説明

ガスセンサ

【課題】熱電式ガスセンサにおいて、センサの感度の高いものを提供すること。
【解決手段】この熱電式ガスセンサは、基板12と、基板12の上面に形成された熱電膜13と、熱電膜13の上面側の所定箇所に形成された被検出ガスとの接触に起因する触媒反応により発熱する触媒16を含んで構成される。基板12は、セラミックスからなる焼成体である。熱電膜13は、厚さ方向にて単一の扁平な粒子から構成され、且つ電子伝導度の高い結晶面を含むように配向された部分を有する。熱電膜13には平面視にて粒子間の一部に隙間が形成され、熱電膜13と基板12との境界には側面視にて一部に隙間が形成されている。これにより、基板12及び熱電膜13の熱伝導率を小さくでき、触媒反応に対して発生する熱電膜13内の温度差を大きくできる。加えて、熱電膜13の電子伝導度が高くなり、熱電膜13における温度差に対する発生電圧を高くすることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱電式ガスセンサに関する。
【背景技術】
【0002】
従来から、内部に生じる温度差を熱電効果により電圧信号に変換する熱電膜を利用してガスの状態を検出する熱電式ガスセンサが知られている(例えば、特許文献1を参照)。
【特許文献1】特開2005−300522号公報
【0003】
この種の熱電式ガスセンサは、一般に、平板状の基板と、前記基板の上面に形成された平板状の熱電膜と、前記熱電膜の上面側の所定箇所に形成された触媒(膜)とを含んで構成される。この種の熱電式ガスセンサでは、被検出ガス(例えば可燃性ガス)を触媒に接触させると、触媒反応により熱が発生する。この熱は熱電膜に伝達され、この結果、熱電膜における触媒に近い部分(前記所定箇所近傍)と触媒から遠い部分との間で温度差が生じる。この温度差に起因する熱電膜の電圧信号に基づいて被検出ガスの状態(例えば、ガス種、ガス濃度等)が検出され得る。
【0004】
この種の熱電式ガスセンサにおいて、センサの感度を向上するためには、触媒反応に対して熱電膜内部にて大きな温度差を発生させる必要がある。このためには、触媒で発生した熱をなるべく触媒の近く(熱電膜における前記所定箇所の近く)に集めておく(即ち、触媒の近くから逃げないようにしておく)必要がある。触媒で発生した熱をなるべく触媒の近くから逃げないようにするためには、例えば、基板や熱電膜の熱伝導率を小さくすること等が極めて有効である。この点で、上述した特許文献1に記載のセンサには改良の余地があった。
【発明の開示】
【0005】
本発明の目的は、係る熱電式ガスセンサにおいて、センサの感度の高いものを提供することにある。
【0006】
本発明に係る熱電式ガスセンサは、セラミックスからなる焼成された(平板状の)セラミックス基板と、前記セラミックス基板の上面に(直接的に)形成された(平板状の)熱電膜と、前記熱電膜の上面側の所定箇所に(直接的に、又は保護膜を介して間接的に)形成された触媒(膜)とを含んで構成される。即ち、熱電膜を形成する基板として、セラミックスからなる焼成されたセラミックス基板が使用される。
【0007】
上記特許文献1に記載のセンサでは、熱電膜を形成する基板として、MEMSプロセスで作製された窒化珪素からなる基板が使用されている。焼成されたセラミックス基板は、MEMSプロセスで作製された緻密な窒化珪素からなる基板に比べ、熱伝導率が非常に小さい。従って、上記構成によれば、触媒で発生した熱が触媒の近く(熱電膜における前記所定箇所の近く)から(熱電膜の厚さ方向において)逃げることを効果的に抑制でき、この結果、触媒で発生した熱を触媒の近く(熱電膜における前記所定箇所の近く)に効率的に集めておくことができる。この結果、(上記特許文献1に記載のセンサに比べ)センサの感度を高くすることができる。
【0008】
上記本発明に係る熱電式ガスセンサにおいては、例えば、前記セラミックス基板の厚さは、0.1μm〜10μmである。
【0009】
前記セラミックス基板は、中央部が窪むように下方に向けて反っていることが好適である。セラミックス基板の上面が熱電膜を介して触媒の熱で加熱されると、セラミックス基板の上面側が下面側に比して温度が高くなる。この結果、セラミックス基板には、中央部が上方に向けて出っ張る方向にセラミックス基板を反らせる熱応力が発生する。これに対し、上記構成によれば、セラミックス基板の中央部が予め下方に反っているから、この熱応力に対してセラミックス基板の中央部が上方向へ変形し難くなる。従って、この熱応力に起因するセラミックス基板の中央部の上方向への変形量を小さくすることができる。なお、セラミックス基板が変形すると、熱電膜に歪が発生してセンサの感度が低くなる可能性がある。従って、セラミックス基板が変形することはセンサ感度向上の観点からは好ましくない。
