説明

建造物の面構造体暖房構造及びその施工方法

【課題】 安定した暖房を実現し得ると共に、施工性に優れた建造物の面構造体暖房構造を提供すること。
【解決手段】 面構造体暖房構造は、建造物の面構造体(床)に暖房機能を組み付けたものであり、面構造体1A,2A,3の裏面に貼り付けられたシート状の電気ヒータ8と、電気ヒータ8の上から面構造体1A,2A,3の裏面に対して吹き付け発泡された現場発泡ポリウレタン層15とを備えている。この暖房構造によれば、断熱層となる現場発泡ポリウレタン層15が、電気ヒータ8を含めた面構造体1A,2A,3の裏面の凹凸によらずにほぼ隙間なく形成され、隙間による暖房効率低下が抑止される。寒冷地や温暖地など、施工場所に応じて現場発泡ポリウレタン層15の厚さを容易に調節でき、良好な暖房効率を実現できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、建造物の床・壁・天井などの面構造体の暖房構造と、その施工方法とに関する。
【背景技術】
【0002】
建造物内の部屋の暖房のために、部屋内に暖房装置を設置したり、部屋外に暖房装置を設置して温風などを部屋内に導入する方法がある。その一方で、部屋を構成する床・壁・天井などの面構造体自体に暖房装置を組み込む場合もある(下記特許文献1及び2など)。このようなものとして、床下に暖房機能を組み付けた床暖房はよく知られている。なお、ここにいう「面構造体」とは、床・壁・天井などの面状の構造を有している部分の全てを含み、建造物の構造強度上の荷重を受け持つ「構造体(例えば、壁式構造における耐力壁・構造壁)」に限られない。また、ここにいう面構造体とは、床板や壁板などの板部材だけでなく、根太や間柱・胴縁などの当該構造を構築する部材をも含めて面構造体という。
【0003】
従来の暖房構造では、床面の上に、断熱材5、面状電気ヒータ4、捨て張り合板2B、及び、フローリング材1Bを順に載せて暖房機能部が構築されることがある(図6参照)。暖房機能部の縁は枠6で処理される。なお、暖房機能部が床面上に設置される関係上、暖房機能部の高さを抑えるために断熱材5は薄いものが使用される。電気ヒータ4の発熱温度が高くなりすぎると、捨て張り合板やフローリング材の劣化が早まる。また、床面が45℃以上となると低温やけどの危険が急上昇する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2005−221106号公報
【特許文献2】特許第3872272号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
一般的な住宅の床構造の断面図を図5に示す。図5に示されるように、約30cm間隔で配置された根太3の上に、捨て張り合板2Aとフローリング材1Aが敷設されている。図5に示されるような床構造に対して後から暖房機能を付加させようとした場合、高価なフローリング材1Aを剥がして再利用したくても、フローリング材1Aが捨て張り合板2Aに接着されているので引き剥がせない場合がある。このため、図6に示されるように、フローリング材1Aの上に、断熱材5、シート状電気ヒータ4、捨て張り合板2B、及び、フローリング材1Bを順に載せて暖房機能を付設させる。このように、電気ヒータ4の上にさらに、家具などの荷重を受けるための捨て張り合板2Bとフローリング材1Bとをさらに敷設する必要があり、コスト高となる。
【0006】
また、上述したように、既存の床構造に後から暖房機能を付設させようとした場合、既存の床構造上に暖房機能部を設置するため、隣接する部屋や廊下よりも床面が高くなってしまう。高齢化社会を迎え、バリアフリーが求められている昨今、このような段差は好ましくない。なお、捨て張り合板2B及びフローリング材1Bは家具の重量や歩行に耐える必要があるので厚さを薄くすることは困難であり、暖房機能部の高さを抑制するために断熱材5の厚さを薄くしているのが現状である。しかし、断熱材5の厚さを薄くすると電気ヒータ4の発した熱の床下への放熱量が増えてしまうため、少ない面積で大きな発熱量を得るために発熱温度60〜80℃の電気ヒータ4を用いて放熱分を補う必要がある。
【0007】
