説明

導波路素子、空間変調素子および時間変調素子

【課題】複数の光周波数成分を持つ入力信号光に対する、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子と、その導波路素子で構成される空間変調素子および時間変調素子を実現する。
【解決手段】本発明の導波路素子は、平滑な基板1上に、サイズの揃った金属微粒子2が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子2が等間隔で直線的に配列された導波路構造とを多段に有する。この導波路素子で構成される空間変調素子は、入射される光の周波数に対して、異なるサイズの金属微粒子による導波路に選択的に結合し、プラズモンを伝搬する。前記導波路素子で構成される時間変調素子は、前記金属微粒子2のサイズに依存してプラズモンの伝搬速度が異なることを利用し、該プラズモンの各周波数成分に時間遅延を与える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子と、その導波路素子で構成される空間変調素子および時間変調素子に関するものである。
より詳しくは、本発明は、光の回折限界以下のナノメートル領域で情報を扱う光デバイス技術および光集積回路技術における、光周波数多重化信号の分配素子、同信号の合成素子、同信号の時間変調素子、ナノスケール領域の空間変調素子、微小光導波路の配線技術に関する。さらには、従来の光通信網における波長多重化信号の、ナノメートル領域の光デバイスへの導入素子として利用できる導波路素子、空間変調素子及び時間変調素子に関する。ここで、光周波数と波長とは光の回折限界以上の領域では同義で扱っているが、ナノメートル領域では光の波長は定義されないため、本発明の導波路素子、特にその導波路素子で構成されるプラズモン空間変調素子や時間変調素子の動作では光周波数として説明する。
【背景技術】
【0002】
近年の情報の大容量化にともない、光の回折限界を超えるナノスケール領域での光情報処理システムおよびナノ光デバイスが必要となってきている。ここでは光通信網を伝搬してきた波長多重化信号をナノメートル領域で分岐し、多様な情報処理を行う必要があるが、ナノスケールでの信号の分岐・合成・複写を行う技術は未だ知られていない。
【0003】
本発明において利用している金属微粒子のサイズに依存したプラズモンの共鳴効果は公知であり、下記の非特許文献1に記載されている。
また、本発明において利用している金属微粒子によるプラズモンの伝搬や信号制御に関しては、すでに幾つかの公知文献があり、下記の非特許文献2に記載の金属微粒子列導波路やプラズモンの干渉を用いたスイッチ、下記の非特許文献3に記載のプラズモン集光器などが提案されている。
【0004】
さらに、本発明と同様に金属の周期構造に生じるプラズモンを利用した技術として、下記の特許文献1に記載の光学素子およびそれを用いた光ヘッドが提案されている。
また、プラズモンのエネルギー伝搬機構を利用した技術として、下記の特許文献2に記載の金属微粒子を分散させた記録媒体、近視野光ヘッド、光記憶装置が提案されている。
【0005】
【特許文献1】特開2003−287656号公報
【特許文献2】特開平13−283466号公報
【非特許文献1】福井・大津共著『光ナノテクノロジーの基礎』(オーム社)
【非特許文献2】M.L.Brongersma,J.W.Hartman,and A.Atwater,Phys.Rev.B62(2000)R16 356)
【非特許文献3】野村、八井、興梠、大津:第64回応用物理学会学術講演会予稿集,1p−Q−4
【発明の開示】
【発明が解決しようとする課題】
【0006】
ここで、非特許文献1に記載の従来技術は、金属微粒子の局在表面プラズモンによる共鳴現象に関する一般的な公知技術であり、プラズモンの金属微粒子のサイズ依存性について記述している。
また、非特許文献2に記載の従来技術は、図10に示すように、金属微粒子を直線的に配列し、金属微粒子間の電気双極子結合を介在したプラズモンの伝搬を利用することによって、損失の少ない導波路構造を実現している。図10のLとTの記号は電気双極子の向きがプラズモンの伝搬方向に対して縦方向(縦モード)であるか横方向(横モード)であるかを示しており、プラズモンのL字型導波路やT字型分岐路が構成できることを示している。また、T字型分岐路の3端子を入力、出力、制御端子とし、偏向制御されたプラズモンを励起することにより、プラズモンの干渉によるスイッチが実現できることを示している。
【0007】
非特許文献3に記載の従来技術におけるプラズモン集光器は、図11(a)の電子顕微鏡像に示すように、金属微粒子を円弧状に適当な間隔をもって配置するものであり、入射される金属平面上の表面プラズモンを散乱・回折させ、金属微粒子の位置により調整された位相関係によるプラズモン干渉の結果、入射されたプラズモンのエネルギーを1点に集中させるプラズモン集光器を実現している。
