説明

カバー付センサ及びその製造方法

【課題】 ベース部で保持される電極ピン同士の結露による短絡を有効に防止し、加えて結露対策に伴うコスト上昇及びセンサ自身の大型化を回避するとともに、耐久性及び信頼性を高める。
【解決手段】 少なくとも、二以上の電極ピン2a,2bを保持するベース部3と、電極ピン2a,2bに接続したセンサ素子4と、ベース部3に合体することによりセンサ素子4を覆う所定の通気性を有するセンサカバー5を備えるカバー付センサであって、少なくとも、ベース部3の一部又は全部の表面3fに、撥水性材料による所定の膜厚Dsを有する撥水膜6を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、センサ素子を接続した電極ピンを保持するベース部及びこのベース部に合体するセンサカバーを備えるカバー付センサ及びその製造方法に関する。
【背景技術】
【0002】
一般に、ガス漏れ等を検知するガスセンサ(特開2002−243684号公報等参照)は知られており、通常、この種のガスセンサは、ガスの存在に反応するセンサ素子と、このセンサ素子を機械的に保護するとともにガス以外の無用な異物侵入を阻止する脱塵機能を有するセンサ用カバーを備えている。この場合、センサ用カバーは、所定のガス透過率、例えば50〔%〕以上のガス透過率の確保が要求されるとともに、所要の脱塵機能が要求される。したがって、通常、この種のセンサ用カバーには、ガス透過率及び脱塵機能の双方の要請に応えることができる多孔質セラミックスが使用されており、上記例示の公報にも、ガス検知能を有し、1300℃までの高温下で構造が安定でかつ電極を取付けることにより高温脱塵とガス検知を同時に機能させるようにしたバルク状の多孔質セラミックスが開示されている。
【0003】
一方、この種のガスセンサは、所定のガス透過率を有するセンサ用カバーにより覆われるため、センサ用カバーの内部が結露しやすい問題がある。結露が生じた場合、センサ用カバーの内側に配されるセンサ素子やこのセンサ素子を接続する電極ピンなどの電気系回路が悪影響を受け、例えば、ゼロ点変動,センサ感度の一時的な低下,回路の短絡等を招く虞れがあり、特に、電極ピンはベース部の内外に貫通して設けられることから、ベース部に水滴が付着した場合には、電極ピン同士の短絡を招く虞れがある。このため、従来より結露対策を施したガスセンサも知られており、特開2003−161712号公報には、一端にガス取入口が形成されたケースに、ガス取入口から撥水フィルタ,パッキン,焼結多孔質金属板,第1スペーサ,発熱体ユニット,第2スペーサ,ガス検知ユニット,さらに、ベース材を順に積層配置して収容し、ケースの他端を絞って固定して検知ユニットからの接続用電極ピンを引出すとともに、発熱体ユニットにより、ガス検知ユニット及び流入する被検ガスを加熱して結露を防止するようにした結露防止機能を備えたガスセンサも開示されている。
【特許文献1】特開2002−243684号
【特許文献2】特開2003−161712号
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、上述した従来のカバー付センサ(結露防止機能を備えたガスセンサ等)は、次のような問題点があった。
【0005】
第一に、結露防止のための追加対策が複雑になる傾向があるため、部品点数の増加に伴う部品コスト及び製造コストの上昇、更にはセンサ自身の大型化を招くとともに、特に、追加対策に発熱手段などの電力を利用する場合には、電力消費(ランニングコスト)を伴うことから省エネルギ性及び経済性の観点からも難がある。
【0006】
第二に、結露防止のための追加対策が単純でないことから、苛酷な設置環境や長期にわたって設置されるガスセンサにとって故障しやすいなどの無視できない問題を生じ、十分な耐久性及び信頼性を確保する観点からも難がある。
【0007】
本発明は、このような背景技術に存在する課題を解決したカバー付センサ及びその製造方法の提供を目的とするものである。
