説明

Fターム[5H730AS11]の内容

DC−DCコンバータ (106,849) | 用途 (11,272) | 照明用 (732)

Fターム[5H730AS11]に分類される特許

721 - 732 / 732


【課題】光源ランプなどの定電力負荷を安定動作させると共にエネルギーロスの低減を図ることが可能にする。
【解決手段】電源回路は、商用交流電源(100V〜250V)を整流回路30により整流し、昇圧回路31により定電力負荷17aに応じた所定の電源仕様に変換して出力する。電源検出回路32は、商用交流電源の電圧値が所定の電圧値よりも高いか否かを判定して制御部20に通知する。制御部20は、商用交流電源が所定の電圧値よりも高いと判定された場合(250V系)には、定電力負荷17aの安定動作に適した380Vを出力電圧として設定し、所定の電圧値よりも高くないと判定された場合には(100V系)、定電力負荷17aが許容する電圧範囲内の270Vを出力電圧として設定して、昇圧回路31から出力させる。 (もっと読む)


【課題】直流電源のプラスとマイナスとを逆接によって流れる過電流を防止した電源供給装置を提供する。
【解決手段】バッテリB−LED20間に設けられたMOSFETQ1及びDC/DCコンバータ11から構成される直流回路を備えている。DC/DCコンバータ11は、MOSFETQ1とLED20との間に設けられるコイルL1、順方向がコイルL1に向くように、コイルL1上流側−グランド間に設けられたダイオードD1及びコイルL1下流側−グランド間に設けられたコンデンサC1を有する。コイルL1上流側−グランド間に、ダイオードD1と直列に、バッテリBの逆接続時にオフするMOSFETQ2を設ける。 (もっと読む)


【課題】 ランプ電圧のバラツキを考慮してランプの光束の立ち上り変動を抑制することができる放電灯の点灯制御技術を提供する。
【解決手段】 放電灯5のランプ電圧を検出するランプ電圧検出回路6及びランプ電流を検出するランプ電流検出回路7と、前記放電灯5を瞬時点灯するために定格の数倍の電流または電力を印加する始動時制御と定格の一定電力で安定点灯する安定時制御を行う制御回路を備え、前記ランプ電圧検出回路6の電圧検出値に応じてランプ電流またはランプ電力を始動時から安定時まで制御するとともに、始動時から安定時までの前記ランプ電圧検出回路6の電圧検出値の上昇かつ点灯してからの任意の時間経過により始動時制御から安定時制御へ移行することを特徴とする放電灯点灯装置。 (もっと読む)


電子バラストは、ハーフ・ブリッジにおける過電流保護及びハード・スイッチングのための欠陥検出及び安全特徴を提供する。電圧制御発振器は、動作フィードバック・パラメータに基づいて変更可能である切換え周波数を供給する。フィードバック回路は、負荷電流及び出力電圧を感知して、欠陥状態を決定し、かつ電圧制御発振器の周波数を適応的に調整するための制御情報を提供する。電圧制御発振器の出力を適切に制御することにより、電子バラストは、最小電流切換えでのゼロ・ボルト切換えを維持して、効率的かつ確固たる電子バラスト制御を達成する。全制御は、単一の集積回路上に一体化される。
(もっと読む)


本発明は、連続量(I1)の時間離散制御に関する。時間離散制御のより高い分解能を達成し、且つ、低周波効果による不安定な制御を回避するために、人為的な可変な外乱が時間離散制御に含まれる少なくとも1つの信号へ導入される。対応する制御回路は、連続量(I1)の時間離散制御を実行するよう構成された構成要素(10−14)と、更に、制御回路における少なくとも1つの信号へ人為的な可変な外乱を導入するよう構成された少なくとも1つの構成要素(20,21)とを設けられている。
(もっと読む)


少なくともいくつかの種類の負荷に、電力を供給、制御する方法および装置。一実施例においては、負荷に対して、その負荷からのフィードバック情報を必要とすることなく(すなわち、負荷電圧および/または負荷電流を監視することなく)、制御された所定の電力が供給される。別の実施例においては、LEDベース光源用の「フィードフォワード」電力ドライバは、DC‐DC変換器と光源コントローラの機能を組み合わせるとともに、所与の時間間隔において負荷に配給される平均電力を変調することに基づいて、光源によって生成される光の強度を、光源に供給される電圧または電流を監視および/または調整することなく、制御するように構成される。様々な実施例において、少数の構成要素、高い全体電力効率、および小さい空間要求を有する、大幅に簡略化された回路が実現される。様々な電力ドライバ構成に基づいて、1つまたは2つ以上のLEDベース負荷に対して1つまたは2つ以上の電力ドライバを組み込んだ、ライティング装置を実現することができるとともに、複数のそのようなライティング装置を互いに結合して、動作電力がネットワーク全体に効率的に供給されるライティングネットワークを形成することができる。
(もっと読む)


