステップS606に進んで、第2の負方向電圧の発生位置が検出されてから次の第1の負方向電圧の発生位置が検出されるまでの時間T0と第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間T1との比T0/T1が設定値DISIGRT未満であるか否かを判定する。その結果、比T0/T1が設定値DISIGRT未満ではないと判定されたときにはステップS607に進んで、ステップS604またはS605で演算された計時データTigsを点火タイマにセットしてこのCRout処理を終了する。ステップS606で比T0/T1が設定値DISIGRT未満であると判定されたときにはステップS608に進んで、ステップS604またはS605で演算された計時データTigsを点火タイマにセットするのを禁止して、点火動作を停止した後このCRout処理を終了する。ステップS602で始動時判定フラグが「始動時」にセットされていないと判定されたときには、以後何もしないでこのCRout処理を終了する。
【0099】
本実施形態では、図11の割込み処理のステップS401により図3に示した経過時間計測手段22が構成され、図11の割込み処理のステップS402により、負方向電圧発生位置検出手段23が構成される。また図9の初期化処理のステップS202と、図12のCRin処理のステップS504,S505,S506及びS507と、図13のCRout処理のステップS602及びS603とにより、始動完了判定手段24が構成され、図12のCRin処理のステップS503により回転速度演算手段25が構成される。
【0100】
また図13のCRout処理のステップS604及びS605により始動時点火位置検出用計時データ演算手段30が構成され、図13のCRout処理のステップS606及びS608により点火許否手段31が構成されている。更に図13のCRout処理のステップS607により点火タイマ制御手段32が構成されている。また図12のCRin処理のステップS516により定常時点火位置検出用計時データ演算手段36が構成され、図12のステップS517により点火タイマ制御手段37が構成されている。
【0101】
更に、図12のCRin処理のステップS512により、アイドル進角制御条件判定手段27が構成され、図12のCRin処理のステップS513により、アイドル進角制御用の点火位置検出用計時データ演算手段34が構成される。また図12のCRin処理のステップS514により、点火タイマ制御手段35が構成される。
【0102】
上記のように、本実施形態の点火装置においては、機関の始動操作が開始されたときに、先ずクランク信号間経過時間の長短を利用して第1の負方向電圧の発生位置CRinと第2の負方向電圧の発生位置CRoutとを識別した後、内燃機関が始動時の状態にあるのか、始動を完了した状態にあるのかを判定し、内燃機関が始動時の状態にあると判定されたときに、第2の負方向電圧Vn2の発生位置CRoutにおいて計測された経過時間(第1の負方向電圧の発生位置CRinが検出されてから第2の負方向電圧の発生位置CRoutが検出されるまでの経過時間)T1から得られる機関の回転速度の情報を用いて機関の始動時の点火位置を検出するための計時データTigsを求め、この計時データTigsの計測を直ちに開始させることにより始動時の点火位置を検出して始動時の点火信号を発生させる。
【0103】
このように構成すると、機関のクランク軸の回転速度が細かく変動する機関の始動時に、始動時の点火位置の直前に求めた機関の回転速度情報に基づいて始動時の点火位置を検出するることができるため、始動時の点火位置を正確に検出して、機関の始動性を向上させることができる。
【0104】
また上記のように構成すると、機関の始動時の点火位置を、第2の負方向電圧の発生位置CRoutよりも更に遅れた位置(エキサイタコイルが交流電圧を発生する区間を越えた位置)に設定できるため、点火位置の進角幅を広くとることができる。
【0105】
また本実施形態では、機関が始動時の状態にあると判定されているときに、点火許否手段31が、第2の負方向電圧Vn2の発生位置CRoutが検出されてから次の第1の負方向電圧Vn1の発生位置CRinが検出されるまでの時間T0と第1の負方向電圧の発生位置CRinが検出されてから第2の負方向電圧の発生位置CRoutが検出されるまでの時間T1との比T0/T1を設定値と比較して、比T0/T1が設定値以上であるとき(クランキング速度が不足していないとき)に始動時の点火信号の発生を許可し、比T0/T1が設定値未満であるとき(クランキング速度が不足しているとき)に始動時の点火信号の発生を禁止する。従って、始動操作を開始した後、操作力の不足によりクランキングの速度が低くなったときに点火動作が行なわれるのを禁止することができ、人力により機関を始動する際にピストンが上死点を越えることができなくなって押し戻される現象(ケッチン)が生じるのを防いで安全性を高めることができる。上記経過時間の比T0/T1と比較する設定値は、ケッチンが生じるおそれがある程度にクランキング速度が不足したときに、T0/T1<設定値の関係が成立するような値に設定しておく。
【0106】
なお点火許否手段は、第1の負方向電圧の発生位置CRinが検出されてから第2の負方向電圧の発生位置CRoutが検出されるまでの時間T1が設定値以下であるときに始動時の点火信号の発生を許可し、時間T1が設定値を超えているときに始動時の点火信号の発生を禁止するように構成してもよい。
【0107】