【課題を解決するための手段】
【0008】
本発明に係るカバー付センサ1は、上述した課題を解決するため、少なくとも、二以上の電極ピン2a,2bを保持するベース部3と、電極ピン2a,2bに接続したセンサ素子4と、ベース部3に合体することによりセンサ素子4を覆う所定の通気性を有するセンサカバー5を備えるカバー付センサであって、少なくとも、ベース部3の一部又は全部の表面3fに、撥水性材料による所定の膜厚Dsを有する撥水膜6を形成してなることを特徴とする。この場合、発明の好適な形態により、電極ピン2a,2b及びこの電極ピン2a,2bを保持するベース部3の一部3pを組付けたピンアッセンブリ7を備え、このピンアッセンブリ7の表面に撥水膜6を形成することができる。また、撥水膜6の膜厚Dsは、0.3〜1.0〔μm〕の範囲に選定できるとともに、撥水性材料には、主材料としてフッソ系樹脂を用いることができる。なお、カバー付センサ1は、センサ素子4に、ガスを感知するガスセンサ素子4sを用いるとともに、センサカバー5に、所定のガス透過率を有する多孔質カバー5sを用いるガスセンサに適用することができる。
【0009】
一方、本発明に係るカバー付センサの製造方法は、上述した課題を解決するため、少なくとも、二以上の電極ピン2a,2bを保持するベース部3と、電極ピン2a,2bに接続したセンサ素子4と、ベース部3に合体することによりセンサ素子4を覆う所定の通気性を有するセンサカバー5を備えるカバー付センサ1を製造するに際し、少なくとも、ベース部3の一部又は全部の表面3fに、撥水性材料による所定の膜厚Dsを有する撥水膜6を形成する撥水膜形成工程(S1〜S8)を設けたことを特徴とする。この場合、発明の好適な態様により、電極ピン2a,2bをベース部3の一部3pに組付けることにより当該ベース部3の一部3pで電極ピン2a,2bを保持してなるピンアッセンブリ7を得るピンアッセンブリ組付工程を設けることができる。また、撥水膜形成工程(S1〜S8)では、ピンアッセンブリ7を、撥水性材料を用いた撥水処理液Lcに所定の設定時間Tsだけ浸漬することにより撥水膜6を形成することができる。さらに、撥水処理液Lcには、フッソ系樹脂:水:希釈リン酸系液の容積比を、(0.7〜1.3):(7〜13):(0.07〜0.13)に配合した撥水処理液Lcを用いることができる。
【発明の効果】
【0010】
このような本発明に係るカバー付センサ1及びその製造方法によれば、次のような顕著な効果を奏する。
【0011】
(1) 少なくとも、ベース部3の一部又は全部の表面3fに、撥水性材料による所定の膜厚Dsを有する撥水膜6を形成してなるため、結露が生じてもベース部3で保持される二以上の電極ピン2a,2b同士の水分による短絡が有効に防止される。
【0012】
(2) ベース部3の表面3fに撥水膜6を形成することにより容易に実現できるため、実質的な部品点数の増加は生じない。したがって、結露対策に伴うコスト上昇及びセンサ自身の大型化を回避できるとともに、電力消費(ランニングコスト)を伴わないため、省エネルギ性及び経済性に優れる。しかも、極めて単純な結露対策により実現できることから、苛酷な設置環境や長期にわたって設置されるカバー付センサ1であっても故障の生じる虞れがなく、耐久性及び信頼性を高めることができる。
【0013】
(3) 好適な態様により、電極ピン2a,2b及びこの電極ピン2a,2bを保持するベース部3の一部3pを組付けたピンアッセンブリ7を備え、このピンアッセンブリ7の表面に撥水膜6を形成すれば、ベース部3に対する有効な撥水膜6を容易かつ確実に形成することができる。
【0014】
(4) 好適な態様により、撥水膜6の膜厚Dsを、0.3〜1.0〔μm〕の範囲に選定すれば、電気的特性や製造性などに影響を与えることなく、十分な撥水性を確保することができる。
【0015】
(5) 好適な態様により、撥水性材料に、主材料としてフッソ系樹脂を用いれば、望ましい撥水性能及び製作容易性を実現することができる。