【0008】
特許文献1に記載の従来技術における光学素子は、図12に示すように、導電性フィルム20の間に、中間層21として、表面凹凸を改善する効果のある層を挿入することによって、プラズモン効果で効率よく増幅された高効率で高解像の光学素子10と、これを利用した光ディスク上の波長以下のスケールでの読み出し及び書き込みを可能にする光読み出し/書き込みヘッドが得られるものである。その結果、光の回折限界により限定される線データ密度よりはるかに高い線データ密度の記録/読み出しを可能にしている。
【0009】
特許文献2に記載の従来技術における記録媒体、近視野光ヘッド、光記憶装置は、近接場光を介した記録媒体との相互作用によって、高密度な情報の記録および読取を実現させるための情報記録/読取装置、特に高い光効率の近視野光ヘッドおよびその製造方法を提供することを目的とし、図13に示すように、近接場光6を発生させる微小開口に、金属微粒子を分散させた層14を形成することで、プラズモンを介したエネルギー伝播機構を実現し、光効率の向上を実現している。
【0010】
ここで、非特許文献2に記載の従来技術は、単一の光周波数すなわち単一金属微粒子のプラズモン共鳴周波数に選んだ光の結合・伝搬を考えており、波長(周波数)多重化された光の分離や変調、合成など、従来の光通信技術との接続を考えたものではない。
また、非特許文献3に記載の従来技術は、表面プラズモンの集光を目的としており、集光器の後段に配置されるナノスケールの光デバイスに入力されるプラズモンの周波数は集光器下層の金属膜における表面プラズモンの励起周波数である。したがって、多重化された複数周波数に対する情報処理には適用できない。
また、特許文献2に記載の従来技術は、ランダムに分散した金属微粒子間の結合による透過率の向上を示したものであり、周期性をともなわないことからプラズモンの導波モードは形成されず、干渉を用いた情報処理技術へは適用できない。
【0011】
本発明は上記事情に鑑みなされたものであり、その目的の一つは、複数の光周波数成分を持つ入力信号光に対する、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子と、その導波路素子で構成される空間変調素子および時間変調素子を提供することである。
また、本発明の目的の一つは、ナノメートル領域の光集積回路における配線の自由度、加工の容易性確保のための技術を提供することである。
【課題を解決するための手段】
【0012】
上記目的を達成するため、本発明では以下のような技術的手段を採っている。
本発明の第1の手段は、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子であって、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とを多段に有することを特徴とする(請求項1)。
また、本発明の第2の手段は、第1の手段の導波路素子で構成される空間変調素子であり、入射される光の周波数に対して、異なるサイズの金属微粒子による導波路に選択的に結合し、プラズモンを伝搬することを特徴とする(請求項2)。
【0013】
本発明の第3の手段は、第1の手段の導波路素子で構成される時間変調素子であり、前記導波路構造において、前記金属微粒子のサイズに依存してプラズモンの伝搬速度が異なることを利用し、該プラズモンの各周波数成分に時間遅延を与えることを特徴とする(請求項3)。
また、本発明の第4の手段は、第1の手段の導波路素子で構成される時間変調素子であり、前記導波路構造において、金属微粒子間の距離に依存してプラズモンの伝搬速度が異なることを利用し、該プラズモンの各周波数成分に時間遅延を与えることを特徴とする(請求項4)。
【0014】
本発明の第5の手段は、第1の手段の導波路素子で構成される空間変調素子であり、それぞれの導波路構造が空間的に広がった構造を有することにより、プラズモンの各周波数成分を空間的に分岐させることを特徴とする(請求項5)。
また、本発明の第6の手段は、第1の手段の導波路素子で構成される空間変調素子であり、各導波路構造がそれぞれ直角に曲がるように配置されることにより、プラズモンの各周波数成分における偏向方向を保持し、空間的に分岐させることを特徴とする(請求項6)。
【0015】
本発明の第7の手段は、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子であって、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、同じサイズで異なる間隔を持つ金属微粒子による導波路構造とを多段に有することを特徴とする(請求項7)。
