説明

Fターム[4K058FA05]の内容

金属の電解製造 (5,509) | 他の技術、操作、装置 (429) | 原料、生成物関係 (206) | 電析物の捕集、剥離など (145) | 化学的、電気化学的 (24)

Fターム[4K058FA05]に分類される特許

1 - 20 / 24


【課題】被処理物に含まれる所望の金属を容易に回収可能な金属回収装置を提供する。
【解決手段】被処理物に含まれる金属を回収する金属回収装置1であって、電解槽10内に溶融塩mが貯留された状態で、陽極溶解用電極20及び中間電極40がそれぞれ陽極及び陰極として機能するように、陽極溶解用電極20と中間電極40との間に通電することにより、被処理物wに含まれる金属を溶融塩中に陽極溶出させ、通電終了後、中間電極40及び回収用電極30がそれぞれ陽極及び陰極として機能するように、中間電極40と回収用電極30との間に通電することにより、溶出した金属イオンを回収用電極30に金属または合金として析出させる。 (もっと読む)


【課題】安全性に優れるとともに簡易なプロセスで希土類元素を高純度で回収可能な方法を提供する。
【解決手段】希土類元素の酸化物を含む原料を溶融硫酸塩中に添加する、添加工程と、原料が添加された溶融硫酸塩を電気分解し、原料に含まれる希土類元素を溶融硫酸塩中に溶解させる、溶解工程と、溶解工程の後、希土類元素が溶解した溶融硫酸塩に対して電気化学的に還元処理を行う、還元工程とを有する、希土類元素の回収方法とする。 (もっと読む)


【課題】アミン系剥離液使用により蓄積するレジスト樹脂、炭酸アンモニウム塩、溶解金属を連続的に除去し、剥離液の再生装置、方法を提供する。
【解決手段】剥離装置1内で循環する使用済み剥離液2を配管経路3を通じて電解槽4の陽極ドラム5およびカチオン交換膜6間に導入する。一方で電解槽4には陽極ドラム5に対向する陰極7が、カチオン交換膜6を介して設置されており、陰極7は再生済みの剥離液8によって満たされている。陽極と陰極間の電気伝導は陽イオンの移動による電気伝導が可能となっているので電気的には隔離されていない。陽極ドラム5及び陰極には、電気給手段として電源9が接続されている。陰極及び陽極間に直流電流を通電することで、使用済み剥離液に含まれるレジスト樹脂を陽極ドラム5の表面上に電着でき、剥離液中からレジスト樹脂を除去できる。 (もっと読む)


【課題】デンドライト化が抑制された球状でかつ粒子径がナノメータサイズの銅−亜鉛合金微粒子の製造方法を提供する。
【解決手段】電解還元反応による、銅−亜鉛からなる銅合金微粒子の製造方法であって、
(i)少なくとも硫酸銅、硫酸亜鉛、錯化剤(a)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液1)、(ii)少なくとも塩化第一銅、水溶性亜鉛化合物、錯化剤(b)、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液2)、
(iii)少なくとも酒石酸銅、酸化亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液3)、又は(iv)少なくとも酢酸銅、酢酸亜鉛、有機分散剤、及び無機分散剤を含む還元反応水溶液(還元反応水溶液4)、でpHが4.5〜13である還元反応水溶液から、電解還元反応により銅−亜鉛からなる合金微粒子を析出させることを特徴とする、銅合金微粒子の製造方法。 (もっと読む)


【課題】最も好ましくは200℃よりも低い低温アルカリ金属電解プロセスによるアルカリ金属を生産する方法を提供する。
【解決手段】アルカリ金属ハロゲン化物と、(1)イミダゾリウム塩、N−アルキルピリジニウム塩、テトラアルキルアンモニウム塩およびテトラアルキルホスホニウム塩のような窒素またはリン化合物、および任意選択でIIIA族ハロゲン化物、IB族ハロゲン化物、VIII族ハロゲン化物またはこれらの2種以上の組合せ、あるいは(2)IIIA族ハロゲン化物、VB族ハロゲン化物、またはIIIA族ハロゲン化物とVB族ハロゲン化物の組合せ、あるいは(3)水を含むコエレクトロライトとを含む電解液を使用する。 (もっと読む)