【0016】
(6) 好適な態様により、センサ素子4に、ガスを感知するガスセンサ素子4sを用いるとともに、センサカバー5に、所定のガス透過率を有する多孔質カバー5sを用いたガスセンサに適用すれば、特に、ガスセンサにおける使用環境の拡大及び信頼性の向上に寄与できる。
【0017】
(7) 好適な態様により、撥水膜形成工程(S1〜S8)において、ピンアッセンブリ7を撥水性材料を用いた撥水処理液Lcに所定の設定時間Tsだけ浸漬することにより撥水膜6を形成するようにすれば、撥水膜6として望ましい0.3〜1.0〔μm〕の膜厚Dsを容易かつ確実に形成することができる。
【0018】
(8) 好適な態様により、撥水処理液Lcに、フッソ系樹脂:水:希釈リン酸系液の容積比を、(0.7〜1.3):(7〜13):(0.07〜0.13)に配合した撥水処理液Lcを用いれば、撥水膜6を形成するための最適な粘度(付着性)を得ることができる。
【発明を実施するための最良の形態】
【0019】
次に、本発明に係る最良の実施形態を挙げ、図面に基づき詳細に説明する。
【0020】
本発明に係るカバー付センサ1は、図2及び図8に示すように、大別して、四本の電極ピン2a,2b…を保持するベース部3と、各電極ピン2aと2b…間にそれぞれ接続したセンサ素子4…と、ベース部3に合体することによりセンサ素子4…を覆う所定の通気性を有するセンサカバー5からなる。
【0021】
この場合、四本の電極ピン2a,2b…を保持するベース部3は、構成部品として、二つのピンアッセンブリ7…と、この二つのピンアッセンブリ7…を取付ける円形の底板部11d及びこの底板部11dの外周から立上げた筒形の周側板部11sを一体形成したシャーシ部材11と、このシャーシ部材11に対して二つのピンアッセンブリ7…を保持固定するブロック固定部材12と、このブロック固定部材12に起立して設けた衝立部材13を備える。
【0022】
また、ピンアッセンブリ7は、絶縁素材により形成したピンステイ15と、導電材により棒状に形成した二本の電極ピン2a,2bと、円筒状に形成した二つのピンベース16a,16bとにより構成し、このピンアッセンブリ7は、ピンアッセンブリ組付工程により組付けられる。ピンアッセンブリ組付工程では、ピンステイ15に形成した二つの孔部に二本の電極ピン2a,2bをそれぞれ圧入するとともに、さらに、電極ピン2a,2bにピンベース16a,16bを嵌め、このピンベース16a,16bをピンステイ15に対してガラス接着等により固定することにより、ピンステイ15からの電極ピン2a,2bの抜止めを行う。したがって、ピンステイ15及びピンベース16a,16bは、ベース部3の一部3pを構成する。一方、このように組付けられたピンアッセンブリ7の表面に対して撥水膜形成工程により撥水性材料を用いた所定の膜厚Dsを有する撥水膜6を形成する。
【0023】
次に、ピンアッセンブリ7に対する撥水膜6の形成方法について、図1及び図4を参照しつつ図3に示すフローチャートに従って説明する。
【0024】
まず、組付けられた所定数量のピンアッセンブリ7…は、図4に示す処理バスケット21に収容する(ステップS1)。そして、図4に示すように、ピンアッセンブリ7…を収容した処理バスケット21を、撥水処理液Lcの入った処理槽22に設定時間Ts(例えば、30〔秒〕程度)だけ浸漬する浸漬工程を行う(ステップS2,S3)。この場合、撥水処理液Lcには、所定の撥水性材料を用いる。具体的には、主材料としてフッソ系樹脂、即ち、フッソ系樹脂:水:希釈リン酸系液の容積比を、(0.7〜1.3):(7〜13):(0.07〜0.13)に配合した撥水処理液Lcを用いる。撥水処理液Lcとしては粘度が重要である。粘度が小さ過ぎたり大き過ぎるときは、撥水膜6の望ましい膜厚Ds、即ち、0.3〜1.0〔μm〕の範囲の膜厚Dsが得られない。例示の撥水処理液Lcは、撥水膜6を形成するための最適な粘度(付着性)を得ることができる。また、撥水性材料に、主材料としてフッソ系樹脂を用いれば、望ましい撥水性能及び製作容易性を実現できる利点がある。