本実施形態においては、内燃機関が始動を完了した状態にあると判定されたとき、及び機関の始動は完了していないが、始動操作開始後の機関の回転回数Pulse_cntが設定回数STARTNUMを超えていると判定されたときに、定常運転時の点火制御に移行する前に、アイドル進角制御を開始させて、第1の負方向電圧の発生位置CRin(基準クランク角位置)で計測された第1の負方向電圧の発生位置の検出周期T2から検出した現在の回転速度を用いて、基準クランク角位置からアイドル進角制御時の点火位置θigiまで機関が回転するのに要する時間を点火位置検出用計時データTigiとして演算し、この計時データを点火タイマに計測させることによりアイドル進角制御用の点火信号を発生させる。
【0108】
本実施形態では、第1の負方向電圧Vn1の発生位置が検出される周期T2から求められた内燃機関のアイドル回転速度に対して既に演算されている定常運転時の当該アイドル回転速度での点火位置を与える進角度に一定の進み角度を加算した進角度を有する点火位置(内燃機関の定常運転時の当該アイドル回転速度における点火位置よりも進角した位置)をアイドル進角制御用の点火位置θigiとしている。
【0109】
なお、本発明は、アイドル進角制御時点火位置演算手段33を上記のように構成する場合に限定されない。例えば、アイドル進角制御専用の点火位置演算マップを用意しておいて、第1の負方向電圧Vn1の発生位置が検出される周期T2から求められた内燃機関のアイドル回転速度に対して該アイドル進角制御専用の点火位置演算マップを検索することにより、アイドル進角用の点火位置θigiを演算するように構成してもよい。またアイドル進角制御時点火位置演算手段33を特に設けることなく、アイドル進角制御時の点火位置を固定値としてもよい。
【0110】
アイドル進角制御は、アイドル進角制御点火回数カウンタの計数値Idle_cntが設定値IDLENUMに達するまで(アイドル進角制御用の点火位置θigiでの点火が設定回数行われるまでの間)実行される。アイドル進角制御点火回数カウンタの計数値Idle_cntが設定値IDLENUMを超えたときに、ステップS515でアイドル進角制御フラグをクリアしてアイドル進角制御を終了し、定常運転時の点火制御に移行する。
【0111】
定常運転時の点火制御では、第1の負方向電圧Vn1の発生位置から、既に演算されている定常運転時の点火位置(1回転前に演算された回転速度を含む制御条件に対して演算されている点火位置)θignまで機関が回転するのに要する時間を、今回の第1の負方向電圧Vn1の発生位置で周期T2から求めた回転速度を用いて、点火位置検出用計時データTignとして演算し、この計時データを点火タイマに計測させることにより点火信号を発生させる。従って、機関の定常運転状態では、回転速度に対して演算され、必要に応じて他の制御条件に対して修正された点火位置で機関が点火される。
【0112】
上記のように、内燃機関が始動を完了した状態にあると判定され、かつアイドル進角制御条件判定手段によりアイドル進角制御を行う条件が成立していると判定されているときに内燃機関の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるように点火信号の発生位置を制御するアイドル進角制御手段を設けておくと、始動完了直後のアイドル回転時に機関の回転速度が落ち込むのを防いで、機関の回転を維持することができるため、寒冷時など、機関の回転が不安定になる状況下でも、機関の始動直後のアイドル運転を短時間で安定化することができる。
【0113】
またアイドル進角制御は、所定のアイドル進角制御条件が成立しているとき(上記の例では、アイドル進角制御用の点火位置での点火回数が設定値を超えていないという条件が成立しているとき)にのみ行うので、始動直後のアイドル回転速度が不必要に上昇するのを防ぐことができる。
【0114】
本実施形態においては、図13に示されているように、始動時に適した点火位置として、上死点位置に近い第1の始動時用点火位置θigs1と、この第1の始動時用点火位置よりも進角した第2の始動時用点火位置(アイドル回転時の点火位置として適した点火位置)θigs2との2つの始動時用点火位置を設定するとともに、これらの始動時用点火位置を切り換える点火位置切換回転速度IGCHNEと、機関が始動時の運転状態にあるか否かを判定するための始動判定速度SNCHNEとを設定して、IGCHNE>回転速度であるときに上死点位置に近い第1の始動時用点火位置θigs1で点火を行なわせ、IGCHNE≦回転速度<SNCHNEのときに第2の始動時用点火位置θigs2で点火動作を行なわせるようにしたので、スタータモータを用いてクランキングを行なうことにより機関を始動させる場合に、クランキングの脈動により、ケッチンが発生するのを防ぐことができる。しかしながら、本発明は、上記のように始動時用点火位置を複数個設定する場合に限定されるものではなく、上死点位置に近い位置に始動時に適した点火位置を一つだけ設定するようにしても良い。
【0115】
上記の実施形態では、アイドル進角制御用の点火位置での点火回数が設定値を超えていないことをアイドル進角制御条件(アイドル進角制御を許可するための条件)としたが、アイドル進角制御が行われている時間が設定時間を超えていないこと、またはアイドル進角制御時に機関の回転速度が設定速度を超えないことをアイドル進角制御条件としても良い。
【0116】