しかし、電気ヒータ4の発熱温度を10℃上げると化学反応は2倍の速さで進行するので、上述したように捨て張り合板2B及びフローリング材1Bの劣化が早くなってしまう。さらに、図6に示されるように、床上に暖房工事を行う場合には、その部屋の家具などを一旦撤去し、工事後に元に戻す手間が掛かり、コスト低減の障害になっている。また、部屋の住人は工事中は他の場所での生活が強いられるため、不便でもある。
【0008】
また、上述したように、一般的に発熱温度60〜80℃の面状電気ヒータが使用されているが、この温度では10分から長くても30分で低温やけどを起こし、苦痛を耐えられない乳幼児や感覚の鈍った高齢者はうたた寝も出来ない危険な温度である。低温やけどが起きる温度と時間の関係は、46℃で1.5時間、45℃で約3時間、44℃で約6時間なので、45℃であれば乳幼児や高齢者がうたた寝をしても、3時間以内であれば、低温やけどの心配はない。
【0009】
さらに、図6のような構造とすると、暖房機能部の下方にも荷重を受ける捨て張り合板2A及びフローリング材1Aが存在する。このため、床面(上方のフローリング材1Bの上面)におかれた家具などの荷重は、電気ヒータ4を圧縮。電気ヒータ4としては、PTC特性(Positive Temperature Coefficienct[正温度係数]特性)を備えたものが使用される場合がある。PTC特性とは、温度が上昇すると電気抵抗が増加し、適切な温度になると温度が一定になる特性である。より詳しくは、温度の上昇に伴って熱膨張し、内部の導電性粒子が離れることで電気抵抗が増加する。電気抵抗が増すと電流が減るために発熱量が制限され、安定したところで温度が一定となる。
【0010】
しかし、上述したように、電気ヒータ4には家具などの荷重が作用する。電気ヒータ4の上方に重い家具などが置かれると、温度上昇に伴う熱膨張が抑止されてしまうため、導電性粒子が離れにくくなって電気抵抗が増加しにくくなる。結果として、局部的に温度が高くなってしまう。取り付け直後は電気ヒータ4の上方に重い家具の設置を控えるなど留意するが、何年か経って模様替えなどを行う際には忘れていて重い家具などを置いてしまうと、その部分が局部的に高温となる。温度センサーをいくつか設置して温度制御をしたり、電圧調整により発熱量を押さえる制御機器を使用しても、制御機器の誤作動・故障により温度が暴走する危険は解消できない。
【0011】
一方、図5に示されるような床構造に対して、床下に暖房機能を付設することが可能な場合もある。新築時や床下からの施工が容易である場合、後改修で既存の床構造を作り直す場合などである。床下に暖房機能を付設する場合の従来の施工構造を図7及び図8に示す。
【0012】
図7に示されるように、フローリング材1A及び捨て張り合板2Aは、約30cm間隔で並設された根太3により支えられている。このため、電気ヒータ4は、一対の根太3の間の26cmの空間内で、捨て張り合板2Aの裏面に両面粘着テープ7などによって設置される。通常、フローリング材1A及び捨て張り合板2Aの厚さはそれぞれ12mmであり、電気ヒータ4と床上面との距離は24mmとなる。このため、電気ヒータ4と床上面との距離があまり離れないため、電気ヒータ4の発した熱(例えば、45℃であっても)は効率よく床上室内空間に伝達される。
【0013】
ただし、図7の状態であると、電気ヒータ4の発した熱はフローリング材1A及び捨て張り合板2Aを経由して根太3に伝わって放熱されたり、直接下方に放熱されてしまう。このため、下方から電気ヒータ4及び床裏面を覆うように断熱材が配設される。図8に、その一例を示す。
【0014】
図8に示される例では、断熱材として発泡スチロール板9,10が用いられている。この工法では、根太3間の間のスペースを埋める発泡スチロール板9が配置され、さらにその下方から発泡スチロール板10が根太3に対してネジ11によって固定される。しかし、この工法では、発泡スチロール板9を根太3の間の寸法に合わせて切断する手間がかかる。また、電気ヒータ4及び発泡スチロール板9の合計厚さが根太3の高さと一致しないことが多く、根太3の下方に隙間12が形成されてしまう場合がある。
【0015】