【0025】
そして、浸漬後、設定時間Tsが経過したなら、処理バスケット21を撥水処理液Lcから取出す。この場合、設定時間Tsの長さも撥水処理液Lcと同様に重要となる。即ち、設定時間Tsの長さは撥水膜6の膜厚Dsに大きく影響するため、この設定時間Tsの長さは、実験等により適宜設定し、特に、撥水膜6の望ましい膜厚Ds(0.3〜1.0〔μm〕の範囲)を得ることができるように適宜設定する。撥水膜6の膜厚Dsを、0.3〜1.0〔μm〕の範囲に選定することにより、電気的特性や製造性などに影響を与えることなく、十分な撥水性を確保することができる。本実施形態に係る製造方法では、ピンアッセンブリ7を撥水性材料を用いた撥水処理液Lcに所定の設定時間Tsだけ浸漬する浸漬工程を含ませたため、撥水膜6として望ましい0.3〜1.0〔μm〕の膜厚Dsを容易かつ確実に形成することができる。
【0026】
他方、撥水処理液Lcの付着したピンアッセンブリ7…は、処理バスケット21に収容した状態で液切りを行い、この後、設定時間Tx(例えば、10〔分〕間程度)にわたって常温乾燥を行う(ステップS4,S5)。そして、設定時間Txにわたって常温乾燥したなら、専用炉に収容し、設定時間Th(例えば、20〔分〕間程度)にわたって焼付処理を行う(ステップS6,S7)。専用炉の温度は、300〔℃〕前後に設定することが望ましい。設定時間Thにわたって焼付処理を行ったなら、専用炉から取出して常温冷却する(ステップS8)。これにより、図1に示すピンアッセンブリ7を得ることができる。なお、得られたピンアッセンブリ7…は、所定の検査工程により撥水性能等の必要な検査を行う。
【0027】
よって、このように製造されるピンアッセンブリ7…は、表面に撥水性材料による所定の膜厚Dsを有する撥水膜6が形成される。したがって、結露が生じてもピンアッセンブリ7におけるベース部材3の表面3fは撥水性を有することになり、ベース部3により保持される電極ピン2a,2b同士の水分による短絡が有効に防止される。また、ベース部3の表面3fに撥水膜6を形成することにより容易に実現できるため、実質的な部品点数の増加は生じない。したがって、結露対策に伴うコスト上昇及びセンサ自身の大型化を回避できるとともに、電力消費(ランニングコスト)を伴わないため、省エネルギ性及び経済性に優れる。しかも、極めて単純な結露対策により実現できることから、苛酷な設置環境や長期にわたって設置されるカバー付センサ1であっても故障の生じる虞れがなく、耐久性及び信頼性を高めることができる。
【0028】
そして、ピンアッセンブリ7…における電極ピン2aと2b間には、図2に示すようにセンサ素子4を接続する。この場合、センサ素子4は、ガスを感知するガスセンサ素子4sであり、このガスセンサ素子4sから導出する一対のリード部4a,4bをそれぞれ電極ピン2aと2bの上端付近に溶接により直接接合する。この場合、電極ピン2a,2bの表面にも撥水膜6が形成されているが、撥水膜6の厚さDsは、0.3〜1.0〔μm〕程度の薄さのため、接合強度が弱まったり、燃えカスが発生するなどの不具合は何ら発生することはない。
【0029】
また、センサカバー5は、所定のガス透過率を有する多孔質カバー5sを用いる。この多孔質カバー5sは、図2及び図8に示すように、円筒部5sfとこの円筒部5sfの上端を閉塞する天面部5suにより逆カップ状に形成する。
【0030】
次に、多孔質カバー5sの製造方法について、図5〜図7及び図9を参照して具体的に説明する。
【0031】
まず、第一材料製造工程により造粒体材料Poの造粒を行う。第一材料製造工程では、最初に、調合工程によりセラミックス粉末原料と所要の添加剤を調合する。この場合、セラミックス粉末原料には、粉末粒径が概ね0.3〔μm〕程度のアルミナ粉末を用いる。また、添加剤には、助剤,バインダ及び純水を適量用いる。なお、助剤には、ポリアクリル酸塩等を利用できるとともに、バインダには、アクリル,PVA(ポリビニルアルコール),PEO(ポリエチレンオキサイド)等を利用することができる。