【課題】有毒な塩化金酸などの金化合物および還元剤を用いることなく、安全で環境に優しく、かつ簡単な手法で、粒径分布の狭い100nm以下の粒状金ナノ粒子を製造する方法を提供する。
【解決手段】シュウ酸およびその塩を除くカルボン酸またはカルボン酸塩水溶液中で金をアノード酸化し、得られた多孔質膜を水に例えば一週間浸漬する。これにより多孔質膜の自然分解が起こり、その結果金ナノ粒子分散液が得られる。この分散液を遠心分離、ろ過などすることにより、金ナノ粒子を分離・回収し、必要に応じ乾燥して金ナノ粒子を得る。カルボン酸、カルボン酸塩としては、クエン酸、乳酸、酒石酸、林檎酸およびそれらの塩が好ましい。また金電極にかける電位は、水素標準電極電位に対して+1.5〜11V程度が好ましい。 (もっと読む)


【課題】金属インジウム含有合金から、高度に精製された高純度の金属インジウムを高回収率で取得できる方法を提供する。
【解決手段】ITOターゲットのスクラップ等を還元処理して得られた金属インジウム含有合金を陽極とし、金属インジウムを陰極とし、臭化インジウムを含む溶融塩を電解質として、電流密度:1〜200A/dm、操作温度:90〜500℃で溶融塩電解し、陰極から精製された金属インジウムを得る。 (もっと読む)


【課題】ジルコニア鉱石中に酸化物として含まれるジルコニウム及びハフニウムを分離して製造する技術に関し、二次廃棄物の発生量が低減されるといった経済性の高い、金属の電解製造技術を提供する。
【解決手段】金属の電解製造装置10において、ジルコニウム酸化物及びハフニウム酸化物を含む原料Sを支持する第1電極60と、第1電極60とは反対極性の電圧が印加される第2電極70と、第1電極60及び第2電極70を浸漬させる電解浴13を保持する電解槽14と、ジルコニウム酸化物及びハフニウム酸化物を第1電極60において還元させる還元電圧を生成するとともに、前記還元されたもののうちハフニウムを選択的に第2電極70に析出させる析出電圧を生成する直流発生部12と、を備えることを特徴とする。 (もっと読む)


【課題】高密度化及び高容量化が必要な半導体装置で使用されるはんだ材料に対し、α線の少ない高純度錫または錫合金若しくは高純度錫の製造方法の提供。
【解決手段】U、Thのそれぞれの含有量が5ppb以下、Pb、Biのそれぞれの含有量が1ppm以下であり、純度が5N以上(但し、O、C、N、H、S、Pのガス成分を除く)であり、鋳造組織を持つ高純度錫のα線カウント数が0.001cph/cm2以下に低減させた高純度錫又は錫合金である。原料となる錫を酸で浸出させた後、この浸出液を電解液とし、該電解液に不純物の吸着材を懸濁させ、原料Snアノードを用いて電解精製を行う、錫合金及び高純度錫の製造方法。 (もっと読む)


【課題】Auと酸化剤を含有する水溶液中のAuを、低コストで効率良く、しかも高い回収率で回収する方法を提供する。
【解決手段】貯留層2に収容されたAuと酸化剤を含有する水溶液からAuを回収する際に、前記水溶液を貯留層2と電解槽1に循環させながら電気分解し、Auを析出させる工程と、電解槽1において析出したAuを、弁5,6をとじることによって前工程の水溶液よりも少ない量のAu再溶解液に溶解してAu濃縮液を得る工程と、前記Au濃縮液を電解槽7に移し、酸化剤を中和してから電気分解を行いAuを回収する工程と、を含む方法。 (もっと読む)