このような隙間12が形成されてしまうと、隣り合う発泡スチロール板10同士の継ぎ目などから隙間12を介して熱が逃げてしまったり、継ぎ目及び隙間12から内部に風が入り込んだりして、断熱効果が落ちてしまう。あるいは、図9に示されるように、電気ヒータ4と発泡スチロール板9との間に隙間13が形成されてしまう場合もある。このような隙間13が形成されてしまうと、電気ヒータ4の床板(捨て張り合板2A裏面)への密着が低下し、熱の伝達効率が落ちてしまう。
【0016】
根太3の高さに合わせて発泡スチロール板9の厚さを調節するのは困難である。床下などの狭い作業スペースで、発泡スチロール板9の厚さを根太3の高さに合わせて切断するなどの作業は実際的でないし、もしできたとしても作業工数が増えてしまう。このため、図10のような構造とすることも考えられる。図10に示される構造では、上述した隙間12,13が形成されないように、発泡スチロール板9に代えて、軟質発泡断熱材14を用いている。軟質発泡断熱材14は、弾力性があり、ポリエチレンなどで形成され、根太3の高さよりも厚くなるような寸法のものが使用される。取り付け時には、軟質発泡断熱材14が多少圧縮された状態で、発泡スチロール板10がネジ11によって固定される。
【0017】
しかし、圧縮状態の軟質発泡断熱材14を押さえるため、ネジ11の固定点を増やさなければならず、施工工数が増えてしまう。また、ネジ11の固定点には、軟質発泡断熱材14の弾性復元力によって応力が作用するので、この固定点で発泡スチロール板10が破損すると断熱性能が低下してしまう。また、軟質発泡断熱材14を圧縮している発泡スチロール板10に電気ヒータ4の発熱が繰り返し負荷されると、発泡スチロール板10が変形してやはり隙間が生じて断熱効果や暖房効率の低下が生じる。発泡スチロール板10としては、電気ヒータの発熱温度を考慮して適切な耐熱性を持つものが選定されるが、図10に示されるような取り付け方をされて、長期間の使用によって熱負荷を繰り返し受けるとやはり隙間を生じさせてしまう。
【0018】
本発明は、上述した問題点を解消し、安定した暖房効率を実現し得ると共に、施工性に優れた面構造体暖房構造、及び、その施工方法を提供することを目的としている。
【課題を解決するための手段】
【0019】
請求項1に記載の建造物の面構造体暖房構造は、建造物の面構造体に暖房機能を付与したものであり、前記面構造体の裏面に貼り付けられたシート状電気ヒータと、前記電気ヒータの上から前記面構造体の裏面に対して吹き付け発泡された現場発泡ポリウレタン層とを備えていることを特徴としている。
【0020】
請求項2に記載の発明は、請求項1に記載の面構造体暖房構造において、前記電気ヒータが、45℃で温度上昇が停止する正温度係数特性(PTC[Positive Temperature Coefficient]特性)を有していることを特徴としている。
【0021】
請求項3に記載の発明は、請求項1又は2に記載の面構造体暖房構造において、一端が前記面構造体の裏面と前記電気ヒータとの間近傍に位置し、他端が前記現場発泡ポリウレタン層の外部に突出されているチューブをさらに備えていることを特徴としている。
【0022】
請求項4に記載の発明は、請求項1〜3の何れか一項に記載の面構造体暖房構造において、前記面構造体が床であり、前記電気ヒータが床下側に配設されていることを特徴としている。
【0023】
請求項5に記載の建造物の面構造体暖房構造の施工方法は、建造物の面構造体に暖房機能を付与して面構造体暖房構造を構築するもので、シート状電気ヒータを前記面構造体の裏面に貼り付け、前記電気ヒータの上から前記面構造体の裏面に対して、現場発泡ポリウレタン層を吹き付け発泡させることを特徴としている。
【0024】
請求項6に記載の発明は、請求項5に記載の面構造体暖房構造の施工方法において、前記電気ヒータとして45℃で温度上昇が停止する正温度係数特性(PTC[Positive Temperature Coefficient]特性)を有しているものを使用して施工することを特徴としている。
【0025】