【0032】
セラミックス粉末原料と所要の添加剤を調合したなら、混合工程により全体を均一に混合する。この場合、ボールミル装置等を使用し、所定時間にわたり機械的に撹拌することにより十分に混合する。混合工程が終了したなら造粒工程に移行する。造粒工程では、所定の粒度を有する造粒体材料Poを造粒する。具体的には、噴霧乾燥装置(スプレードドライヤ装置)等を使用し、造粒体材料Poにおける粒子(顆粒)の平均径が60〜120〔μm〕の範囲、望ましくは80〔μm〕程度となるように製造する。
【0033】
次いで、第二材料製造工程に移行する。第二材料製造工程では、まず、一次成形工程により、第一材料製造工程で得た造粒体材料Poを所定の一次加圧力Ffにより加圧して一次成形を行う。図5は、一次成形に用いる一次成形機30を示す。一次成形では、一次成形機30のシリンダ31に、第一材料製造工程で得た造粒体材料Poを収容し、ラム32を一次加圧力Ffにより加圧して押出成形を行う。これにより、型盤33から矢印Ho方向に一次成形体Mfが押し出され、丸パイプ形状を有する一次成形体Mfが成形される。この場合、一次加圧力Ffは、70〜130〔MPa〕の範囲、望ましくは100〔MPa〕程度に選定する。一次成形体Mfをこのような丸パイプ形状に成形すれば、一次成形体Mfを平面形状に成形する場合に比べ、後述する二次成形時における粒子k…同士の接触面の面積を小さくできるため、よりガス透過率を高めることができる。なお、一次成形として押出成形を例示したが、プレス成形により同様の形状を成形してもよい。
【0034】
そして、一次成形体Mfが得られたなら、一次焼成工程により、当該一次成形体Mfを所定の一次加熱温度Tfにより一次焼成(仮焼成)して成形圧粉体Caを得る。この場合、一次加熱温度Tfは、900〜1200〔℃〕の範囲、望ましくは1000〜1100〔℃〕程度に選定する。この成形圧粉体Caを図6(a)に示す。同図(a)において、Doは成形圧粉体Caの外径を示すとともに、Diは同内径を示し、本実施形態では、Doを1.9〔mm〕、Diを1.3〔mm〕になるように選定した。なお、一次焼成は、後述する二次成形時における圧粉体材料Ppの潰れを防止するために行うものであり、一次焼成を行わない場合には、二次成形時の二次加圧力Fsを十分に高くすることができなくなり、良好な二次成形を行うことができない。
【0035】
一次焼成工程により成形圧粉体Caが得られたなら、粉砕工程により成形圧粉体Caを粉砕する。また、粉砕したなら分級工程により、得られた粒子k…の大きさを0.1〜1.0〔mm〕の範囲、望ましくは0.35〜0.70〔mm〕の範囲に分級する。分級は、後述する金型キャビティAへの充填を可能にするためであり、充填可能なサイズを取り出すとともに、微粉末は除去することにより、製造した多孔質セラミックスCにおける気孔R…(図9)の閉塞を回避する。これにより、図6(b)に示す圧粉体材料Ppを得る。この圧粉体材料Ppは、丸パイプ形状を有する成形圧粉体Caを粉砕して得るため、圧粉体材料Ppにおける粒子k…同士の接触面積が小さくなり、実質的な気孔R…の開口面積を大きくすることができる。
【0036】
他方、第二材料製造工程が終了したなら主成形工程に移行する。主成形工程では、二次成形工程により、第二材料製造工程で得た圧粉体材料Ppを所定の二次加圧力Fsにより加圧して二次成形を行う。図7は、二次成形に用いる二次成形機40を示す。二次成形では、二次成形機40の金型キャビティAに圧粉体材料Ppを充填するとともに、可動型41を二次加圧力Fsにより加圧してプレス成形を行う。これにより、所要の形状を有する二次成形体Msが得られる。なお、二次加圧力Fsは、8〜30〔MPa〕の範囲に選定する。このような主成形工程を用いれば、成形条件を設定した一般的なセラミックス成形法をそのまま利用できるため、製造コストの低減及び量産性の向上に寄与できる。
