説明

非水電解液及びこれを用いたリチウムイオン二次電池

【課題】難燃性及び高い電気伝導度を有し、高率放電特性に優れた非水電解液及びこれを用いたリチウムイオン二次電池を提供することを目的とする。
【解決手段】非水電解液が、少なくとも環状カーボネート及び鎖状カーボネートを含む非水溶媒と支持塩とを含有し、さらに、リン酸トリメチル等のリン酸エステル及びビスホスホン酸エステルを含有することを特徴とする。非水溶媒として、ビニレンカーボネートをさらに含むことが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解液及びこれを用いたリチウムイオン二次電池に関する。
【背景技術】
【0002】
近年、携帯電話、携帯用パソコン等の移動体通信用電源に関して、小型化又は高エネルギー密度化の要望がますます高まっている。また、深夜電力の貯蔵用電源、太陽電池や風力発電と組み合わせた電力貯蔵用電源等の開発も進んでいる。さらに、電気自動車や、電力を動力の一部に利用したハイブリッド車及びハイブリッド電車の実用化も進んでいる。
【0003】
ところで、非水電解液としては、六フッ化リン酸リチウム等の支持塩(電解質)をエチレンカーボネート等の非水溶媒に溶解させたものが広く知られている。これらの非水溶媒は一般に揮発しやすく、引火性を有する。
【0004】
特に、電力貯蔵用電源等の比較的大型のリチウムイオン二次電池用途では、電池容量が大きいために発熱の問題が大きくなり、それゆえ引火の恐れがない非水電解液の使用が望まれている。そこで、非水電解液に難燃化剤を配合し、難燃性を付与する研究が精力的に進められている。
【0005】
(特許文献1)には、特定のネオペンチルグリコール系ホスホネート化合物とトリアルキルホスフェート化合物とを組み合わせた難燃性電解液及びそれを含有する非水電解質二次電池が開示されている。
【0006】
また、(特許文献2)には、リン酸エステル並びにビスホスホン酸エステル及び/又はホストン酸エステルを含有する非水系電解液及びそれを用いたリチウム二次電池が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2003−229173号公報
【特許文献2】特開2002−280061号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、非水電解液に難燃剤を添加する場合においては、十分な難燃性を得るため難燃剤の添加量を増加させると、電池の初期容量が低くなる点で改善の余地があった。また、良好な高率放電特性を維持するためには、電気伝導度の高い電解液系が必要であった。
【0009】
そこで、本発明の目的は、難燃性及び高い電気伝導度を有し、高率放電特性に優れた非水電解液及びこれを用いたリチウムイオン二次電池を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するため、本発明の非水電解液は、少なくとも環状カーボネート及び鎖状カーボネートを含む非水溶媒と支持塩とを含有し、さらに、リン酸エステル及びビスホスホン酸エステルを含有することを特徴とする。
【発明の効果】
【0011】
本発明によれば、難燃性及び電気伝導度に優れた非水電解液を得ることができ、それにより高率放電特性の良好なリチウムイオン二次電池を実現することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0012】
【図1】充放電試験に用いたテストセルの概略分解図である。
【図2】実施例5のリチウムイオン二次電池を示す部分断面図である。
【発明を実施するための形態】
【0013】
以下、本発明の一実施形態に係る非水電解液及びこれを用いたリチウムイオン二次電池について説明する。
【0014】
非水電解液は、少なくとも環状カーボネート及び鎖状カーボネートを含む非水溶媒と支持塩とを含有し、さらに、リン酸エステル及びビスホスホン酸エステルを含有する。
【0015】
環状カーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の単体又はこれらの混合物を用いることができる。
【0016】