本発明による金属ナノ粒子コロイド溶液の製造方法は、金属塩が溶解している電解水溶液中に一対の金属電極を対向配置した後、攪拌手段により前記電解水溶液を攪拌しながら前記2つの電極に電流を印加することで、溶液中の金属イオンが還元されて金属ナノ粒子が析出するようにして調製される金属ナノ粒子のコロイド溶液の製造方法において、前記電解水溶液中にポリソルベートを添加して、電解水溶液から析出する金属ナノ粒子の外面をコーティングすることにより、金属ナノ粒子の凝集を防止することを特徴とする。
(もっと読む)


【課題】シュウ酸とInを含むシュウ酸エッチング液中に含有されている不溶性のIn化合物を捕捉するフィルターから、その不溶性のIn化合物を除去するとともに、そのIn、In合金、In化合物等を回収する方法と装置に関し、Inとともにシュウ酸イオンが含まれているシュウ酸エッチング液を循環させる流路内に配置されるフィルターで捕捉される不溶性In化合物を好適に除去することができるとともに、そのフィルターを再生することもでき、しかもIn、In合金、In化合物等を有価物として好適に回収することができる回収方法と装置を提供することを課題とする。
【解決手段】シュウ酸とInとを含有するシュウ酸エッチング液中の不溶性In化合物を捕捉したフィルターから、無機酸によって前記不溶性In化合物を溶解させて除去し、無機酸に溶解したIn若しくはIn合金、又はIn化合物を回収することである。 (もっと読む)


【課題】本発明の目的は、処理設備を簡易としてかつ容易に、酸化鉛を含むガラス廃棄物から、鉛を選択的に回収し、残存成分を無害化すると共に、ガラス成分の再資源化を行うことができる鉛含有ガラス廃棄物の処理方法を提供することにある。
【解決手段】酸化鉛を含有するガラス廃棄物10を溶融塩中で電解還元11させて鉛を金属に還元してこのガラス廃棄物表面に鉛を濃縮させ、冷却後この鉛を表面に濃縮させたガラス廃棄物の表面を酸洗浄12により、鉛13のみを溶解して分離することを特徴とする。 (もっと読む)


【課題】キャパシター用タンタルまたはニオブ粉末の製造方法を提供する。
【解決手段】陽極、陰極及び溶融塩を含む電解還元反応器におけるキャパシター用タンタル(Ta)またはニオブ(Nb)粉末の製造方法において、アルカリ金属及びアルカリ土類金属から選択した少なくとも一つの金属のハロゲン化合物と、アルカリ金属酸化物からなる溶融塩中、アルカリ金属酸化物を陰極で1次電解還元し、電解還元されたアルカリ金属により五酸化タンタル(Ta2O5)または五酸化ニオブ(Nb2O5)を部分的に還元してTa2O(5-y)またはNb2O(5-y)(ここで、y=2.5〜4.5)で表示されるタンタルまたはニオブ酸化物を得る工程、及び前記アルカリ金属及びアルカリ土類金属から選択した少なくとも一つの金属のハロゲン化合物を陰極で1次電解還元して、Ta2O(5-y)またはNb2O(5-y)(ここで、y=2.5〜4.5)で表示されるタンタルまたはニオブ酸化物と2次還元反応を進行してタンタルまたはニオブ粉末を得る工程を含む。 (もっと読む)


【課題】Ca、Na等のメタルフォグ形成金属含有溶融塩を含む溶融塩に溶解しているメタルフォグ形成金属を除去して他方の溶融塩中へ移行、高濃度化させる方法及び装置を提供する。
【解決手段】メタルフォグ形成金属除去濃縮槽1aの濃縮領域2及びこの領域と隔てられた除去領域3に、メタルフォグ形成金属含有溶融塩を含み且つ前記メタルフォグ形成金属が溶解した溶融塩を保持し、更にこれら両領域内の溶融塩と接触させてメタルフォグ形成金属を含有する溶融合金5を保持し、前記除去領域内の溶融塩側の電極板が濃縮領域内の溶融塩側に対して+極となるように前記メタルフォグ形成金属含有溶融塩の分解電圧未満の電圧を印加する。この方法は、本発明の装置により容易に且つ好適に実施できる。なお、この方法及び装置は、Ti又はTi合金の製造方法を実施する際に有効に適用できる。 (もっと読む)