【0037】
そして、二次成形体Msが得られたなら、二次焼成工程により、当該二次成形体Msを所定の二次加熱温度Tsにより二次焼成(本焼成)する。この場合、二次加熱温度Tsは、1200〜1600〔℃〕の範囲に選定する。二次加熱温度Tsは、使用するセラミックス粉末原料に対応した温度を適宜設定することができる。これにより、多孔質セラミックスCによる多孔質カバー5sを得ることができる。例示する多孔質カバー5sの寸法は、直径12〔mm〕,高さ6〔mm〕,厚さDcが1〔mm〕である。
【0038】
このように、多孔質セラミックスCを、セラミックス粉末原料と一又は二以上の添加剤を調合し、所定の粒度を有する造粒体材料Poを造粒するとともに、この造粒体材料Poを所定の一次加圧力Ffにより一次成形した後、所定の一次加熱温度Tfにより一次焼成することにより粒子k…の大きさが0.1〜1.0〔mm〕の範囲となる圧粉体材料Ppを得、この圧粉体材料Ppを所定の二次加圧力Fsにより二次成形した後、所定の二次加熱温度Tsにより二次焼成するようにすれば、ガスセンサに使用した際に、所要のガス透過率及び所要の機械的強度(曲げ強さ)の双方を十分に確保することができる。特に、造粒体材料Poにおける粒子の大きさを、60〜120〔μm〕の範囲に選定すれば、これらの効果を十分に引出せる最適な多孔質セラミックスCを得ることができる。
【0039】
この多孔質セラミックスCは、図9に示すように、圧粉体材料Ppの粒子k…同士の結合により成立しており、粒界となる接触面の周囲における空間により気孔R…が形成されているため、この気孔R…に沿ったガス通路により所定のガス透過率が確保される。この際、気孔R…の幅は、500〔μm〕未満であり、気孔R…に対する水分の侵入、更にはガス以外の無用な異物侵入が阻止される。図9にガス通路を点線矢印Hs…で示す。
【0040】
次に、カバー付センサ1の組立方法について、図2を参照して説明する。カバー付センサ1を組立てるに際しては、図2に示すように、シャーシ部材11の底板部11dに形成した孔部に上方から二つのピンアッセンブリ7…を挿入してセットする。これにより、ピンステイ15は底板部11dの上面に載置され、ピンベース16a,16b及びこのピンベース16a,16bよりも下側の電極ピン2a,2bは、底板部11dの下面から下方に突出する。また、ブロック固定部材12をシャーシ部材11の周側板部11sの内側に収容する。これにより、ピンステイ15は、ブロック固定部材12により上から押え付けられ、各ピンアッセンブリ7…はシャーシ部材11に固定される。さらに、ブロック固定部材12の中央に形成したスリットに衝立部材13を差し込んで取付けるとともに、この状態で多孔質カバー5sの下端縁部をブロック固定部材12の上面に接着剤等により固定する。
【0041】
これにより、図2(図8)に示すカバー付センサ1を得ることができる。例示のカバー付センサ1は、センサ素子4にガスセンサ素子4sを用いるとともに、センサカバー5に所定のガス透過率を有する多孔質カバー5sを用いたガスセンサとなる。カバー付センサ1をこのようなガスセンサに適用することにより使用環境の拡大及び信頼性の向上に寄与できる利点がある。
【0042】
ところで、多孔質カバー5sにも上述したピンアッセンブリ7と同様の撥水処理を施すことができる。即ち、多孔質カバー5sの少なくとも表面にも、図8に示すように、撥水性材料による所定の膜厚Dtを有する撥水膜51を形成することができる。この場合、多孔質カバー5s…を処理バスケット21に所定数量収容し、撥水性材料を用いた撥水処理液Lcに設定時間Ts(例えば、20〔秒〕程度)だけ浸漬する浸漬工程を行う。一方、浸漬後、設定時間Tsが経過したなら、処理バスケット21を撥水処理液Lcから取出す。この設定時間Tsの長さは、実験等により適宜設定し、特に、撥水膜51の望ましい膜厚Dt(0.3〜1.0〔μm〕の範囲)を得るとともに、多孔質カバー5sの望ましいガス透過率(50〜80〔%〕の範囲)を得ることができるように適宜設定する。