また、本発明の第8の手段は、第7の手段の導波路素子で構成される空間変調素子であり、金属微粒子間の距離に依存してプラズモンの伝搬速度が異なることを利用し、プラズモンを偏向させることを特徴とする(請求項8)。
【0016】
本発明の第9の手段は、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子であって、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とが、お互いに交差する構造を有することを特徴とする(請求項9)。
また、本発明の第10の手段は、第9の手段の導波路素子で構成される空間変調素子であり、異なるサイズの金属微粒子間における共鳴周波数の差異により、プラズモンの各周波数成分を混線することなく伝達することを特徴とする(請求項10)。
さらに本発明の第11の手段は、第9の手段の導波路素子で構成される空間変調素子であり、前記導波路構造の交差する点において、一方の導波路構造における1つの金属微粒子が、他方の導波路構造におけるサイズの異なる金属微粒子で置き換えられた構造を有し、異なるサイズの金属微粒子間における共鳴周波数の差異により、プラズモンの各周波数成分を混線することなく伝達することを特徴とする(請求項11)。
【発明の効果】
【0017】
第1の手段の導波路素子は、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とを多段に有することにより、金属微粒子のサイズに依存した共鳴効果や、金属微粒子のサイズに依存してプラズモンの伝搬速度が異なることなどを利用することにより、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調などを行うことが可能となる。
【0018】
第2の手段の空間変調素子は、第1の手段の導波路素子で構成されており、金属微粒子のサイズに依存した共鳴効果を利用することにより、入射される光の周波数に対して異なるサイズの金属微粒子をもつ導波路構造に選択的に結合してプラズモンを伝搬することができ、ナノメートル領域で光周波数の空間的な分配を実現することができる。
【0019】
第3の手段の時間変調素子は、第1の手段の導波路素子で構成されており、金属微粒子のサイズに依存してプラズモンの伝搬速度が異なること、すなわち、電気双極子による金属微粒子間の結合の強さが異なることを利用して、プラズモンの各周波数成分に時間遅延を与え、各周波数成分に対する時間変調を実現することができる。
また、第4の手段の時間変調素子は、第1の手段の導波路素子で構成されており、金属微粒子の間隔を調整することにより、電気双極子による金属微粒子間の結合の強さを調整してプラズモンの伝搬速度を変化させ、プラズモンの各周波数成分に時間遅延を与え、各周波数成分に対する時間変調を実現することができる。
【0020】
第5の手段の空間変調素子は、第1の手段の導波路素子で構成されており、それぞれの導波路構造が空間的に広がった構造を有することにより、プラズモンの各周波数成分を空間的に分配させており、ナノメートル領域の光(プラズモン)のプリズムとしての効果を与えることができる。
また、第6の手段の空間変調素子は、第1の手段の導波路素子で構成されており、各導波路構造がそれぞれ直角に曲がるように配置されることにより、プラズモンの各周波数成分における偏向方向を保持した空間的な分配を実現することができる。
【0021】
第7の手段の導波路素子は、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、同じサイズで異なる間隔をもつ金属微粒子による導波路構造を多段に有することにより、金属微粒子のサイズに依存した共鳴効果や、金属微粒子のサイズに依存してプラズモンの伝搬速度が異なることなどを利用することにより、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調などを行うことが可能となる。
また、第8の手段の空間変調素子は、第7の手段の導波路素子で構成されており、金属微粒子間の距離に依存してプラズモンの伝搬速度が異なることを利用し、入射される単一周波数をもつプラズモンを空間的に偏向させているので、ナノメートル領域の信号制御などを行うことができる。
【0022】
第9の手段の導波路素子は、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とが、お互いに交差する構造を有することにより、金属微粒子のサイズに依存した共鳴効果や、金属微粒子のサイズに依存してプラズモンの伝搬速度が異なることなどを利用することにより、ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調などを行うことが可能となる。
【0023】