【0010】
また、上記本発明に係る熱電式のガスセンサにおいては、側面視にて、前記熱電膜を構成する2以上の所定個数の粒子を含む視野内において、前記所定個数の粒子について、前記熱電膜の平面方向に沿った方向の幅に対する前記熱電膜の厚さ方向に沿った方向の高さの割合の平均値が0.5以下であることが好適である。更には、前記熱電膜は、前記熱電膜の厚さ方向において単一の粒子から構成されることが好適である。
【0011】
このように、熱電膜を構成する粒子が扁平であって、且つ熱電膜が厚さ方向にて単一の粒子から構成されることで、熱電膜内部において、熱電膜の平面方向にて粒界(粒子と粒子との境界)が少なくなる。この結果、熱電膜の電子伝導度が高くなるから、熱電膜における温度差に対する発生電圧を高くすることができる。即ち、センサの感度を高くすることができる。
【0012】
また、上記本発明に係る熱電式のガスセンサにおいては、前記熱電膜には、平面視にて粒子間の一部に隙間が形成されることが好適である。これによれば、熱電膜そのものの熱伝導率が小さくなる。この結果、触媒で発生した熱が触媒の近くから(熱電膜の平面方向において)逃げることを効果的に抑制でき、センサの感度を高くすることができる。
【0013】
また、上記本発明に係る熱電式のガスセンサにおいては、前記熱電膜と前記セラミックス基板との境界には、側面視にて一部に隙間が形成されることが好適である。これによれば、熱電膜からセラミックス基板への熱伝達(放熱)が抑制され得る。この結果、触媒で発生した熱が触媒の近くから(熱電膜の厚さ方向において)逃げることを効果的に抑制でき、センサの感度を高くすることができる。
【0014】
また、前記熱電膜は、他の部分の結晶面に比べて電子伝導度の高い結晶面を含むように配向された部分を有することが好ましい。これにより、熱電膜の電子伝導度を高くすることができるから、熱電膜内において温度差に対する発生電圧を高くすることができる。即ち、センサの感度を高くすることができる。
【0015】
上記本発明に係る熱電式ガスセンサにおいては、例えば、前記熱電膜の厚さは0.1μm〜15μmである。また、熱電膜は、例えば、Bi2Te3、PbTeなどのテルライド系、Si-Geにあらわされるシリコンーゲルマニウム系、β―、MnSi1.73、MgSi、FeSiなどのシリサイド系、CoSb3などのスクッテルダイド系、TiNiSn、TiCaSbなどのチタン系ハーフホイスラー金属系、Zn4Sb3などの亜鉛―アンチモン系、B4C、β菱面体晶ホウ素などのホウ素化合物、NaCo2O4、CaCo4O9、(Bi,Pb)2Sr2Co2O、Zn1-xAlxOなどの酸化亜鉛系、酸化チタン系から構成される。
【発明を実施するための最良の形態】
【0016】
以下、図面を参照しつつ本発明の実施形態に係る熱電式ガスセンサについて説明する。このガスセンサは、被検出ガスの濃度を検出するものである。
【0017】
図1は、本発明の実施形態に係る熱電式ガスセンサ10の主要縦断面図を示す。図1に示すように、熱電式ガスセンサ10は、基台部11、セラミックス基板12、熱電膜13、第1電極14a、第2電極14b、保護膜15、及び触媒16を備えている。
【0018】
基台部11は、特に限定されないが、ステンレス(例えば、SUS430)からなっている。基台部11は、所定の厚みを有する枠体である。基台部11の平面視における外形形状は一辺の長さL1=5mm〜20mmの正方形である。換言すると、基台部11の中央には、平面視において基台部11の外形形状よりも一定距離だけ小さい正方形の貫通穴11aが形成されている。なお、基台部11及び貫通孔11aの平面視における外形形状は、長方形及び円形等の他の形状であってもよい。また、基台部11は、ジルコニアの緻密な焼成体であってもよい。
【0019】
セラミックス基板12は、特に限定されないが、ジルコニアの緻密な焼成体(平板体)である。セラミックス基板12は、接着剤(ガラス及び金属ロウ材等でもよい。)により基台部11の上面に固定されている。また、基台部11がジルコニアの緻密な焼成体である場合、セラミックス基板12と基台部11とは一体に焼成される。セラミックス基板12は、所定の厚さt1=0.1μm〜10μmを有する薄板体である。
【0020】