【0043】
他方、撥水処理液Lcの付着した多孔質カバー5s…は、処理バスケット21に収容した状態で液切りを行い、この後、設定時間Tx(例えば、10〔分〕間程度)にわたって常温乾燥を行う。設定時間Txにわたって常温乾燥したなら、専用炉に収容し、設定時間Th(例えば、25〔分〕間程度)にわたって焼付処理を行う。専用炉の温度は、300〔℃〕前後に設定する。設定時間Thにわたって焼付処理を行ったなら、専用炉から取出して常温冷却する。
【0044】
撥水処理を施した多孔質カバー5sは、図8に示す抽出拡大図のように、多孔質セラミックスCにより形成された多孔質カバー5sの表面に、膜厚Dtが、0.3〜1.0〔μm〕の撥水膜51が形成(コーティング)される。この場合、粒界となる接触面の周囲における空間により気孔R…(図9)が形成されているため、撥水膜51は、粒子k…の表面における全部又は一部にコーティングされる。しかし、気孔R…が埋まることはなく、この気孔R…に沿ったガス通路により所定のガス透過率が確保される。この際、気孔R…の幅は、500〔μm〕未満であり、水分が付着しても撥水膜51による撥水性(非濡性)が確保される。
【0045】
よって、多孔質カバー5sに、このような撥水処理を施すことにより、多孔質カバー5sに対する水分の浸透を有効に防止できる。したがって、水分の多い環境でも使用可能になるとともに、何らかの原因により水分が付着した場合であっても、内側に配した部位(ガスセンサ素子4s…や接続部等)を保護することができる。また、塵等も侵入しにくくなり、目詰まり、更にはガス透過率の低下(劣化)を防止できるため、検出精度の維持及び信頼性の確保を実現できる。
【0046】
しかも、本実施形態に係る製造方法により、ピンアッセンブリ7…に対する撥水処理を施しているため、双方の撥水処理に基づく相乗効果、即ち、多孔質カバー5sの外側に対しては無用な水分の侵入を防止する多孔質カバー5sの表面に施した撥水膜51に基づく第一の撥水効果と、万が一多孔質カバー5sの内側に水分が侵入し、結露の発生要因になったとしても、ピンアッセンブリ7…の表面に施した撥水膜6に基づき電極ピン2a,2b間の短絡等を防止する第二の撥水効果による相乗効果を享受できる。したがって、内的環境による水分及び外的環境による水分の双方に強いカバー付センサ1を得ることができ、ガスセンサ等に用いて最適となる。
【0047】
以上、最良の実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,数値等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。例えば、撥水性材料として、フッソ系樹脂を例示したが、シリコーン系樹脂など、各種撥水性材料を用いることが可能である。また、ベース部3の一部3pとなる主にピンステイ15の表面に撥水膜6を形成した場合を示したが、他のベース部3、例えば、ブロック固定部材12の表面などに同様の撥水膜6を形成してもよい。一方、セラミックス粉末原料としてアルミナ粉末を例示したが、ジルコニア粉末等の一般的なセラミックス材料を含む他の各種セラミックス材料(粉末原料)を用いることができる。さらに、一次成形及び二次成形も必要に応じて例示以外の各種成形法を用いることができるとともに、撥水性材料による所定の膜厚Ds(Dt)を有する撥水膜6(51)を形成する方法も例示以外の形成方法を排除するものではない。なお、カバー付センサ1としてガスセンサ素子4s及び多孔質カバー5sを用いたガスセンサを例示したが、同様のセンサ構造を有する煙センサ等の各種センサにも同様に適用することができる。
【図面の簡単な説明】
【0048】
【図1】本発明の最良の実施形態に係るカバー付センサに用いるピンアッセンブリの断面正面図、