第10の手段の空間変調素子は、第9の手段の導波路素子で構成されており、異なるサイズの金属微粒子間における共鳴周波数の差異により、プラズモンの各周波数成分を混線することなく伝達することができるので、導波路構造の配置(配線)の容易性と高集積性を実現することができる。
また、第11の手段の空間変調素子は、第9の手段の導波路素子で構成されており、前記導波路構造の交差する点において、一方の導波路構造における1つの金属微粒子が、他方の導波路構造におけるサイズの異なる金属微粒子で置き換えられた構造を有しており、異なるサイズの金属微粒子間における共鳴周波数の差異により、プラズモンの各周波数成分を混線することなく伝達することができるので、導波路構造の配置(配線)の容易性と高集積性を実現することができる。また、全ての金属微粒子が正方格子上に配置されていることから導波路構造の配置(配線)の容易性と高集積性とともに加工の容易性を実現することができる。
【発明を実施するための最良の形態】
【0024】
以下、本発明の構成、動作および作用を、図示の実施例に基いて詳細に説明する。
【実施例】
【0025】
[実施例1](第1、第2の手段の実施例)
本発明の第1の実施例を図1および図2に基づいて説明する。本実施例は、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とを多段に有する構成の導波路素子を、ナノスケール領域の空間変調素子として利用したプラズモン空間変調素子であり、このプラズモン空間変調素子は、入射される光を、金属微粒子の配列による導波路構造に周波数成分に応じて選択的に結合させる光周波数分配素子としての機能を有している。
【0026】
本実施例のプラズモン空間変調素子を構成する導波路素子の導波路3は、図1に示すように、SiOやCaFなどの誘電体の平滑な基板1の表面上に金属微粒子列として配置される。誘電体基板1上には、サイズの揃った金属微粒子2が等間隔で直線的に配列された導波路構造(金属微粒子列導波路3)を、金属微粒子のサイズを変えて複数本配列した構成を有しており、サイズの揃った金属微粒子の配列方向と直交する方向には、異なるサイズの金属微粒子が等間隔で直線的に配列された構成となっている。すなわち、図1の実施例では、平滑な誘電体基板1上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とを多段に有する構成となっている。
【0027】
このような構成の導波路3の一端側に光ファイバプローブ4を介して入射光を入射させると、入射光と金属微粒子中のプラズモンとの結合により、光エネルギーが導波路3へ導入される。なお、平滑な基板に誘電体基板1を用いるのは、基板中での電荷の移動によるエネルギー損失や電荷の金属微粒子2への注入を避けるためである。
【0028】
金属微粒子2の形状は、図1では作製の容易性から円筒形状を仮定しているが、半球状や立方体形状であってもよいし、また、基板内に埋め込まれた構造であってもよい。また、必要な光周波数や偏光特性に応じて楕円体形状などであってもよい。ここで、金属微粒子2のサイズが数十ナノメートル程度になると、そのサイズ、形状によりプラズモンの共鳴周波数が異なってくるため、入力信号となる入射光はその周波数に調整されていなければならない。金属微粒子2のサイズや形状に依存してプラズモンの共鳴周波数が異なることは、前述の非特許文献1に示されているように、すでに公知である。
【0029】
金属微粒子2の材質は、電磁波の可視領域でプラズモンの共鳴周波数を持つような媒質であればよく、金(Au)微粒子や銀(Ag)微粒子、アルミニウム(Al)微粒子などがプラズモンを励起する媒質として適している。例えば、直径が50nm程度のAu微粒子では光の波長500nm程度に共鳴波長が存在する。
【0030】
図1に示したプラズモン空間変調素子へ光エネルギーを注入するには、先鋭化された光ファイバプローブ4により単一の金属微粒子、またはプロープ先端近傍にある複数のサイズの異なる金属微粒子を回折限界よりも微小な領域に局在する近接場光を用いて励起すればよい。また、光リソグラフィー技術により作製されたシリコン(Si)突起形プローブなどを用いて、またはSi突起形プローブなどを同一基板上に作製し、金属微粒子による導波路構造の部分的な光照射を行えばよい。
【0031】