図14ないし図16は、アイドル進角制御が行われている時間が設定時間を超えていないことをアイドル進角制御条件とする本発明の第2の実施形態において、マイクロプロセッサに実行させる処理のアルゴリズムを示したもので、図14はマイクロプロセッサが起動した直後に実行されるメモリ初期化処理のアルゴリズムを示したフローチャートである。また図15は、本発明の第2の実施形態において2msec毎にマイクロプロセッサが実行する2msec毎処理のアルゴリズムを示したフローチャート、図16は、同実施形態において、エキサイタコイルが出力する第1の負方向電圧の発生位置CRinが検出される毎にマイクロプロセッサが実行するCRin処理のアルゴリズムを示したフローチャートである。本実施形態において、電源投入時の処理、クランク割り込み処理及びCRout処理はそれぞれ図8、図11及び図13に示したものと同一である。
【0117】
図14に示したメモリ初期化処理では、ステップS201でアイドル進角制御時間カウンタIdlet_cntの計数値をクリアする。図14に示した処理のその他の点は、図9に示したメモリ初期化処理と同様であり、クランク角割り込み処理及びCRout処理はそれぞれ図11及び図13に示したものと同様である。
【0118】
図15の2msec毎処理において、ステップS301からS305までの処理は図10に示した2msec毎処理と同様である。図15のステップS305でメモリの初期化を行った後、ステップS306で現在の制御がアイドル進角制御であるか否か(アイドル進角制御フラグがセットされているか否か)を判定し、アイドル進角制御である場合には、ステップS307でアイドル進角制御時間カウンタの計数値Idlet_cntを1だけインクリメントした後、ステップS308でIdlet_cnt>IDLETIMEであるか否かを判定する。その結果、アイドル進角制御時間カウンタの計数値Idlet_cntが設定値IDLETIME以下であると判定されたときにはこの処理を終了してアイドル進角制御を続行させ、アイドル進角制御時間カウンタの計数値Idlet_cntが設定値IDLETIMEを超えたときにステップS309を実行してアイドル進角制御を終了する。
【0119】
図16のCRin処理において、ステップS501ないしS510の処理は図12のCRin処理と同様である。図16のステップS510において現在の制御がアイドル進角制御であると判定されたときには、ステップS513に移行して、第1の負方向電圧Vn1の発生周期T2から検出した機関の回転速度とアイドル進角制御時の点火位置θigiとから、点火位置検出用計時データTigiを演算し、ステップS514で点火位置検出用計時データTigiを点火タイマにセットしてこのCRin処理を終了する。またステップS510で現在の制御がアイドル進角制御でないと判定されたときには、ステップS516で第1の負方向電圧の発生周期T2と既に演算されている定常運転時の点火位置θignとから点火位置検出用計時データTignを演算し、ステップS517においてこの計時データTignを点火タイマにセットしてこのCRin処理を終了する。
【0120】
本実施形態では、図15の2msec毎処理のステップS308により、アイドル進角制御条件判定手段27が構成される。また、図16のCRin処理のステップS513により、アイドル進角制御用の点火位置検出用計時データ演算手段34が構成され、ステップS514により、点火タイマ制御手段35が構成される。
【0121】
図17は本発明の第3の実施形態において、エキサイタコイルが第1の負方向電圧Vn1を発生する毎にマイクロプロセッサに実行させるCRin処理のアルゴリズムを示したものである。電源投入時の処理、メモリ初期化処理、2msec毎処理、クランク割り込み処理及び第2の負方向電圧Vn2が発生する毎に行われるCRout処理のアルゴリズムはそれぞれ図8、図9、図10、図11及び図13に示したものと同様である。
【0122】
図17に示したCRin処理は、図12に示したCRin処理にステップS518を追加したものである。図17に示したCRin処理による場合には、ステップS510で現在の制御がアイドル進角制御であると判定されたときにステップS518で機関の回転速度が設定された一定期間の間継続してアイドル進角制御判定速度以上になっているか否かを判定する。その結果、機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が未だ一定の期間に達していないと判定されたときに、アイドル進角制御カウンタの計数値Idle_cntを1だけインクリメントするステップS511に進む。ステップS518で機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達していると判定されたときにはステップS515に移行してアイドル進角制御を終了する。その他の点は図12に示したCRin処理と同様である。
【0123】
本実施形態では、ステップS518とステップS511とステップS512とによりアイドル進角制御条件判定手段27が構成される。このアイドル進角制御条件判定手段は、内燃機関の回転速度が継続して設定されたアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達しておらず、かつアイドル進角制御カウンタの計数値Idle_cntがアイドル進角制御回数設定値IDLENUM以下であるときにアイドル進角制御条件が成立していると判定し、内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が一定の期間に達したとき、及び内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が一定の期間に達してはいないが、アイドル進角制御カウンタの計数値Idle_cntがアイドル進角制御回数設定値IDLENUMを超えたときにアイドル進角制御条件が成立しなくなったと判定する。