請求項7に記載の発明は、請求項5又は6に記載の面構造体暖房構造の施工方法において、前記現場発泡ポリウレタン層の吹き付けに先立って、一端が前記面構造体の裏面と前記電気ヒータとの間近傍に位置するようにチューブを配置させ、前記チューブの配置後に、該チューブの他端が前記現場発泡ポリウレタン層の外部に突出するように、前記現場発泡ポリウレタン層を吹き付けることを特徴としている。
【0026】
請求項8に記載の発明は、請求項5〜7の何れか一項に記載の面構造体暖房構造の施工方法において、前記面構造体が既存の床であり、前記電気ヒータ及び前記現場発泡ポリウレタン層を後改修による暖房機能の付設として施工することを特徴としている。
【発明の効果】
【0027】
請求項1に記載の建造物の面構造体暖房構造は、面構造体裏側に構築されるため、表側空間に何らの影響も与えないで済む。断熱層となる現場発泡ポリウレタン層は吹き付け発泡で形成されるため、電気ヒータを含めた面構造体の裏面や内面の凹凸によらずにほぼ隙間なく形成することができ、隙間による暖房効率低下を抑止できる。現場発泡ポリウレタン層は吹き付け発泡で形成されるため、設置場所に合わせた断熱材パネルなどの切断工程等は必要なく、施工工数を低減できる。寒冷地や温暖地など、施工場所に応じて現場発泡ポリウレタン層の厚さを容易に調節でき、良好な暖房効率を実現できる。現場発泡ポリウレタン層は吹き付け発泡で形成されるため、施工スペースとして広いスペースを確保できない場合でも施工がしやすい。
【0028】
請求項2に記載の発明によれば、請求項1に記載の面構造体暖房構造による上記効果に加えて、電気ヒータがPTC特性を有しているため、温度センサやサーモスタットを別途設けて温度制御する必要がなく、設置コストを低減できる。また、45℃で温度上昇が停止するため、過度の高温となることはあり得ない。なお、45℃までの発熱温度で十分であるのは、請求項1に記載の暖房効率に優れた構造のためである。45℃までの発熱であるため、面構造体や現場発泡ポリウレタン層の劣化を抑制できる。また、電気ヒータは、PCT特性を有するタイプであるが、面構造体表面から荷重がかけられても(面構造体が床などで、床上に重い家具が乗せられた場合など)、反対側に荷重を受ける面がないため電気ヒータの熱膨張が拘束されないので、安定したPCT特性が維持される。
【0029】
請求項3に記載の発明によれば、請求項1又は2に記載の面構造体暖房構造による上記効果に加えて、電気ヒータと面構造体の裏面との間に僅かに残る空気をチューブを通して面構造体の裏側に逃がすことで、熱による空気の熱膨張による圧力が現場発泡ポリウレタン層に作用するのが防止される。このため、隙間の形成による暖房効率の低下を抑止でき、かつ、圧力による繰り返し膨張による現場発泡ポリウレタン層の剥離を抑止できる。
【0030】
請求項4に記載の発明によれば、請求項1〜3の何れか一項に記載の面構造体暖房構造による上記効果に加えて、上述したように床面に段差などが形成されないため、バリアフリーを実現できる。また、既存の床(面構造体)に対して後改修として暖房機能を付設させる場合でも、床下から電気ヒータ及び現場発泡ポリウレタン層の施工が可能であり、施工コストを低減できる。さらに、施工時に床上の空間には何らの影響を与えることがない。
【0031】
請求項5に記載の建造物の面構造体暖房構造の施工方法によれば、面構造体裏側に構築されるため表側に何らの影響も与えないで済む。断熱層となる現場発泡ポリウレタン層は吹き付け発泡で形成されるため、電気ヒータを含めた面構造体の裏面や内面の凹凸によらずにほぼ隙間なく形成することができ、隙間による暖房効率低下を抑止できる。現場発泡ポリウレタン層は吹き付け発泡で形成されるため、設置場所に合わせた断熱材パネルなどの切断工程等は必要なく、施工工数を低減できる。寒冷地や温暖地など、施工場所に応じて現場発泡ポリウレタン層の厚さを容易に調節でき、良好な暖房効率を実現できる。現場発泡ポリウレタン層は吹き付け発泡で形成されるため、施工スペースとして広いスペースを確保できない場合でも施工がしやすい。面構造体上にさらに暖房機能部を設置しないため、面構造体上に段差などが生じずにバリアフリーを実現できる(特に面構造体が床などの場合)。
【0032】