次に図1に示したプラズモン空間変調素子の詳細な構成を図2を用いて説明する。図2に示すプラズモン空間変調素子は、平滑な誘電体基板1上に、大、中、小の揃ったサイズをもつ金属微粒子2a,2b,2cがそれぞれ等間隔に直線的に配列された構造を有し、図中横方向のサイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、図中縦方向の異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とを多段に有する導波路素子で構成されている。このプラズモン空間変調素子の横方向の入射端の金属微粒子に入射光が入射され、プラズモンが励起された場合、プラズモンのエネルギーは金属微粒子間に働く電気双極子相互作用により次々に隣接する金属微粒子へと伝達され、伝搬モードを形成する。この結果、図2の例では定常状態として金属微粒子間隔dに関係して(πn/d)の波数をもった図中の横方向への伝搬モード(縦モード)が形成される。図2に示す矢印は電気双極子の向きと大きさを模式的に表わしたものであり、縦モードのプラズモンの伝搬を示している。巨視的な固体(バルク)や薄膜とは異なり、金属微粒子に励起されたプラズモンは、図中の縦方向への伝搬モード(横モード)も持つことができる。図2に示す適用例では、大、中、小の3種類の大きさの金属微粒子2a,2b,2cがそれぞれ等間隔に直線的に配列され、平行に並んだ場合を仮定している。この場合、縦方向に存在する金属微粒子2a,2b,2cは、列ごとにそのサイズが異なるため、それぞれの共鳴周波数が異なり、微粒子サイズの異なる導波路構造間の結合は弱くなる。
【0032】
次にサイズの異なる金属微粒子におけるプラズモンの共鳴エネルギー(周波数)について、図3を用いて説明する。図3は電磁波の時空間変化を表わすマクスウェル方程式を、微分方程式の数値解析法である有限差分時間領域法(FDTD法)により、単一のサイズ(半径r)の異なるAu金属円筒(図1の一つの金属微粒子2)に平面波の電磁波入力を与え、定常状態から瞬間的に入力を切断した際の過渡時間応答から、フーリエ変換を用いて共鳴エネルギーを算出した結果である。金属微粒子2のサイズが小さくなるほど、高エネルギー側へ強度スペクトルのピークが変化することが分かる。金属微粒子のサイズが数nmまで達すると、量子効果が生じエネルギーが離散化され、図3の計算結果は不正確となるが、10〜数10nm程度では量子効果は現れないので、サイズの減少にともない短波長側へシフトする傾向は成り立っている。
【0033】
金属微粒子列による導波路の並べ方は特に取り決めはないが、図2に示すように下側から上側に向けて、小さなサイズをもつ金属微粒子(小)2cの列から大きなサイズをもつ金属微粒子(大)2aの列となるように並べたのは、図3の強度スペクトルからも分かるように、便宜上、共鳴エネルギーの順に並べたためである。
【0034】
図1および図2に示すような金属微粒子の作製法は様々である。例えば、電子ビーム描画装置を用いて蒸着した金属膜を削る方法や、光リソグラフィーを用いる方法、集束イオンビームにより堆積物を形成し金属皮膜とする方法、型を押し当てるナノインプリンティングによる方法、水と電極との反応の陽極酸化法などが考えられる。
【0035】
次に図1および図2に示したプラズモン空間変調素子の動作について、図2、図3に基づいて説明する。図2に示す金属微粒子による導波路構造の入力端に照射された光は、図3に示すようにサイズに依存した周波数の光を吸収しプラズモンを励起するため、3つの周波数成分に切り分けられる。入射端の金属微粒子に励起されたプラズモンは電気双極子による結合を介して隣接する金属微粒子にエネルギー移動を生じ、同一サイズの金属微粒子列に伝搬モードを形成する。異なるサイズの金属微粒子間の結合は共鳴周波数の不一致から伝搬モードを形成することができないので、互いの導波路間の結合は弱くなる。このようにして、プラズモンの周波数成分を空間的に分配して、エネルギー伝搬を実現することができる。
【0036】
[実施例2](第1、第3の手段の実施例)
本発明の第2の実施例を図2に基づいて説明する。本実施例は、第1の実施例と同様の導波路素子を、ナノスケール領域の時間変調素子として利用したプラズモン時間変調素子であり、このプラズモン時間変調素子は、サイズの異なる金属微粒子による導波路構造間のプラズモンの伝搬速度の違いを利用した光遅延素子としての機能を有している。
【0037】
本実施例のプラズモン時間変調素子の導波路の基本構成は、第1の実施例で説明した通りである。ここで、金属微粒子2による導波路構造におけるプラズモンの伝搬速度は電気双極子結合の強さによって決まっており、電気双極子による結合の強さは金属微粒子2の大きさによって決まっている。したがって、サイズの大きな金属微粒子ほどプラズモンの伝搬速度は速くなり、金属微粒子による導波路構造の長さにより各周波数成分に対する遅延時間を変化させることができ、プラズモンの各周波数成分に対する時間変調が実現できる。
【0038】
[実施例3](第1、第4の手段の実施例)
本発明の第3の実施例を図4に基づいて説明する。本実施例は、第1の実施例と同様の導波路素子を、ナノスケール領域の時間変調素子として利用したプラズモン時間変調素子であり、このプラズモン時間変調素子は、第2の実施例と同様に、金属微粒子による導波路構造間におけるプラズモンの伝搬速度の違いを利用した光遅延素子としての機能を有している。本実施例の基本構成は図1、図2と略同様であるが、図4に示すように、導波路構造を形成する金属微粒子の間隔が、金属微粒子のサイズによって異なっている。すなわち、図4の例では、金属微粒子(大)2a、金属微粒子(中)2b、金属微粒子(小)2cの順で、金属微粒子間の間隔が狭くなっている。