【0124】
図18、図19及び図20はそれぞれ、本発明の第4の実施形態においてマイクロプロセッサに実行させるメモリ初期化処理、2msec毎処理及びCRin処理のアルゴリズムを示したものである。本実施形態において、電源投入時の処理、クランク割り込み処理、及びCRout処理のアルゴリズムは、図8、図11及び図13に示した第1の実施形態のものと同様である。また図18に示したメモリ初期化処理は、図14に示した第2の実施形態のメモリ初期化処理と同一であり、図19に示した2msec毎処理は、図15に示した第2の実施形態の2msec毎処理と同一である。
【0125】
図20に示したCRin処理は、図17に示したCRin処理からステップS511及びS512を省略して、ステップS518において、機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が一定の期間に達していないと判定されたときにアイドル進角制御時の点火位置検出用計時データTigiを演算するステップS513に移行させ、ステップS518において、機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が一定の期間に達したと判定されたときにアイドル進角制御を終了させるステップS515に移行させるようにしたものである。その他の点は第1の実施形態におけるCRin処理と同様である。
【0126】
図20に示すようにCRin処理を構成した場合には、内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達していないときにアイドル進角制御条件が成立していると判定し、内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達したときにアイドル進角制御条件が成立しなくなったと判定するようにアイドル進角制御条件判定手段27が構成される。
【0127】
上記第3の実施形態のように、内燃機関の回転速度が継続して設定されたアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達しておらず、かつアイドル進角制御手段による点火回数が設定値以下のときにのみアイドル進角制御を行わせるようにするか、または第4の実施形態のように、内燃機関の回転速度がアイドル進角制御判定速度以上になっている状態が設定された判定時間の間継続するようになるまでの間だけアイドル進角制御を行わせるようにすると、アイドル進角制御を行うことにより機関の回転速度が急上昇する事態が生じるのを確実に防ぐことができるため、運転者に違和感を与えることなく、機関の始動直後のアイドル運転を短時間で安定化することができる。
【0128】
図21及び図22は、本発明の第5の実施形態において、マイクロプロセッサに実行させるCRin処理及びCRout処理のアルゴリズムを示したものである。本実施形態において、電源投入時の処理、メモリ初期化処理、2msec毎処理及びクランク割り込み処理のアルゴリズムはそれぞれ図8、図9、図10及び図11に示したものと同一である。本実施形態では、第2の負方向電圧Vn2の発生位置がアイドル進角制御時の点火位置よりも進角した位置に設定されている。
【0129】
図21に示したCRin処理は、図12に示したCRin処理からステップS513及びS514を省略したものに相当する。図12に示したCRin処理では、アイドル進角制御カウンタの計数値Idle_cntをインクリメントするステップS511と、アイドル進角制御カウンタの計数値Idle_cntがアイドル進角制御回数設定値IDLENUM以下の時にアイドル進角制御を行わせ、アイドル進角制御カウンタの計数値Idle_cntがアイドル進角制御回数設定値IDLENUMを超えたときにアイドル進角制御を終了する過程のみを行わせる。即ち、本実施形態のCRin処理では、アイドル進角制御の開始及び終了の判定のみを行わせる。
【0130】
図22に示したCRout処理では、ステップS602で始動時ではないと判定されたときにステップS609を実行して現在の制御がアイドル進角制御であるか否か(アイドル進角制御フラグがセットされているか否か)を判定する。その結果、アイドル進角制御であると判定されたときにステップ610を実行して第1の負方向電圧Vn1が発生してから第2の負方向電圧Vn2が発生するまでの時間T1と、アイドル進角制御時の点火位置θigiとによりアイドル進角制御時の点火位置検出用計時データTigiを演算し、ステップS611で演算した点火位置検出用計時データTigiを直ちに点火タイマにセットする。その他の点は第1の実施形態と同様である。
【0131】
図22に示したように、第2の負方向電圧Vn2の発生位置をアイドル進角制御時の点火位置θigiよりも進角した位置に設定しておいて、第2の負方向電圧Vn2の発生位置でアイドル進角制御時の点火位置検出用計時データTigiの計測を開始させるようにすると、点火位置検出用計時データTigiを点火タイマにセットしてから点火動作を行わせるまでの時間を短縮することができるため、機関の回転の脈動の影響を少なくして、アイドル進角制御時の点火位置を正確に定めることができ、アイドル進角制御を的確に行うこととができる。
【0132】
図21及び図22に示した実施形態においては、図21のステップS512によりアイドル進角制御条件判定手段27が構成され、図22のステップS610及びS611によりそれぞれアイドル進角制御時点火位置検出用計時データ演算手段34及び点火タイマ制御手段35が構成される。
【0133】