鎖状カーボネートとしては、エチルメチルカーボネート、メチルプロピルカーボネート、メチルブチルカーボネート、エチルプロピルカーボネート等の非対称鎖状カーボネート、及びジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、ジブチルカーボネート等の対称鎖状カーボネートの単体又はこれらの混合物が挙げられる。
【0017】
高率放電特性の点から、上記の環状カーボネート及び鎖状カーボネートとしては、特にエチレンカーボネート及びジメチルカーボネートが好ましく用いられる。また、エチレンカーボネート等の環状カーボネートとジメチルカーボネート等の鎖状カーボネートとの混合比率は、特に限定されるものではないが、環状カーボネート及び鎖状カーボネートの合計100vol%に対して鎖状カーボネートの比率を20vol%以上65vol%以下とすると非水電解液の引火点を高くできるため好ましい。
【0018】
非水溶媒として、さらにビニレンカーボネートを含有させることができる。ビニレンカーボネートを用いることにより、充電時に負極の表面に安定な被膜が形成されると推定される。この被膜は負極表面での非水電解液の分解を抑制する効果を有する。
【0019】
非水電解液におけるビニレンカーボネートの含有量は、環状カーボネート及び鎖状カーボネートの合計に対して、0.5〜5重量%の範囲とすることが好ましい。ビニレンカーボネートの含有量が0.5重量%未満である場合、サイクル特性を向上させる効果が小さくなり、また5重量%を超える場合には、ビニレンカーボネートが過剰に分解されて充放電効率が低下する恐れがある。
【0020】
さらに、非水溶媒としてはフッ素化環状カーボネートを含有させることもできる。フッ素化環状カーボネートを用いることにより、電極の表面に安定な被膜が形成されると推定される。フッ素化環状カーボネートとしては、例えばフルオロエチレンカーボネート等が挙げられる。非水電解液におけるフッ素化環状カーボネートの含有量は、非水溶媒及び支持塩の混合物中0.5〜15vol%の範囲とすることが好ましい。フッ素化環状カーボネートの含有量が0.5vol%未満である場合、サイクル特性を向上させる効果が小さくなり、フッ素化環状カーボネートの含有量が15vol%を超える場合、フッ素化環状カーボネートが過剰に分解されて充放電効率が低下する恐れがある。
【0021】
その他、非水溶媒として、γ−ブチロラクトン、γ−バレロラクトン等の環状エステル、テトラヒドロフラン、1、2−ジメトキシエタン、ジメチルスルホキシド、スルホラン等の単体又は混合物を適宜含有することができる。これらその他の溶媒の含有量は、合計して非水溶媒及び支持塩の混合物中30重量%以下とすることが好ましい。
【0022】
非水電解液に用いる支持塩としては、例えば、LiPF、LiBF、LiClO、LiAsF、LiSbF、LiCFSO、LiN(SOCF等の単体又は混合物を用いることができる。その中でも、LiPF又はLiBFが好ましく、LiPFが特に好ましい。また、これらの支持塩の濃度については、特に制限はないが、環状カーボネート及び環状カーボネートの合計に対して、0.8〜2.0mol/lの範囲とすることが好ましい。
【0023】
リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート等のいずれかを単独で又は混合して用いることができる。さらに、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,3,3−テトラフルオロプロピル)、リン酸トリス(2,2,3,3,4,4,5,5−オクタフルオロペンチル)等のいずれかの含フッ素リン酸エステルを単独で又は混合して用いることもできる。なお、本発明では、概念上この含フッ素リン酸エステルもリン酸エステルに含めることとする。上記の中でも、リン酸トリメチルが特に好ましく用いられる。
【0024】
上記リン酸エステルの添加量は、非水溶媒及び支持塩の合計100重量%に対し1〜15重量%であることが好ましく、1〜10重量%であることがさらに好ましい。
【0025】
ビスホスホン酸エステルとしては、メチレンジホスホン酸テトライソプロピル、メチレンジホスホン酸テトラエチル、エチレンジホスホン酸テトラエチル、p−キシリレンジホスホン酸テトラエチル等のいずれかを単独で又は混合して用いることができる。その中でも、メチレンジホスホン酸テトライソプロピル又はメチレンジホスホン酸テトラエチルが特に好ましく用いられる。
【0026】