【0039】
前記の電気双極子による結合の強さは、金属微粒子の間隔dの(−3)乗に比例している。このことを利用すると、金属微粒子の間隔に依存してプラズモンの伝搬速度を変化させることができる。したがって、各導波路構造における金属微粒子の間隔を調整することにより、プラズモンの遅延時間を変化させることができ、プラズモンの各周波数成分に対する時間変調を実現することができる。
【0040】
[実施例4](第1、第5の手段の実施例)
本発明の第4の実施例を図5に基づいて説明する。本実施例のプラズモン空間変調素子は、金属微粒子による導波路構造の空間的な配置を調整することにより、入射光またはプラズモンの各周波数成分のエネルギーを空間的に分配する、ナノメートル領域のプラズモン空間分散素子としての機能を有している。
【0041】
本実施例のプラズモン空間変調素子の構成は、図1と同様に、誘電体基板1上に作製された金属微粒子2a,2b,2cの配列により構成されている。ここで、図1、図2の例では異なる大きさの金属微粒子2a,2b,2cが平行に配列されているのに対して、本実施例では図5に示すように、大と小のサイズの揃った金属微粒子2a,2cによる導波路構造3a,3cが中央の金属微粒子(中)2bの導波路構造3bに対して角度θを有して配置されている。この場合、入射光の偏光に対して角度をもつ金属微粒子列では、縦横の両モードが形成され、金属微粒子2a,2cによる導波路構造3a,3cに沿って伝搬される。その結果、本実施例のプラズモン空間変調素子は、ナノメートル領域の光をプラズモンに変換し、各周波数成分に対して金属微粒子列の配置に依存した空間変調を生じるので、ナノメートル領域の空間分散素子として機能している。
【0042】
[実施例5](第1、第6の手段の実施例)
本発明の第5の実施例を図6に基づいて説明する。本実施例のプラズモン空間変調素子は、第4の実施例と同様に、金属微粒子による導波路構造の空間的な配置を調整することにより、入射光またはプラズモンの各周波数成分のエネルギーを空間的に分配する、ナノメートル領域のプラズモン空間分配素子としての機能を有している。
【0043】
本実施例のプラズモン空間変調素子の構成は、第4の実施例で説明したような大、中、小のサイズの金属微粒子2a,2b,2cを、図6に示すようにL字型にコーナーをもつように配列したものである。この場合、図6の実施例では、中央の中サイズの金属微粒子2bによる導波路構造3bに対して平行な偏光で入射した光に対し、上下の大小のサイズを有する金属微粒子2a,2cによる導波路構造3a,3bには、ひとまず横モードが励起され、直角に曲がるコーナーを介して縦モードに変換され伝搬する。図中の矢印は図2と同様に電気双極子の向きと大きさを模式的に示したものである。したがって、出力端では、プラズモンの偏向方向が縦モードに揃った複数の周波数成分の出力が得られ、入射光の偏光状態を保持したまま、プラズモンの各周波数成分を空間的に分配することができる。
【0044】
[実施例6](第7、第8の手段の実施例)
本発明の第6の実施例を図7に基づいて説明する。本実施例のプラズモン空間変調素子は、第3の実施例と同様に、金属微粒子による導波路構造間におけるプラズモンの伝搬速度の違いを利用したプラズモン空間分散素子としての機能を有している。このプラズモン空間変調素子は、平滑な基板1上に、サイズの揃った金属微粒子2が等間隔で直線的に配列された導波路構造と、同じサイズで異なる間隔を持つ金属微粒子2による導波路構造とを多段に有する導波路素子で構成されている。
【0045】
図7に示すように本実施例では、誘電体基板1上に配列された全ての金属微粒子2のサイズは同一のものとしている。ただし、金属微粒子間の間隔が各列によって異なっている。この場合、図7の横方向へのプラズモンの伝搬速度は、金属微粒子間の電気双極子による結合の強さが粒子間隔dの(−3)乗に比例することから、プラズモンの伝搬速度が金属微粒子の配列された周期に応じて変化している。図中の矢印は金属微粒子列の配列周期に対応したプラズモンの伝搬速度の違いを模式的に表わしている。この結果、本素子中を伝搬したプラズモンの出力は空間的に曲げられることとなり、本素子はナノメートル領域の空間分散素子として機能している。
【0046】
[実施例7](第9、第10の手段の実施例)
本発明の第7の実施例を図8に基づいて説明する。本実施例のプラズモン空間変調素子は、空間的に分配されたプラズモンの周波数成分に対するプラズモン導波路としての機能を有している。このプラズモン空間変調素子は、平滑な基板1上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とが、お互いに交差する構造を有する導波路素子で構成されている。