上記の各実施形態においては、始動時に適した点火位置として、上死点位置に近い第1の始動時用点火位置θigs1と、この第1の始動時用点火位置よりも進角した第2の始動時用点火位置(アイドル回転時の点火位置として適した点火位置)θigs2との2つの始動時用点火位置を設定するとともに、これらの始動時用点火位置を切り換える点火位置切換回転速度IGCHNEと、機関が始動時の運転状態にあるか否かを判定するための始動判定速度SNCHNEとを設定して、IGCHNE>回転速度のときに上死点位置に近い第1の始動時用点火位置θigs1で点火を行なわせ、IGCHNE≦回転速度<SNCHNEのときに第2の始動時用点火位置θigs2で点火動作を行なわせるようにしたので、スタータモータを用いてクランキングを行なうことにより機関を始動させる場合に、クランキングの脈動により、ケッチンが発生するのを防ぐことができる。しかしながら、本発明は、上記のように始動時用点火位置を複数個設定する場合に限定されるものではなく、上死点位置に近い位置に始動時に適した点火位置を一つだけ設定するようにしても良い。
【0134】
図1に示した例では、エキサイタコイルが負方向電圧を発生したときにHレベルからLレベルに立ち下がる波形の矩形波信号Vqを用いているが、エキサイタコイルが負方向電圧を発生したときにLレベルからHレベルに立上がる波形の矩形波信号Vqを発生させて、この矩形波信号の立上がりをクランク信号として用いるようにしてもよいのはもちろんである。
【0135】
上記の実施形態では、図2(A)に示したように、非磁性材料からなるフライホイールに永久磁石と磁路構成部材とを鋳込んで2極の磁石界磁を構成したフライホイール磁石回転子11を備えた磁石式交流発電機を用いたが、図2(B)に示したように、鉄製のフライホイール13′の外周に形成した凹部13a内に永久磁石17を固定して、該永久磁石をフライホイールの径方向に着磁することにより3極の磁石界磁を構成したフライホイール磁石回転子11′と、磁石界磁の磁極に対向する磁極部16a,16bを両端に有するコの字形鉄心16にエキサイタコイルEXを巻回した固定子12とからなる磁石式交流発電機1を用いる場合にも本発明を適用することができる。
【0136】
図3に示した実施形態では、始動時点火制御手段26に点火許否手段を設けているが、この点火許否手段は省略することもできる。
【0137】
上記の各実施形態では、CRin処理において、機関の始動開始時からのクランク軸の回転回数Pulse_cntを設定回数STARTNUMと比較して、回転回数Pulse_cntが設定回数STARTNUMを超えているときには機関の回転速度が始動判定速度に達していなくても定常運転時の制御に移行させるようにしているが、CRin処理において、ステップS506及びS507を省略して、回転回数Pulse_cntを設定回数STARTNUMと比較する過程を行なうことなく、単に機関の回転速度が始動判定速度に達しているか否かを判定することにより機関の運転状態が始動時の状態にあるか定常運転時の状態にあるのかを判定するようにしてもよい。
【0138】
上記の実施形態では、内燃機関が定常運転状態になった後もエキサイタコイルの第2の負方向電圧Vn2の発生位置CRoutでの処理を行なうようにしているが、機関が定常運転状態になった後は、第2の負方向電圧Vn2の発生位置CRoutでの処理を行なわないように、ソフトウェアまたはハードウェアを構成してもよい。
【0139】
上記の実施形態では、第1の負方向電圧Vn1の発生位置CRinが検出される回数をカウントすることにより始動操作開始時からのクランク軸の回転回数を検出するようにしているが、第2の負方向電圧Vn2の発生位置CRoutが検出される回数をカウントすることにより始動操作開始時からのクランク軸の回転回数を検出するようにしてもよい。
【図面の簡単な説明】
【0140】
【図1】本発明に係わる点火装置のハードウェアの構成例を示した回路図である。
【図2】(A)及び(B)はそれぞれ本発明で用いることができる磁石式交流発電機の異なる構成例を概略的に示した構成図である。
【図3】本発明の第1の実施形態の点火制御部の構成を含む全体的な構成を示したブロック図である。
【図4】本発明の実施形態においてエキサイタコイルが出力する負方向電圧の発生位置を識別する方法を説明するために、エキサイタコイルの出力電圧の波形と波形整形回路から得られる矩形波信号の波形とを示した波形図である。
【図5】本発明の実施形態において、機関の始動時の動作を説明するために用いるエキサイタコイルの出力電圧波形及び矩形波信号の波形を示した波形図である。
【図6】本発明の実施形態において行われるアイドル進角制御の動作を説明するために用いるエキサイタコイルの出力電圧及び矩形波信号の波形図である。
【図7】本発明の実施形態における定常運転時の制御を説明するために用いるエキサイタコイルの出力電圧及び矩形波信号の波形図である。
【図8】図3に示した第1の実施形態において、マイクロプロセッサの電源投入時に実行される処理のアルゴリズムを示したフローチャートである。
【図9】本発明の第1の実施形態においてマイクロプロセッサが起動した直後に実行されるメモリ初期化処理のアルゴリズムを示したフローチャートである。
【図10】本発明の第1の実施形態において、2msec毎にマイクロプロセッサが実行する処理のアルゴリズムを示したフローチャートである。
【図11】本発明の第1の実施形態において、エキサイタコイルが出力する負方向電圧の発生位置が検出される毎にマイクロプロセッサが実行するクランク割込み処理のアルゴリズムを示したフローチャートである。