上記ビスホスホン酸エステルの添加量は、非水溶媒及び支持塩の合計100重量%に対し0.5〜10重量%であることが好ましく、0.5〜8重量%であることがさらに好ましい。
【0027】
特に、リン酸エステル及びビスホスホン酸エステルの添加量の合計が、非水溶媒及び支持塩の合計100重量%に対し1.5〜5重量%であることが好ましい。添加量が1.5重量%より少ない場合には消火性の効果が得られにくい。また、5重量%添加と比較的少量の添加であってもリン酸エステルとビスホスホン酸エステルを併用することにより、消火性が良好であるとともに電池特性に及ぼす悪影響が小さいために、サイクル特性やレート特性に優れるという効果がある。さらに、リン酸エステルとビスホスホン酸エステルの消火性を比較すると、リン酸エステルの方が消化性は良好であるので、リン酸エステルの添加量をビスホスホン酸エステルの添加量以上とすることが望ましい。
【0028】
非水電解液には、上述の各成分に加えて、必要に応じて、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロ(ビスオキサラト)リン酸塩及びテトラフルオロ(ビスオキサラト)リン酸塩からなる群から選択される少なくとも1種類の塩を添加しても良い。これらの塩を添加することにより、電極に被膜が形成され、電池性能の向上につながると考えられる。これらの塩の含有量は、合計して非水電解液中5重量%以下とすることが好ましい。
【0029】
また、本発明の要旨を損なわない限りにおいて、非水電解液には、一般に用いられている他の添加剤を任意の比率で添加してもよい。具体例としては、シクロヘキシルベンゼン、ビフェニル、t−ブチルベンゼン、プロパンサルトン等の過充電防止効果や正極保護効果を有する化合物が挙げられる。これらの他の添加剤の含有量は、特に限定されるものではないが、合計して非水電解液中10重量%以下とすることが好ましい。
【0030】
次に、リチウムイオン二次電池の構成について説明する。
リチウムイオン二次電池は、前記非水電解液を用いる。その他の構成部材としては、一般のリチウムイオン二次電池に使用されている負極、正極、セパレータ、容器等を用いることができる。
【0031】
リチウムイオン電池を構成する負極に用いる負極活物質としては、リチウムイオンの吸蔵及び放出をすることができる材料であれば特に限定されない。例えば、人造黒鉛、天然黒鉛、難黒鉛化炭素類、金属酸化物、金属窒化物、活性炭等が挙げられる。これらはいずれかを単独で、もしくは2種以上を混合して用いることができる。
【0032】
リチウムイオン電池を構成する正極に用いる正極活物質としては、リチウムイオンの吸蔵及び放出をすることができる材料であれば特に限定されず、例えばリチウムマンガン酸化物、リチウムコバルト酸化物、リチウムニッケル酸化物等のリチウム遷移金属複合酸化物等を挙げることができる。これらはいずれかを単独で、もしくは2種以上を混合して用いることができる。
【0033】
負極及び正極は、上述の正極活物質及び負極活物質を、必要に応じて、それぞれバインダ、増粘剤、導電材、溶媒等と混合して正極合剤スラリー及び負極合剤スラリーを調製した後、各々を集電体に塗布して乾燥させ、所望の形状を切り出すこと等により作製することができる。
【0034】
リチウムイオン電池を構成するセパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シートや不織布等が使用可能である。
【0035】
以上の構成要素を用いて、コイン状、円筒状、角形状、アルミラミネートシート状等の種々の形状を有するリチウムイオン二次電池を組み立てることができる。
【実施例】
【0036】
以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0037】
(実施例1)
エチレンカーボネート(EC)及びジメチルカーボネート(DMC)の混合溶液(容量比2:3)に、ビニレンカーボネート(VC)を0.8重量%、支持塩としてLiPFを1mol/l溶解させた。ここで、VC及び支持塩の濃度は、ECとDMCの合計に対する濃度である(以下、同様)。これに、リン酸エステルとしてリン酸トリメチル(TMP)を2重量%、ビスホスホン酸エステルとしてメチレンジホスホン酸テトライソプロピル(TPMDP)を2重量%となるように添加し、非水電解液を調製した。なお、リン酸エステル及びビスホスホン酸エステルの濃度は、非水溶媒(EC、DMC及びVC)と支持塩の合計を100重量%としたときの濃度である(以下、同様)。