請求項6に記載の発明によれば、請求項5に記載の面構造体暖房構造の施工方法による上記効果に加えて、PTC特性を有しているため、温度センサやサーモスタットを別途設けて温度制御する必要がなく、設置コストを低減できる。また、45℃で温度上昇が停止するため、過熱しすぎは生じ得ない。なお、45℃までの発熱温度で十分であるのは、請求項1に記載の暖房効率に優れた構造のためである。45℃までの発熱であるため、面構造体や現場発泡ポリウレタン層の劣化を抑止できる。また、PCT特性を持つ電気ヒータであるが、面構造体表面から荷重がかけられても(面構造体が床などで、床上に重い家具が乗せられた場合など)、反対側に荷重を受ける面がないため電気ヒータが潰されることがなく、安定したPCT特性が維持される。
【0033】
請求項7に記載の発明によれば、請求項5又は6に記載の面構造体暖房構造の施工方法による上記効果に加えて、電気ヒータと面構造体の裏面との間に僅かに残る空気をチューブを通して面構造体の裏側に逃がすことで、熱による空気の熱膨張による圧力が現場発泡ポリウレタン層に作用するのが防止される。このため、隙間の形成による暖房効率の低下を抑止でき、かつ、圧力による繰り返し膨張による現場発泡ポリウレタン層の剥離を抑止できる。
【0034】
請求項8に記載の発明によれば、請求項5〜7の何れか一項に記載の面構造体暖房構造の施工方法による上記効果に加えて、上述したように床面に段差などが形成されないため、バリアフリーを実現できる。また、既存の床(面構造体)に対して後改修として暖房機能部を付設させる場合でも、床下から電気ヒータ及び現場発泡ポリウレタン層の施工が可能であり、施工コストを低減できる。さらに、施工時に床上の空間には何らの影響を与えることがない。
【図面の簡単な説明】
【0035】
【図1】本発明の建造物の面構造体暖房構造の一実施形態の断面図である。
【図2】図1の構造における内部空気膨張を説明する断面図である。
【図3】図1の構造におけるチューブ配置部での断面図である。
【図4】チューブ配置の他の形態を示す分解斜視図である。
【図5】暖房機能を有しない一般的な床構造(面構造体)の断面図である。
【図6】床上に暖房機能部を有する従来の面構造体暖房構造の断面図である。
【図7】床下に暖房機能部を有する面構造体暖房構造の施工手順を説明する断面図である。
【図8】床下に暖房機能部を有する従来の面構造体暖房構造の断面図である。
【図9】床下に暖房機能部を有する従来の面構造体暖房構造の他の形態を示す断面図である。
【図10】床下に暖房機能部を有する従来の面構造体暖房構造のさらに他の形態を示す断面図である。
【発明を実施するための形態】
【0036】
図1に本発明の建造物の面構造体暖房構造の一実施形態の断面図を示す。なお、本実施形態では、面構造体が床である場合を例にして説明するが、面構造体は床に限られない。ただし、床であった場合の利点については追って説明を加える。また、本実施形態の面構造体自体は、図5に示した従来の面構造体と変わりなく、根太3の上に敷設された捨て張り合板2A及びフローリング材1Aによって構成されている。このため、面構造体の概略構造についてはその説明を省略する。なお、面構造体の詳細について必要な説明はその都度加える。
【0037】
以下、本実施形態の面構造体暖房構造の特徴的な構造を、その施工方法と併せて以下に説明する。まず、上述した面構造体の一対の根太3の間の捨て張り合板2A裏面に、両面粘着テープ7によってシート状の電気ヒータ8を取り付ける。電気ヒータ8は、床面の暖房エリア内に複数枚取り付けられる(この実施形態では複数枚であるが、1枚の場合もある)。なお、電気ヒータ8の捨て張り合板2A裏面への取り付けは、両面粘着テープ7以外のものを用いて行っても良い。例えば、電気ヒータ8を覆っている絶縁フィルムを捨て張り合板2A裏面にネジ留めしても良い。
【0038】
電気ヒータ8は、45℃で温度上昇が停止するPTC特性を有する発熱シートである。電気ヒータ8の発熱部分は、ポリエチレンなどの樹脂に、カーボンブラック・黒鉛・金属粉末などの導電性粒子を分散させて、両端に導線を配置することで構成されている。通電によって発熱部が発熱するが、温度上昇に伴って樹脂が熱膨張し、互いに接触していた導電性粒子が離れて発熱部の電気抵抗が増加する。電気抵抗が増加することで電流値が低下して発熱量が減る。本実施形態の電気ヒータ8は、温度が45℃となると電気抵抗が急激に増大してほぼ絶縁状態となるように、導線間隔や発熱部厚さ、導電性粒子の配合比率が調整されている。