【図12】本発明の第1の実施形態において、エキサイタコイルが出力する第1の負方向電圧の発生位置CRinが検出される毎にマイクロプロセッサが実行するCRin処理のアルゴリズムを示したフローチャートである。
【図13】本発明の第1の実施形態において、エキサイタコイルが出力する第2の負方向電圧の発生位置CRoutが検出される毎にマイクロプロセッサが実行するCRout処理のアルゴリズムを示したフローチャートである。
【図14】本発明の第2の実施形態においてマイクロプロセッサが起動した直後に実行されるメモリ初期化処理のアルゴリズムを示したフローチャートである。
【図15】本発明の第2の実施形態において2msec毎にマイクロプロセッサが実行する処理のアルゴリズムを示したフローチャートである。
【図16】本発明の第2の実施形態において、エキサイタコイルが出力する第1の負方向電圧の発生位置CRinが検出される毎にマイクロプロセッサが実行するCRin処理のアルゴリズムを示したフローチャートである。
【図17】本発明の第3の実施形態において、エキサイタコイルが出力する第1の負方向電圧の発生位置CRinが検出される毎にマイクロプロセッサが実行するCRin処理のアルゴリズムを示したフローチャートである。
【図18】本発明の第4の実施形態においてマイクロプロセッサが起動した直後に実行されるメモリ初期化処理のアルゴリズムを示したフローチャートである。
【図19】本発明の第4の実施形態において2msec毎にマイクロプロセッサが実行する処理のアルゴリズムを示したフローチャートである。
【図20】本発明の第4の実施形態において、エキサイタコイルが出力する第1の負方向電圧の発生位置CRinが検出される毎にマイクロプロセッサが実行するCRin処理のアルゴリズムを示したフローチャートである。
【図21】本発明の第5の実施形態において、エキサイタコイルが出力する第1の負方向電圧の発生位置CRinが検出される毎にマイクロプロセッサが実行するCRin処理のアルゴリズムを示したフローチャートである。
【図22】本発明の第5の実施形態において、エキサイタコイルが出力する第2の負方向電圧の発生位置CRoutが検出される毎にマイクロプロセッサが実行するCRout処理のアルゴリズムを示したフローチャートである。
【図23】従来の点火装置の動作を説明するために用いるエキサイタコイルの出力電圧波形を示した波形図である。
【符号の説明】
【0141】
1 磁石式交流発電機
2 点火回路
3 マイクロプロセッサ
4 波形整形回路
20 点火制御部
21 点火信号発生手段
22 経過時間計測手段
23 負方向電圧発生位置検出手段
24 始動完了判定手段
25 回転速度演算手段
26 始動時点火制御手段
27 アイドル進角制御条件判定手段
28 アイドル進角制御手段
29 定常運転時点火制御手段
30 始動時点火位置検出用計時データ演算手段
31 点火許否手段
32 点火タイマ制御手段
33 アイドル進角制御時点火位置演算手段
34 点火位置検出用計時データ演算手段
35 点火タイマ制御手段
36 定常時点火位置検出用計時データ演算手段
37 点火タイマ制御手段

【特許請求の範囲】
【請求項1】
内燃機関と同期回転する交流発電機内に設けられて、正方向電圧からなる半波と該正方向電圧からなる半波の前後にそれぞれ現れる第1及び第2の負方向電圧からなる半波とを有する交流電圧を前記内燃機関のクランク軸の1回転当たり1回発生するエキサイタコイルと、点火コイルの一次側に設けられて前記正方向電圧により一方の極性に充電される点火用コンデンサと、点火信号が与えられたときに導通して前記点火用コンデンサに蓄積された電荷を前記点火コイルの一次コイルを通して放電させるように設けられた放電用スイッチと、前記内燃機関の点火位置で前記放電用スイッチに点火信号を与える点火制御部とを備えた内燃機関用点火装置であって、
前記点火制御部は、前記内燃機関が始動時の状態にあるか始動を完了した状態にあるかを判定する始動完了判定手段と、前記内燃機関が始動時の状態にあるときに前記第1の負方向電圧が発生してから第2の負方向電圧が発生するまでの時間から求めた回転速度で前記内燃機関が前記第2の負方向電圧の発生位置から始動時に適した点火位置まで回転するのに要する時間を点火位置検出用計時データとして前記第2の負方向電圧の発生位置で演算して、演算した点火位置検出用計時データの計測を直ちに開始させることにより前記内燃機関の点火位置を前記始動時に適した位置とするように前記点火信号の発生位置を制御する始動時点火制御手段と、前記内燃機関の始動完了直後のアイドル回転を安定化するために前記内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるアイドル進角制御を行うことを許可するための条件であるアイドル進角制御条件の成立の有無を判定するアイドル進角制御条件判定手段と、前記アイドル進角制御条件判定手段によりアイドル進角制御条件が成立していると判定されているときに前記内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるように前記点火信号の発生位置を制御するアイドル進角制御手段と、前記始動完了判定手段により前記内燃機関が始動を完了した状態にあると判定され、かつ前記アイドル進角制御条件判定手段によりアイドル進角制御条件が成立していないと判定されているときに前記点火位置を前記内燃機関の定常運転時に適した位置とするように前記点火信号の発生位置を制御する定常運転時点火制御手段とを備えている内燃機関用点火装置。
【請求項2】