【0038】
(燃焼試験)
上記で得られた非水電解液について、以下の燃焼試験を実施し、難燃性を評価した。まず、ガラス繊維(幅20mm×長さ65mm)に非水電解液を2ml浸み込ませ、大気中にて10秒間試験炎にさらした後、試験炎を遠ざけ、引火炎の様子を目視により観察し、消火するまでの時間を測定した。消火時間が10秒未満の場合を難燃性とし、10秒以上の場合を燃焼性とした。
【0039】
(電気伝導度の測定)
続いて、東亜電波工業製CM−30Vを用いて、25℃における非水電解液の電気伝導度を測定した。
【0040】
(リチウムイオン二次電池用負極の充放電試験)
次に、上記の非水電解液を用いて、黒鉛を負極活物質として試験用セルを作製し、充放電試験を実施した。負極活物質としては人造黒鉛を用い、バインダとしてはポリフッ化ビニリデンを用いた。まず、N−メチル−2−ピロリドンに5重量%の割合でバインダを溶解した溶液を作製した。続いて、この溶液を人造黒鉛に添加して混練し(混練物中、人造黒鉛の割合は8.6重量%)、N−メチル−2−ピロリドンをさらに加えて負極合剤スラリーを調製した。この負極合剤スラリーを集電体である銅箔の片面に塗布して乾燥させ、負極合剤層を形成した。その後、ロールプレス機により圧縮成形し、所定の大きさに切断してリチウムイオン二次電池用負極を作製した。
【0041】
次に、このリチウムイオン二次電池用負極を用いてテストセルを作製した。図1は、測定に用いたテストセルの概略分解図である。図1において、対極31、負極合剤層32及び参照極33は、それぞれの間にセパレータ35を挟み込むことによって絶縁を保持した状態で積層しており、SUS製の治具36で外側を押さえてある。なお、図1において、負極合剤層32と銅箔製の集電体34とが別々に示されているが、これらは、上述の通り、一体の部材として負極を構成している。また、負極合剤層32は、直径15mmの円板状としてある。対極31及び参照極33は、金属リチウムで形成されている。セパレータ35は、厚さ30μmのポリエチレン多孔質フィルムである。以上のように構成したテストセル30について、上記の非水電解液を使用し、次の手順によりその初期放電容量特性及びサイクル特性の評価を行った。
【0042】
測定のための充電条件は、定電流定電圧充電とし、電圧値を5mV、電流値を1mA(初期)・30μA(終止)、休止時間を10分とした。また、放電条件は、電流値を1mA、カット電圧を1.5Vとした。
【0043】
初期放電容量特性は、上記条件で充放電を1サイクル行った後に、負極活物質である人造黒鉛の単位重量当たりの放電容量を算出して評価した。また、サイクル特性としては、上記条件での充放電を20サイクル繰り返して行い、1サイクル目の放電容量(初期放電容量)に対する20サイクル目の放電容量の比率(20サイクル目の放電容量/1サイクル目の放電容量)を放電容量維持率として算出し評価した。表1にその結果を示す。
【0044】
(実施例2)
リン酸トリメチル(TMP)を4重量%、メチレンジホスホン酸テトライソプロピル(TPMDP)を1重量%となるように添加したこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
【0045】
(実施例3)
リン酸トリメチル(TMP)を3重量%、メチレンジホスホン酸テトライソプロピル(TPMDP)2重量%となるように添加したこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
【0046】
(実施例4)
リン酸トリメチル(TMP)を3重量%、メチレンジホスホン酸テトラエチル(TEMDP)2重量%となるように添加したこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
【0047】
(比較例1)
リン酸トリメチル(TMP)及びメチレンジホスホン酸テトライソプロピル(TPMDP)を添加しなかったこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
【0048】
(比較例2)
エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶液(容量比1:2)に、ビニレンカーボネート(VC)を0.8重量%、LiPFを1mol/l溶解させ、この溶液にリン酸トリメチル(TMP)を5重量%となるように添加して非水電解液を調製したこと以外は、実施例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
【0049】
(比較例3)
リン酸トリメチル(TMP)を20重量%となるように添加したこと以外は、比較例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
【0050】
(比較例4)
リン酸トリメチル(TMP)を15重量%となるように添加したこと以外は、比較例1と同様に非水電解液を調製し、燃焼試験、電気伝導度の測定及び充放電試験を実施した。その結果を表1に示す。
【0051】
【表1】

【0052】
表1の結果から明らかなように、上記の実施例1〜4の非水電解液は、難燃性を有するとともに、電気伝導度が高く、初期放電容量が高い。さらに、サイクル試験後の容量維持率も高い値を示した。一方、上記の比較例1〜4においては、難燃性、電気伝導度、初期放電容量及び容量維持率を兼ね備えたものとはなっていない。
【0053】
(実施例5)
実施例1の非水電解液及び負極を用いて18650(直径18mm×高さ65mm)型リチウムイオン二次電池を作製し、その評価を行った。図2は、リチウムイオン二次電池の部分断面図である。正極1及び負極2は、これらが直接接触しないようにセパレータ3を挟み込んだ状態で円筒状に捲回してあり、電極群を形成している。正極1には正極リード7が付設してあり、負極2には負極リード5が付設してある。電極群は、電池缶4に挿入し、また、電池缶4の底部及び上部には絶縁板9を設置し、電極群が電池缶4と直接接触しないようにしてある。さらに、電池缶4の内部には、非水電解液が注入してある。なお、電池缶4は、パッキン8を介して蓋部6と絶縁されている。
【0054】
本実施例において、正極は以下の方法で作製した。まず、正極活物質であるLiMnと導電材である黒鉛とを混合し、さらに、バインダ(ポリフッ化ビニリデンをN−メチル−2−ピロリドンに溶解させた溶液)を加えて混練し、正極合剤スラリーを作製した。このとき、正極合剤スラリーの固形分中、正極活物質が88.5重量%、導電材が4.5重量%、バインダが7重量%となるように調製した。
【0055】
この正極合剤スラリーを、集電体であるアルミ箔の片面(表面)に塗布した後、100℃で乾燥させた。同様の方法により、アルミ箔の他の片面(裏面)にも正極合剤スラリーを塗布し、乾燥させて正極合剤層を形成した。そして、ロールプレス機により圧縮成形した後、所定の大きさに切断し、電流を取り出すためのアルミニウム箔製の正極リードを溶接して正極を作製した。
【0056】
この正極と実施例1の方法で作製した負極とを、これらが直接接触しないようにセパレータを挟み込んだ状態で円筒状に捲回した後、18650型電池缶に挿入した。続いて、集電タブと電池缶の蓋部とを接続した後、電池缶の蓋部と電池缶とをレーザー溶接により溶接して電池を密封した。最後に、電池缶に設けた注液口から非水電解液を注入して18650型電池(リチウムイオン二次電池)を得た。
【0057】
作製したリチウムイオン二次電池の特性の評価は、以下の手順で行った。
まず、リチウムイオン二次電池を25℃の恒温槽に入れ、1時間保持した。初期の充放電は、0.2Cの電流で4.2Vまで定電流定電圧で充電した後、0.5Cの電流で2.7Vまで放電した。その後、0.5Cの電流で4.2Vまで定電流定電圧で充電し、0.5Cの電流で2.7Vまで放電することを3サイクル繰り返した。次に、0.5Cの電流で4.2Vまで定電流定電圧で充電し、0.2Cの電流で2.7Vまで放電したときの放電容量を初期放電容量とし、0.5Cの電流で4.2Vまで定電流定電圧で充電し、1.0Cの電流で2.7Vまで放電したときの放電容量を高率放電容量とした。初期放電容量(0.2C)に対する高率放電容量(1.0C)の比率(高率放電容量/初期放電容量)を放電容量比として算出した。その結果、放電容量比は96%となった。
【0058】
なお、ここで「1C」の充放電レートとは、電池を放電し切った状態から充電する場合において、1時間で100%の充電を完了すること、及び電池を充電し切った状態から放電する場合において、1時間で100%の放電を完了することをいう。すなわち、充電又は放電の速さが1時間当たり100%であることをいう。