【0047】
本実施例のプラズモン空間変調素子における金属微粒子の構成は、図8に示すように大、小の金属微粒子2a,2cによる2本の導波路の一方が他方と交差するように配置されている。そして入射端の金属微粒子2a,2cのサイズに依存したプラズモンの周波数成分が選択的に金属微粒子2a,2cによる導波路構造を伝搬する。ここで、各周波数成分を伝搬する導波路は互いに独立しており、さらに金属微粒子2a,2cの配置によるプラズモンの縦モードと横モードとの変換を介して空間的に導波路構造を曲げることが可能であるので、空間的に交差するような導波路構造を取ることが可能である。このようにして構成されたプラズモン導波路をもつナノメートル領域の光デバイスおよび光集積回路は、基板上の配線の問題や、集積性の困難さを改善することができる。
【0048】
[実施例8](第9、第11の手段の実施例)
本発明の第8の実施例を図9に基づいて説明する。本実施例のプラズモン空間変調素子は、空間的に分配されたプラズモンの周波数成分に対するプラズモン導波路としての機能を有している。このプラズモン空間変調素子は、第7の実施例と同様に、平滑な基板1上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とが、お互いに交差する構造を有する導波路素子で構成されているが、前記導波路構造の交差する点において、一方の導波路構造における1つの金属微粒子が、他方の導波路構造におけるサイズの異なる金属微粒子で置き換えられた構造を有している。
【0049】
本実施例のプラズモン空間変調素子における金属微粒子の配置構成は、図9に示すように大、小の金属微粒子2a,2cによる2本の導波路の一方が他方と交差するように配置されている。ここで、一方の導波路構造における金属微粒子2aが、他方の導波路構造のサイズをもつ金属微粒子2cにより置き換えられている。入射される光は、導波路構造を構成する金属微粒子2a,2bのサイズに共鳴する周波数成分をもつプラズモンに変換され、導波路構造を伝搬する。ここで、金属微粒子の置き換えられたほうの導波路構造に対しても、金属微粒子の周期性が乱されているわけではなく、金属微粒子による導波路中をプラズモンが伝搬できる。したがって、空間的に交差するような導波路構造を取ることが可能であり、さらに金属微粒子は全て正方格子状に配列されるので、このようにして構成されたプラズモン導波路をもつナノメートル領域の光デバイスおよび光集積回路は、基板上の配線の問題や、集積性の困難さを改善することができる。
【産業上の利用可能性】
【0050】
以上、実施例に基いて本発明の構成、動作を説明したが、第1、第2の手段によるプラズモン空間変調素子(導波路素子)においては、局所的に導入された光エネルギーを複数の周波数成分のプラズモンに分配し、金属微粒子による導波路構造を介して周波数成分ごとに取り出しているので、周波数多重化された光信号を利用したナノメートル領域の光情報処理技術に利用可能である。
また、第1、第3、第4の手段によるプラズモン時間変調素子(導波路素子)においては、金属微粒子のサイズおよび粒子間距離に依存した伝搬速度の違いを利用してプラズモンの各周波数成分に対して時間遅延を与えているので、ナノメートル領域の光情報処理技術に利用可能である。
さらに第1、第5、第6の手段によるプラズモン空間変調素子(導波路素子)においては、金属微粒子の空間配置により、プラズモンを各周波数成分に対して、任意の角度、位置、および偏向方向に分散、分配させているので、ナノメートル領域での光集積回路における入出力素子などの光情報処理技術に利用可能である。
【0051】
第7、第8の手段によるプラズモン空間変調素子(導波路素子)においては、金属微粒子の間隔に依存したプラズモンの伝搬速度の違いを利用し、ナノメートル領域でプラズモンの伝搬方向を変化させているので、ナノメートル領域の信号制御や干渉型素子などナノ光デバイス技術に利用可能である。
また、第9、第10、第11の手段によるプラズモン空間変調素子(導波路素子)においては、金属微粒子のサイズに依存した共鳴効果や配置の周期性を利用し、導波路の交差を可能にしているので、ナノ光デバイスの配線技術や微細化技術に利用可能である。
【図面の簡単な説明】
【0052】
【図1】本発明の一実施例を示すプラズモン空間変調素子の概略斜視図である。
【図2】図1に示すプラズモン空間変調素子の要部平面図である。
【図3】図1,2に示すプラズモン空間変調素子に入射される光のエネルギーと、励起されたプラズモンの強度の関係を示す図である。
【図4】本発明の別の実施例を示すプラズモン時間変調素子の要部平面図である。
【図5】本発明の別の実施例を示すプラズモン空間変調素子の要部平面図である。