内燃機関と同期回転する交流発電機内に設けられて、正方向電圧からなる半波と該正方向電圧からなる半波の前後にそれぞれ現れる第1及び第2の負方向電圧からなる半波とを有する交流電圧を前記内燃機関のクランク軸の1回転当たり1回発生するエキサイタコイルと、点火コイルの一次側に設けられて前記正方向電圧により一方の極性に充電される点火用コンデンサと、点火信号が与えられたときに導通して前記点火用コンデンサに蓄積された電荷を前記点火コイルの一次コイルを通して放電させるように設けられた放電用スイッチと、前記内燃機関の点火位置で前記放電用スイッチに点火信号を与える点火制御部とを備えた内燃機関用点火装置であって、
前記点火制御部は、
点火位置検出用計時データを計測する点火タイマを備えて該点火タイマが点火位置検出用計時データの計測を完了したときに前記点火信号を発生する点火信号発生手段と、
前記第1の負方向電圧の発生位置と第2の負方向電圧の発生位置とを検出する負方向電圧発生位置検出手段と、
前記内燃機関が始動時の状態にあるか始動を完了した状態にあるかを判定する始動完了判定手段と、
前記始動完了判定手段により内燃機関が始動時の状態にあると判定されているときに前記第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間と前記第1の負方向電圧の発生位置から第2の負方向電圧の発生位置までの角度とから求まる前記内燃機関の回転速度で前記内燃機関が前記第2の負方向電圧の発生位置から始動時に適した点火位置まで回転するのに要する時間を始動時の点火位置検出用計時データとして前記第2の負方向電圧の発生位置で演算して、演算した点火位置検出用計時データの計測を前記点火タイマに直ちに開始させることにより、前記内燃機関の点火位置を始動時に適した位置とするように制御する始動時点火制御手段と、
前記内燃機関の始動完了直後のアイドル回転を安定化するために前記内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるアイドル進角制御を行うことを許可するための条件であるアイドル進角制御条件が成立しているか否かを判定するアイドル進角制御条件判定手段と、
前記アイドル進角制御条件判定手段によりアイドル進角制御条件が成立していると判定されているときに前記内燃機関の始動完了直後のアイドル時の点火位置を定常運転状態でのアイドル時の点火位置よりも進角させるように前記点火信号の発生位置を制御するアイドル進角制御手段と、
前記始動完了判定手段により前記内燃機関が始動を完了した状態にあると判定され、かつ前記アイドル進角制御条件判定手段によりアイドル進角制御条件が成立していないと判定されているときに前記点火位置を前記内燃機関の定常運転時に適した位置とするように前記点火信号の発生位置を制御する定常運転時点火制御手段と、
を備えていることを特徴とする内燃機関用点火装置。
【請求項3】
前記アイドル進角制御手段は、前記第1の負方向電圧の発生位置が検出される周期から求められた前記内燃機関のアイドル回転速度で前記内燃機関が前記第1の負方向電圧の発生位置から前記内燃機関の定常運転時の当該アイドル回転速度における点火位置よりも進角した位置に設定されたアイドル進角制御時の点火位置まで回転するのに要する時間を前記点火位置検出用計時データとして前記第2の負方向電圧の発生位置で演算して、演算した点火位置検出用計時データの計測を前記点火タイマに直ちに開始させることにより、前記内燃機関の点火位置を定常運転時のアイドル状態での点火位置よりも進角させる制御を行うように構成されている請求項2に記載の内燃機関用点火装置。
【請求項4】
前記アイドル進角制御手段は、前記第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間と前記第1の負方向電圧の発生位置から第2の負方向電圧の発生位置までの角度とから求まる前記内燃機関の回転速度で前記内燃機関が前記第2の負方向電圧の発生位置から前記内燃機関の定常運転時の当該アイドル回転速度における点火位置よりも進角した位置に設定されたアイドル進角制御時の点火位置まで回転するのに要する時間をアイドル進角制御時の点火位置検出用計時データとして前記第2の負方向電圧の発生位置で演算して、演算した点火位置検出用計時データの計測を前記点火タイマに直ちに開始させることにより、前記内燃機関の点火位置を定常運転時のアイドル状態での点火位置よりも進角させる制御を行うように構成されている請求項2に記載の内燃機関用点火装置。
【請求項5】
前記アイドル進角制御条件判定手段は、前記アイドル進角制御手段による点火回数が設定値以下のときにアイドル進角制御条件が成立していると判定し、前記アイドル進角制御手段による点火回数が設定値を超えているときにアイドル進角制御条件が成立していないと判定するように構成されている請求項2,3または4に記載の内燃機関用点火装置。
【請求項6】
前記アイドル進角制御条件判定手段は、前記アイドル進角制御手段による点火位置の制御が開始されてからの経過時間が設定時間以下のときにアイドル進角制御条件が成立していると判定し、前記アイドル進角制御手段による点火位置の制御が開始されてからの経過時間が設定時間を超えているときにアイドル進角制御条件が成立していないと判定するように構成されている請求項2,3または4に記載の内燃機関用点火装置。
【請求項7】
前記アイドル進角制御条件判定手段は、前記内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達していないときにアイドル進角制御条件が成立していると判定し、前記内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達したときにアイドル進角制御条件が成立しなくなったと判定するように構成されている請求項2,3または4に記載の内燃機関用点火装置。