【0039】
上述した電気ヒータ8のPTC特性を利用するため、発熱温度の調整は基本的には通電のオン・オフのみで済む。また、電気ヒータ8のスイッチの配線を部屋内に通す必要はあるが、温度センサやサーモスタットなどの高価な温度制御機器は必要としない。なお、複数配置される電気ヒータ8の一部のみを通電し、残りを非通電として発熱エリアを制御することは容易に行える。また、本実施形態の電気ヒータ8は、45℃以上の発熱を行わないため、暖めすぎてしまうようなこともなく快適な暖房温度を維持できる。
【0040】
電気ヒータ8の発熱温度が高いと(上述したように、従来は60〜80℃のものが用いられている)、捨て張り合板2A及びフローリング材1Aの電気ヒータ8に接している部分は熱膨張が大きくなる。その一方で、捨て張り合板2A及びフローリング材1Aの電気ヒータ8に接していない部分は熱膨張があまり大きくなく、この二つの部分の膨張差が大きくなる。捨て張り合板2A及びフローリング材1Aに熱負荷が繰り返されることで、熱膨張差による劣化や疲労破壊が促進されやすいが、本実施形態の電気ヒータ8は45℃で発熱が停止するため、膨張差が防止されてこのような劣化や疲労破壊が抑制される。また、本実施形態の電気ヒータ8は発熱温度が高くないため、消費電力が少く、省エネルギー化に寄与する。
【0041】
電気ヒータ8を捨て張り合板2A裏面への取り付け後、吹き付け発泡によって現場発泡ポリウレタン層15が形成されるが、それに先だってチューブ17を配置しておく(図3参照)。各電気ヒータ8毎に少なくとも一つのチューブ17が配置される。本実施形態のチューブ17は、内径5mm程度のもので、L型形状に曲げられて設置され、その一端が電気ヒータ8と捨て張り合板2Aとの間(内部又は縁部)に配置される。チューブ17は、その一端側が捨て張り合板2Aの裏面に接して配置され、他端側がまっすぐ下方に向けて伸ばされた状態で、ホチキス,サドル,テープなどの固定具を用いて捨て張り合板2Aの裏面に固定される。チューブ17は、金属製でも樹脂製でも良いし、その形状を保持し得るものでも良いし、柔軟性を有するものでも良い。ただし、捨て張り合板2Aの裏面への固定状態を維持でき、電気ヒータ8の発熱に対する耐熱性を有することが求められる。チューブ17の機能については後述する。
【0042】
チューブ17の配設後、現場にて現場発泡ポリウレタン層15の原料を吹き付け発泡させて断熱材層を形成する。吹き付けには、既存のスプレーガンを用いることができる。スプレーガンによって原料となる二液を攪拌混合させつつ空気圧で吹き出して吹き付け面に塗布すると、塗布物が吹き付け後に発泡・固化して現場発泡ポリウレタン層15が形成される。原料となる二液を攪拌混合させ、かつ、「エアを混入させつつ」吹き付けを行うスプレーガンを用いて吹き付けを行うことも可能である。しかし、エアレスタイプのスプレーガンを用いた場合の方が、塗布物が周りに飛び散るロスが少なく、エアーの圧力が低く塗布面を平滑に仕上げ易い。「エアを混入させつつ」吹き付けを行うスプレーガンであると、塗布物がやや飛び散る傾向があった。
【0043】
上述したように設置された暖房構造においては、僅かではあるが電気ヒータ8と捨て張り合板2Aとの間に空気が残留する。この空気は電気ヒータ8の発熱によって、図2に示されるように膨張して隙間16を形成させてしまう(図2では、分かりやすいように膨張状態を誇張して表現してある)。なお、隙間16の空気層は、断熱材の役目をして電気ヒータ18から室内への伝熱を妨げる。現場発泡ポリウレタン層15は隙間なく形成されるため、図2の状態となると膨張空気は逃げ場がなく、現場発泡ポリウレタン層15を変形させる。捨て張り合板2Aやフローリング材1Aの継ぎ目に僅かでも隙間があれば、この部分から膨張空気が逃げるが、高気密高断熱の観点から床面に僅かな隙間も残さない施工が行われる。また、床板の軋み音を防止したり、床上にこぼれた液体の床内への浸透を防止するために、ボンドやシリコーンコーキング剤を用いて捨て張り合板2Aやフローリング材1Aを根太3に隙間が生じないように固定する。このため、図2のような状態になる。