【0059】
(実施例6)
実施例2の非水電解液を用いたこと以外は、実施例5と同様の方法でリチウムイオン電池を作製し、その電池性能評価を実施した。その結果、放電容量比は95%となった。
【0060】
(実施例7)
実施例3の非水電解液を用いたこと以外は、実施例5と同様の方法でリチウムイオン電池を作製し、その電池性能評価を実施した。その結果、放電容量比は94%となった。
【0061】
(実施例8)
実施例4の非水電解液を用いたこと以外は、実施例5と同様の方法でリチウムイオン電池を作製し、その電池性能評価を実施した。その結果、放電容量比は94%となった。
【0062】
以上で説明したように、本発明によれば、難燃性の非水電解液と高率放電特性に優れるリチウムイオン二次電池を得ることができる。このような非水電解液及びこれを用いたリチウムイオン二次電池は、電力貯蔵用電源、電気自動車等の性能向上に寄与するものである。本発明の非水電解液は難燃性を有し、電池の安全性に寄与することから、特に、電池容量が大きい産業用のリチウムイオン二次電池に用いられることが望ましい。
【0063】
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることが可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【符号の説明】
【0064】
1 正極
2 負極
3 セパレータ
4 電池缶
5 負極リード
6 蓋部
7 正極リード
8 パッキン
9 絶縁板
30 テストセル
31 対極
32 負極合剤層
33 参照極
34 集電体
35 セパレータ
36 治具

【特許請求の範囲】
【請求項1】
少なくとも環状カーボネート及び鎖状カーボネートを含む非水溶媒と支持塩とを含有する非水電解液であって、さらに、リン酸エステル及びビスホスホン酸エステルを含有する前記非水電解液。
【請求項2】
リン酸エステルがリン酸トリメチルであり、ビスホスホン酸エステルがメチレンジホスホン酸テトライソプロピル又はメチレンジホスホン酸テトラエチルである請求項1に記載の非水電解液。
【請求項3】
鎖状カーボネートがジメチルカーボネートである請求項1又は2に記載の非水電解液。
【請求項4】
支持塩が、LiPF、LiBF、LiClO、LiAsF、LiSbF、LiCFSO及びLiN(SOCFからなる群から選択される少なくとも1種類のリチウム塩である請求項1〜3のいずれかに記載の非水電解液。
【請求項5】
非水溶媒としてビニレンカーボネートをさらに含む請求項1〜4のいずれかに記載の非水電解液。
【請求項6】
リン酸エステルの添加量が、非水溶媒及び支持塩の合計100重量%に対し1〜15重量%である請求項1〜5のいずれかに記載の非水電解液。
【請求項7】
ビスホスホン酸エステルの添加量が、非水溶媒及び支持塩の合計100重量%に対し0.5〜10重量%である請求項1〜6のいずれかに記載の非水電解液。
【請求項8】
リン酸エステル及びビスホスホン酸エステルの添加量の合計が、非水溶媒及び支持塩の合計100重量%に対し1.5〜5重量%である請求項1〜5のいずれかに記載の非水電解液。
【請求項9】
リン酸エステルの添加量が、ビスホスホン酸エステルの添加量以上である請求項1〜8のいずれかに記載の非水電解液。
【請求項10】
さらに、ビス(オキサラト)ホウ酸塩、ジフルオロ(オキサラト)ホウ酸塩、トリス(オキサラト)リン酸塩、ジフルオロ(ビスオキサラト)リン酸塩及びテトラフルオロ(ビスオキサラト)リン酸塩からなる群から選択される少なくとも1種類の塩を含む請求項1〜9のいずれかに記載の非水電解液。
【請求項11】
請求項1〜10のいずれかに記載の非水電解液を用いたリチウムイオン二次電池。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−248311(P2012−248311A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2011−116900(P2011−116900)
【出願日】平成23年5月25日(2011.5.25)
【出願人】(000001203)新神戸電機株式会社 (518)
【Fターム(参考)】