【請求項8】
前記アイドル進角制御条件判定手段は、前記内燃機関の回転速度が継続して設定されたアイドル進角制御判定速度以上になっている期間が設定された一定の期間に達しておらず、かつ前記アイドル進角制御手段による点火回数が設定値以下のときに前記アイドル進角制御条件が成立していると判定し、内燃機関の回転速度が継続して前記アイドル進角制御判定速度以上になっている期間が一定の期間に達したとき、及び内燃機関の回転速度が継続してアイドル進角制御判定速度以上になっている期間が一定の期間に達してはいないが、アイドル進角制御手段による点火回数が設定値に達したときにアイドル進角制御条件が成立しなくなったと判定するように構成されている請求項2,3または4に記載の内燃機関用点火装置。
【請求項9】
前記定常運転時点火制御手段は、前記第1の負方向電圧の発生周期から求められた前記内燃機関の回転速度に対して演算された前記内燃機関の定常運転時の点火位置と前記第1の負方向電圧の発生周期から求められた前記内燃機関の回転速度で前記第1の負方向電圧の発生位置から演算された定常運転時の点火位置まで機関が回転するのに要する時間を定常運転時の点火位置検出用計時データとして演算する過程と該定常運転時の点火位置検出用計時データの計測を前記点火タイマに開始させる過程とを前記第1の負方向電圧の発生位置が検出されたときに行なうように構成されている請求項2ないし8のいずれか1つに記載の内燃機関用点火装置。
【請求項10】
前記エキサイタコイルの出力電圧を入力として負方向電圧の発生位置に立下がりを有する矩形波信号に変換する波形整形回路と、前記矩形波信号の立下がりをクランク信号として認識して該クランク信号を認識する毎にタイマの計測値を読み込んで前回のクランク信号が発生してから今回のクランク信号が発生するまでの経過時間を計測する経過時間計測手段とが設けられ、
前記負方向電圧発生位置検出手段は、前記経過時間計測手段が前回計測した経過時間Toldと今回計測した経過時間Tnewとを比較して、Tnew<Told/k(kは1以上の定数)の関係が成立しないときにクランク信号の今回の発生位置が第1の負方向電圧の発生位置であることを検出し、Tnew<Told/kの関係が成立したときにクランク信号の今回の発生位置が第2の負方向電圧の発生位置であることを検出するように構成されていること、
を特徴とする請求項2ないし9のいずれか1つに記載の内燃機関用点火装置。
【請求項11】
前記始動完了判定手段は、前記内燃機関の回転速度が始動判定速度未満の時に前記内燃機関が始動時の状態にあると判定し、前記内燃機関の回転速度が前記始動判定速度以上を一定期間継続したときに前記内燃機関が始動を完了した状態にあると判定するように構成されている請求項2ないし10のいずれか1つに記載の内燃機関用点火装置。
【請求項12】
前記始動完了判定手段は、内燃機関の回転速度が始動判定速度未満で、かつ内燃機関の始動操作が開始された後の該機関のクランク軸の回転回数が設定回数以下であるときに前記内燃機関が始動時の状態にあると判定し、前記内燃機関の回転速度が始動判定速度以上を一定期間継続したとき、及び前記内燃機関の回転速度が始動判定速度未満であるが前記内燃機関の始動操作が開始された後の該機関のクランク軸の回転回数が前記設定回数を超えているときには前記内燃機関が始動を完了した状態にあると判定するように構成され、
前記設定回数は、前記内燃機関が始動できない状態で人力によりクランキングを行なった際のクランク軸の最大回転回数に相当する値に設定されていること、
を特徴とする請求項2ないし10のいずれか1つに記載の内燃機関用点火装置。
【請求項13】
前記始動時に適した点火位置は予め複数設定されていて、前記第1の負方向電圧の発生位置が検出される周期から演算された前記回転速度に応じて始動時に適した点火位置として設定されている点火位置の中から最適の点火位置が選択されること、
を特徴とする請求項2ないし12のいずれか1つに記載の内燃機関用点火装置。
【請求項14】
前記始動時点火制御手段は、前記第2の負方向電圧の発生位置が検出されてから次の第1の負方向電圧の発生位置が検出されるまでの時間T0と前記第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間T1との比T0/T1が設定値以上であるときに前記始動時の点火信号の発生を許可し、前記比T0/T1が設定値未満であるときに前記始動時の点火信号の発生を禁止する点火許否手段を備えている請求項2ないし13のいずれか1つに記載の内燃機関用点火装置。
【請求項15】
前記始動時点火制御手段は、前記第1の負方向電圧の発生位置が検出されてから第2の負方向電圧の発生位置が検出されるまでの時間T1が設定値以下であるときに前記始動時の点火信号の発生を許可し、前記時間T1が設定値を超えているときに前記始動時の点火信号の発生を禁止する点火許否手段を備えている請求項2ないし13のいずれか1つに記載の内燃機関用点火装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2007−327342(P2007−327342A)
【公開日】平成19年12月20日(2007.12.20)
【国際特許分類】
【出願番号】特願2006−156920(P2006−156920)
【出願日】平成18年6月6日(2006.6.6)
【出願人】(000001340)国産電機株式会社 (191)
【Fターム(参考)】