【0044】
なお、熱膨張する空気の量はわずかであり、電気ヒータ8の設置前にフローリング材1A及び捨て張り合板2Aを貫通する小さな孔を設け、空気の通路を設けることにより、電気ヒータ8と捨て張り合板2Aとの間に残留した空気が電気ヒータ8の温度上昇に伴って膨張した体積分の空気を逃がすことができて、圧力が生じることもなくなり、現場発泡ポリウレタン層15を押し剥がすことも解消できたが、床上にこぼした水がこの孔より電気ヒータ8とその電線接続部に浸透して漏電事故を起こす危険も生じた。
【0045】
また、このような膨張が繰り返し発生すると、空気の熱膨張によって生じる圧力がによって、(圧力)×(面積)の力が現場発泡ポリウレタン層15に作用して現場発泡ポリウレタン層15が剥離する。現場発泡ポリウレタン層15の厚さを厚くして、空気膨張が生じても変形しないようにすることも考えられるが、現場発泡ポリウレタン層15の厚さは断熱性能を考慮して決定されることが暖房効率上必要である。このため、本実施形態では、上述したチューブ17が取り付けられている。図2に示されるような熱による空気膨張による圧力が生じた際は、チューブ17を介して膨張した内部空気による圧力を現場発泡ポリウレタン層15の外部に逃がすことができ、現場発泡ポリウレタン層15の変形を防止できる。チューブ17を用いることで、現場発泡ポリウレタン層15の剥離を確実に防止でき、かつ、暖房効率上適切な厚さの現場発泡ポリウレタン層15を形成することができる。
【0046】
なお、現場発泡ポリウレタン層15の内部から外部へは、電気ヒータ4への導線18も導出する必要もある。そこで、図4に示されるように、導線18をチューブの内部を通して現場発泡ポリウレタン層15の外部に取り出しても良い。このようにすれば、現場発泡ポリウレタン層15の内部から外部に導出されるものがまとめられる。また、繰り返し熱負荷による導線18への繰り返し応力負荷も抑止できる。図4の場合は、導線18の外径を考慮してチューブ17の内径が決定される。
【0047】
上述した実施形態の効果を定量的に示すため、図6に示す従来の暖房構造との比較を行った。具体的には、電気ヒータ4,8の放熱ロスの割合を算出した。
【0048】
まず、図6の従来の暖房構造についてであるが、以下の各数値を用いた。
フローリング材1A,2Aの厚さ,熱伝導率:12mm,0.16W/(m・K)
捨て張り合板2A,2Bの厚さ,熱伝導率:12mm,0.16W/(m・K)
断熱材5の厚さ,熱伝導率:6mm,0.035W/(m・K)
電気ヒータ4の発熱温度:60〜80(平均70)℃
【0049】
電気ヒータ4の発熱温度=70℃,室内温度=20℃,床下外気温度=10℃の条件での暖房に用いられる単位面積当たりの熱量を(1)式、床下外気に放熱される単位面積当たりの熱量を(2)式に示す。
(1):(70−20)×0.16/(0.012+0.012)=333.3[W/m
(2):(70−10)/((0.012+0.012)/0.16+0.006/0.035)=186.7[W/m
【0050】
室内暖房に用いられる単位面積当たりの熱量は全体の(333.3/(333.3+186.7))=64%であり、36%が床下外気への放熱ロスとなっている。
【0051】
一方、図1の上記実施形態の暖房構造についてであるが、以下の各数値を用いた。
フローリング材1A,2Aの厚さ,熱伝導率:12mm,0.16W/(m・K)
現場発泡ポリウレタン層15の厚さ,熱伝導率:50mm,0.035W/(m・K)
電気ヒータ8の発熱温度:45℃
【0052】
電気ヒータ8の発熱温度=45℃,室内温度=20℃,床下外気温度=10℃の条件での暖房に用いられる単位面積当たりの熱量を(3)式、床下外気に放熱される単位面積当たりの熱量を(4)式に示す。
(3):(45−20)×0.16/(0.012+0.012)=166.7[W/m
(4):(45−10)×0.035/0.050=24.5[W/m
【0053】