【図2】同カバー付センサの断面正面図、
【図3】同カバー付センサの製造方法における撥水処理工程を順を追って示すフローチャート、
【図4】同製造方法に用いる撥水処理工程の説明図、
【図5】同カバー付センサにおけるセンサカバーの製造に用いる一次成形機の模式的構成図、
【図6】同センサカバーの製造に用いる成形圧粉体の一部を示す斜視図及び圧粉体材料の一部を示す拡大図、
【図7】同センサカバーの製造に用いる二次成形機の模式的構成図、
【図8】同カバー付センサの内部構造を示す斜視図、
【図9】同センサカバー(多孔質カバー)の内部構造図、
【符号の説明】
【0049】
1:カバー付センサ,2a:電極ピン,2b:電極ピン,3:ベース部,3f:ベース部の表面,3p:ベース部の一部,4:センサ素子,4s:ガスセンサ素子,5:センサカバー,5s:多孔質カバー,6:撥水膜,7:ピンアッセンブリ,Ds:膜厚,S1〜S8:撥水膜形成工程,Lc:撥水処理液

【特許請求の範囲】
【請求項1】
少なくとも、二以上の電極ピンを保持するベース部と、電極ピンに接続したセンサ素子と、前記ベース部に合体することにより前記センサ素子を覆う所定の通気性を有するセンサカバーを備えるカバー付センサにおいて、少なくとも、前記ベース部の一部又は全部の表面に、撥水性材料による所定の膜厚を有する撥水膜を形成してなることを特徴とするカバー付センサ。
【請求項2】
前記電極ピン及びこの電極ピンを保持する前記ベース部の一部を組付けたピンアッセンブリを備え、このピンアッセンブリの表面に前記撥水膜を形成することを特徴とする請求項1記載のカバー付センサ。
【請求項3】
前記撥水膜の膜厚は、0.3〜1.0〔μm〕の範囲に選定することを特徴とする請求項1又は2記載のカバー付センサ。
【請求項4】
前記撥水性材料は、主材料としてフッソ系樹脂を用いることを特徴とする請求項1,2又は3記載のカバー付センサ。
【請求項5】
前記センサ素子に、ガスを感知するガスセンサ素子を用いるとともに、前記センサカバーに、所定のガス透過率を有する多孔質カバーを用いたガスセンサに適用することを特徴とする請求項1記載のカバー付センサ。
【請求項6】
少なくとも、二以上の電極ピンを保持するベース部と、電極ピンに接続したセンサ素子と、前記ベース部に合体することにより前記センサ素子を覆う所定の通気性を有するセンサカバーを備えるカバー付センサを製造するカバー付センサの製造方法において、少なくとも、前記ベース部の一部又は全部の表面に、撥水性材料による所定の膜厚を有する撥水膜を形成する撥水膜形成工程を含むことを特徴とするカバー付センサの製造方法。
【請求項7】
前記電極ピンを前記ベース部の一部に組付けることにより当該ベース部の一部で前記電極ピンを保持してなるピンアッセンブリを得るピンアッセンブリ組付工程を含むことを特徴とする請求項6記載のカバー付センサの製造方法。
【請求項8】
前記撥水膜形成工程は、前記ピンアッセンブリを、前記撥水性材料を用いた撥水処理液に所定の設定時間だけ浸漬することにより前記撥水膜を形成することを特徴とする請求項7記載のカバー付センサの製造方法。
【請求項9】
前記撥水処理液は、フッソ系樹脂:水:希釈リン酸系液の容積比を、(0.7〜1.3):(7〜13):(0.07〜0.13)に配合した撥水処理液を用いることを特徴とする請求項8記載のカバー付センサの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2008−83008(P2008−83008A)
【公開日】平成20年4月10日(2008.4.10)
【国際特許分類】
【出願番号】特願2006−266623(P2006−266623)
【出願日】平成18年9月29日(2006.9.29)
【出願人】(591037580)シチズンファインテック株式会社 (24)
【出願人】(000001960)シチズンホールディングス株式会社 (1,939)
【Fターム(参考)】