開回路電圧調整を有する電子バラストは、該電子バラストの出力へ動作可能な状態で接続され、検知出力電圧信号を発生させるフィラメント電流検知回路224と、前記検知出力電圧信号を受信し、当該電子バラストの出力での電圧を制御するよう動作可能な状態で接続された調整パルス幅変調器U3とを有する。調整パルス幅変調器U3は、出力電圧閾値限界を有する。調整パルス幅変調器U3は、検知出力電圧信号が出力電圧閾値限界を超える場合に、電子バラストの出力での電圧を制限する。調整パルス幅変調器U3は、高電圧ドライバ及び共振ハーフブリッジへのパルス幅を制限することによって、出力電圧を制限することができる。フィラメント電流検知回路224は、例えばタンク電流を検知することによって、間接的に出力電圧を検知することができ、あるいは、出力電圧を直接的に検知することもできる。
(もっと読む)


集積回路(10)は、外部電流検出抵抗を必要とすることなく、バッテリ(18)から負荷へ流れる電流を調節する。そのICは、主充電ポンプ(12)、モデル充電ポンプ(14)、電流検出回路(U3,M2)、モデル充電ポンプの出力部での電圧レベルを主充電ポンプの出力部での電圧に等しくさせる第1の制御回路と、および、モデル充電ポンプによるモデル電流出力を、バッテリ電源の電圧変化に拘わらず、外部フライイングキャパシタ(Cp)のキャパシタンス値により確立されたレベルに調節させるための第2の制御回路とを備える。 (もっと読む)


本発明は、容量性モード及び誘導性モードの両方において動作することができるブーストコンバータ(100)に関する。容量性モードにおいて、コンバータは、スイッチの集合(S1、S2、S3及びS4)とコンデンサの集合(110、112)とを利用して、チャージポンプ回路として動作する。誘導性モードにおいて、コンバータは、昇圧回路として動作し、スイッチの部分集合(S2及びS4)とインダクタとを用いる。モードは、容量性モードにおいて、バッテリ(108)をブーストコンバータ(100)へ結合するのにも使用される選択端子(Vin)を用いて選択される。
(もっと読む)


アップコンバータ(100)は、出力(3)と直列に接続されたインダクタ(5)及びダイオード(6)と、前記出力と並列に接続されたコンデンサ(8)と、前記インダクタと前記ダイオードとの間のノードに結合された1つのスイッチ端子を持つ制御可能スイッチ(7)とを有する。制御方法は、−インダクタに整流化された交流電圧(V)を供給するステップと、−スイッチをスイッチ開閉するために、パルス幅(T)を持つスイッチ制御信号(S)を発生させるステップと、を有し、スイッチ制御信号は、出力(3)における出力電圧(V)に基づいて発生させられる。本発明によれば、アップコンバータは、デジタルプロセッサ(110)を有し、該デジタルプロセッサ(110)は、出力電圧(V)をサンプリングし、出力電圧(V)が略一定に留まるようにスイッチ制御信号(S)のパルス幅(T)を計算するように、サンプリングされた出力電圧(V)をデジタル的に処理する。
(もっと読む)


制御端子および制御端子スイッチング閾値を有し、電荷蓄積コンデンサに電圧源からの電流を充電する第1スイッチングトランジスタと、このスイッチングトランジスタが、電圧源の電圧が所定のレベル未満のときにオンになり、電圧源の電圧が所定のレベルよりも大きいときにオフになるように、スイッチングトランジスタのオン/オフ動作を制御する制御回路と、電圧源の電圧が所定の電圧未満のときに、スイッチングトランジスタの制御端子に、スイッチング閾値よりも実質的に大きな制御電圧を供給し、それによってスイッチングトランジスタを飽和動作領域でオンに駆動する制御電圧供給回路と、この電源の出力電圧を供給する電荷蓄積コンデンサとを備える電源回路。
(もっと読む)


【課題】圧電材料を圧電トランス構成にしたときに、ほぼ半値に低下する圧電セラミックス材料特性値の、機械的品質計数Qm値を、ハイQm値とした圧電トランスを得る。
【解決手段】少なくても2枚ないし多くとも3枚の圧電トランスの、それぞれの電極部が合わさるように重ね合わせて、高温度で焼成或いは銀焼成或いはリフローすることにより、前記圧電トランスが相互に固着して、一体構成されて完成されていて、ハイQmを得ることを特徴とする圧電トランスを実現した。 (もっと読む)


721 - 732 / 732