室内暖房に用いられる単位面積当たりの熱量は全体の(166.7/(166.7+24.5))=87%であり、13%が床下外気への放熱ロスとなっている。本実施形態の暖房構造は、上述した図6の従来の暖房構造より放熱ロスの割合は減少しており暖房効率は向上している。なお、電気ヒータ8の発熱温度自体も下げられているため、絶対的な消費エネルギー自体も低減されている。
【0054】
なお、上記実施形態では面構造体が床である場合を例に説明したが、面構造体は床に限定されず、側壁や天井であっても良い。ただし、面構造体が床である場合は、床下に空間がある場合が多く、建造物の一部を解体することなく、上記施工を容易に行うことができる。特に、既存の床に後改修として暖房機能を付設する場合であっても、建造物の一部を解体することなく、かつ、建造物内部(部屋)の建具などを移動することなく施工を行うことができる。暖房機能部の操作パネル(スイッチ)の部屋内の設置と、操作パネルへの配線は必要となるが、基本的に建造物内部に影響を及ぼすことなく施工することができる。
【産業上の利用可能性】
【0055】
本発明の面構造体暖房構造は、建造物の床・壁・天井などの面構造体に組み付けられ、建造物内部の暖房を行う際に利用できる。また、本発明の面構造体暖房構造の施工方法は、上述した暖房構造の施工に利用できる。
【符号の説明】
【0056】
1A,1B フローリング材(面構造体)
2A,2B 捨て張り合板(面構造体)
3 根太(面構造体)
4,8 電気ヒータ
5 断熱材(シート)
6 枠
7 粘着テープ
9,10 断熱材(発泡スチロールパネル)
11 ネジ
12,13,16 隙間
14 軟質発泡断熱材(ポリエチレン)
15 現場発泡ポリウレタン層
17 チューブ
18 導線

【特許請求の範囲】
【請求項1】
建造物の面構造体に暖房機能を付与して面構造体暖房構造において、
前記面構造体の裏面に貼り付けられたシート状電気ヒータと、
前記電気ヒータの上から前記面構造体の裏面に対して吹き付け発泡された現場発泡ポリウレタン層とを備えていることを特徴とする建造物の面構造体暖房構造。
【請求項2】
前記電気ヒータが、45℃で温度上昇が停止する正温度係数特性を有していることを特徴とする請求項1に記載の建造物の面構造体暖房構造。
【請求項3】
一端が前記面構造体の裏面と前記電気ヒータとの間近傍に位置し、他端が前記現場発泡ポリウレタン層の外部に突出されているチューブをさらに備えていることを特徴とする請求項1又は2に記載の建造物の面構造体暖房構造。
【請求項4】
前記面構造体が床であり、前記電気ヒータが床下側に配設されていることを特徴とする請求項1〜3の何れか一項に記載の建造物の面構造体暖房構造。
【請求項5】
建造物の面構造体に暖房機能を付与して面構造体暖房構造を構築する、面構造体暖房構造の施工方法において、
シート状電気ヒータを前記面構造体の裏面に貼り付け、
前記電気ヒータの上から前記面構造体の裏面に対して、現場発泡ポリウレタン層を吹き付け発泡させることを特徴とする建造物の面構造体暖房構造の施工方法。
【請求項6】
前記電気ヒータとして45℃で温度上昇が停止する正温度係数特性を有しているものを使用して施工する、ことを特徴とする請求項5に記載の建造物の面構造体暖房構造の施工方法。
【請求項7】
前記現場発泡ポリウレタン層の吹き付けに先立って、一端が前記面構造体の裏面と前記電気ヒータとの間近傍に位置するようにチューブを配置させ、
前記チューブの配置後に、該チューブの他端が前記現場発泡ポリウレタン層の外部に突出するように、前記現場発泡ポリウレタン層を吹き付けることを特徴とする請求項5又は6に記載の建造物の面構造体暖房構造の施工方法。
【請求項8】
前記面構造体が既存の床であり、前記電気ヒータ及び前記現場発泡ポリウレタン層を後改修による暖房機能の付設として施工することを特徴とする請求項5〜7の何れか一項に記載の建造物の面構造体暖房構造の施工方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−17499(P2011−17499A)
【公開日】平成23年1月27日(2011.1.27)
【国際特許分類】
【出願番号】特願2009−163024(P2009−163024)
【出願日】平成21年7月9日(2009.7.9)
【出願人】(595073454)株式会社ピコイ (1)
【Fターム(参考)】