【課題】湿式銅製錬プロセスにおいて、塩化第2銅イオンを塩化第1銅イオンに還元する工程を実施するに当たり、還元剤として銅精鉱を利用したやり方で、塩化第1銅イオンが高比率で存在する還元生成液を得るために、銅精鉱の鉱物組成の違いにかかわらず、効率的に還元することができる塩化第2銅イオンの還元方法を提供する。
【解決手段】湿式銅製錬プロセスにおいて、塩化第2銅イオンを塩化第1銅イオンに還元する工程を実施するに当たり、イ)反応温度は、90〜120℃の温度に設定し、ロ)還元剤は、黄銅鉱、輝銅鉱又は斑銅鉱から選ばれる少なくとも1種の硫化銅鉱物を含む銅精鉱を用い、さらに、ハ)還元剤の添加量は、還元反応終了後の最終酸化還元電位を所望の値に制御するために、銅精鉱中における硫化銅鉱物の含有割合を基準にして決定することを特徴とする。 (もっと読む)


【解決手段】以下の工程
a)SiO含有出発物質をアンチモン、水銀および硫黄と共に溶融塩電解し、分解物質を得る工程;
b)洗浄して元素状の硫黄を取り除く工程;
c)酸処理して外来イオンを除去する工程;
d)還元処理して、水銀および/またはアンチモン塩を還元する工程;
e)密度分離して、シリコンを残りの成分から分離する工程
を含む、シリコンの製造方法。 (もっと読む)


【課題】 本発明は各種産業排液や家庭における洗濯排水等、難分解性有機金属錯体を含む排液による河川等の汚染防止などを目的とし、安定で分解することが困難であった錯体を容易に分解する方法を提供する。併せて錯体の中心金属を微粒子状で回収することができるので、有害な重金属類の除去或いは価値の或る金属類の回収も容易に行うことができる。
【解決手段】 本発明は、難分解性の有機金属錯体を電気分解することにより、中心金属を微粒子状として回収すると共に配位子を分解する方法を提供する。 (もっと読む)


本発明は混合酸化物試料中に金属酸化物として含まれる金属の分離のための、(i)融解塩の電解質に混合酸化物を添加し、酸化物を陰極で電気分解すること(ここで陰極のポテンシャルが融解塩中に存在するカチオンからの金属の析出より酸素のイオン化を優先するように制御され、適用される電位差が他の金属酸化物を犠牲にして1金属酸化物の選択的還元を容易にするようなものである)、および(ii)遷移金属、ランタニドもしくはアクチニド系の少なくとも1種からの金属の酸化物を含んで成る残りの金属酸化物から金属を分離すること、を含んで成る方法を提供する。その方法は2種以上の金属酸化物の混合物を含んで成る混合酸化物試料に適用でき、そして特別の適用は混合ジルコニウムおよびハフニウム酸化物中に含まれるジルコニウムおよびハフニウムの分離にあり、そこでハフニウムの除去は原子力発電産業における使用のための燃料被覆加工におけるジルコニウムの使用を容易にする。 (もっと読む)


【課題】 原料である金属塩化物中に含まれる不純物を効果的に除去することができる金属マグネシウムまたは金属カルシウムの製造方法および製造装置を提供する。
【解決手段】 原料の金属塩化物中に含まれる不純物を分離除去し、該溶融金属塩化物を電解槽に供給し、電解槽に備えられた陽極および陰極に通電して溶融塩電解する。また、一部が開口した隔壁によって電解槽本体を少なくとも電解室およびメタル回収室に区画し、電解室には陽極と陰極を配置し、電解槽本体に電解浴を装入して溶融塩電解を行ない、メタル回収室に溶融金属マグネシウムを回収する金属マグネシウム製造用溶融塩電解装置において、メタル回収室の上部には、ろ過または吸着によって不純物を分離する不純物分離器が設けられ、電解浴は、不純物分離器を経由して電解槽に供給される。 (もっと読む)


1 - 20 / 24