【図6】本発明の別の実施例を示すプラズモン空間変調素子の要部平面図である。
【図7】本発明の別の実施例を示すプラズモン空間変調素子の要部平面図である。
【図8】本発明の別の実施例を示すプラズモン空間変調素子の要部平面図である。
【図9】本発明の別の実施例を示すプラズモン空間変調素子の要部平面図である。
【図10】従来技術の一例を示す導波路の平面図である。
【図11】従来技術の別の例を示す図であり、プラズモン集光器の電子顕微鏡像と、その集光点から導波路部分の近接場光学顕微鏡による光強度分布を示す図である。
【図12】従来技術の別の例を示す光学素子の斜視図である。
【図13】従来技術の別の例を示す近視野光ヘッドの断面図である。
【符号の説明】
【0053】
1:平滑な基板(誘電体基板)
2:金属微粒子
2a:金属微粒子(大)
2b:金属微粒子(中)
2c:金属微粒子(小)
3:金属微粒子列導波路
3a,3b,3c:導波路構造(導波路)
4:光ファイバープローブ

【特許請求の範囲】
【請求項1】
ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子であって、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とを多段に有することを特徴とする導波路素子。
【請求項2】
請求項1記載の導波路素子で構成される空間変調素子であり、入射される光の周波数に対して、異なるサイズの金属微粒子による導波路に選択的に結合し、プラズモンを伝搬することを特徴とする空間変調素子。
【請求項3】
請求項1記載の導波路素子で構成される時間変調素子であり、前記導波路構造において、前記金属微粒子のサイズに依存してプラズモンの伝搬速度が異なることを利用し、該プラズモンの各周波数成分に時間遅延を与えることを特徴とする時間変調素子。
【請求項4】
請求項1記載の導波路素子で構成される時間変調素子であり、前記導波路構造において、金属微粒子間の距離に依存してプラズモンの伝搬速度が異なることを利用し、該プラズモンの各周波数成分に時間遅延を与えることを特徴とする時間変調素子。
【請求項5】
請求項1記載の導波路素子で構成される空間変調素子であり、それぞれの導波路構造が空間的に広がった構造を有することにより、プラズモンの各周波数成分を空間的に分岐させることを特徴とする空間変調素子。
【請求項6】
請求項1記載の導波路素子で構成される空間変調素子であり、各導波路構造がそれぞれ直角に曲がるように配置されることにより、プラズモンの各周波数成分における偏向方向を保持し、空間的に分岐させることを特徴とする空間変調素子。
【請求項7】
ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子であって、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、同じサイズで異なる間隔を持つ金属微粒子による導波路構造とを多段に有することを特徴とする導波路素子。
【請求項8】
請求項7記載の導波路素子で構成される空間変調素子であり、金属微粒子間の距離に依存してプラズモンの伝搬速度が異なることを利用し、プラズモンを偏向させることを特徴とする空間変調素子。
【請求項9】
ナノメートル領域の光信号の空間的な分配、分岐、合成、空間変調、時間変調、あるいは配線などに利用される導波路素子であって、平滑な基板上に、サイズの揃った金属微粒子が等間隔で直線的に配列された導波路構造と、異なるサイズの金属微粒子が等間隔で直線的に配列された導波路構造とが、お互いに交差する構造を有することを特徴とする導波路素子。
【請求項10】
請求項9記載の導波路素子で構成される空間変調素子であり、異なるサイズの金属微粒子間における共鳴周波数の差異により、プラズモンの各周波数成分を混線することなく伝達することを特徴とする空間変調素子。
【請求項11】
請求項9記載の導波路素子で構成される空間変調素子であり、前記導波路構造の交差する点において、一方の導波路構造における1つの金属微粒子が、他方の導波路構造におけるサイズの異なる金属微粒子で置き換えられた構造を有し、異なるサイズの金属微粒子間における共鳴周波数の差異により、プラズモンの各周波数成分を混線することなく伝達することを特徴とする空間変調素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2006−293023(P2006−293023A)
【公開日】平成18年10月26日(2006.10.26)
【国際特許分類】
【出願番号】特願2005−113775(P2005−113775)
【出願日】平成17年4月11日(2005.4.11)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】