セラミックス基板12の平面視における外形形状は基台部11と同一の正方形(一辺の長さL1)である。従って、セラミックス基板12は、その外周部においてのみ基台部11によって支持・固定されている。なお、セラミックス基板12の平面視における外形形状は、基台部11及び貫通孔11aの平面視における外形形状に応じた長方形及び円形等の他の形状であってもよい。
【0021】
熱電膜13は、熱電膜13に伝達される熱により熱電膜13内に生じる温度差を「熱電効果」により電圧信号に変換する機能を有する薄膜である。熱電膜13の厚さt2=0.1μm〜15μmである。熱電膜13は、特に限定されないが、例えばコバルト系酸化物(NaCO)である。熱電膜13は、このように熱電効果を有する酸化物であることが望ましい。熱電膜13はSiGe、BiTe及びFeSi等の金属間化合物から構成することもできる。熱電膜13は、接着剤(ガラス及び金属ロウ材等でもよい。)によりセラミックス基板12の上面に固定されている。もしくは、セラミックス基板12上に直接成膜され、少なくとも一部分で固着している。熱電膜13の平面視における外形形状は一辺の長さL2=1mm〜10mm、の正方形である。L2はL1よりも小さい。なお、熱電膜13の平面視における外形形状は、長方形及び円形等の他の形状であってもよい。
【0022】
熱電膜13の周りの部分側面図である図2に示すように、熱電膜13は、厚さ方向において単一の粒子から構成されている。側面視において2以上の所定個数の粒子を含む視野内(例えば、図2に示す視野内では、7個)において、前記所定個数の粒子について熱電膜13の平面方向に沿った方向の幅Wに対する熱電膜13の厚さ方向に沿った方向の高さTの割合(T/W)の平均値が0.5以下となっている。即ち、熱電膜13を構成する各粒子は、熱電膜13の平面方向に膨らんだ扁平形状を呈している。
【0023】
また、図2に示すように、熱電膜13とセラミックス基板12との境界には、側面視にて一部に(熱電膜13を構成する各粒子についてそれぞれ)隙間が形成されている。また、熱電膜13の部分平面図である図3に示すように、熱電膜13には、平面視にて粒子間の一部に隙間が形成されている。
【0024】
第1電極14aは、セラミックス基板12の上面及び熱電膜13の一方の端部近傍領域の上面に形成されている。第1電極14aは、金(又は、金とチタンの合金、銀)からなる薄膜若しくは厚膜である。第1電極14aは熱電膜13と電気的に接続されている。
【0025】
第2電極14bは、セラミックス薄板体12の上面及び熱電膜13の他方の端部近傍領域の上面に形成されている。第2電極14bは、金(又は、金とチタンの合金、銀)からなる薄膜若しくは厚膜である。第2電極14bは熱電膜13と電気的に接続されている。即ち、第1電極14a及び第2電極14bは、熱電膜13に生じる電圧を取得することができるように熱電膜13の対向する両端部近傍にそれぞれ形成されている。
【0026】
保護膜15は、特に限定されないがガラスからなっている。保護膜15は熱電膜13の上面、並びに、第1電極14a及び第2電極14bの上面を覆っている。
【0027】
触媒16は、可燃性ガスとの接触により触媒反応を発生し、その触媒反応によって発熱する触媒材からなる膜である。本例においては、例えば、水素を検知する熱電式ガスセンサ10を構成するために、触媒16には水素との触媒反応を発生する貴金属系多孔質材料(例えば白金、パラジウム、ロジウム等の貴金属、またはこれらの合金)を用いた。触媒16の材質は濃度検出対象の可燃性ガスに応じて適宜選択される。
【0028】
触媒16は熱電膜13の上面側の所定箇所に保護膜15を介して形成されている。より具体的には、触媒16は平面視において熱電膜13の中央部以外の部分の一箇所であって、第2電極14bよりも第1電極14aに近い位置に形成されている。
【0029】
このように構成された熱電式ガスセンサ10においては、触媒16と可燃性ガス(本例では、水素)との触媒反応によって発生した熱が熱電膜13に伝達される。その結果、第1電極14aの温度が第2電極14bの温度よりも高くなるような「温度差(温度分布)」が、熱電膜13内に生じる。触媒16により発生する熱の量は、触媒16に接触する可燃性ガスの濃度が高いほど多くなるから、前記「温度差」も可燃性ガスの濃度が高くなるほど大きくなる。この温度差は、熱電膜13の熱電効果により電圧に変換される。熱電膜13の熱電効果により変換される電圧は、熱電膜13の温度差が大きいほど大きくなる。その結果、可燃性ガスの濃度が大きくなるほど、熱電膜13は大きな電圧を発生する。この電圧は、熱電式ガスセンサ10の検出出力として、第1電極14a及び第2電極14bから取り出される。
【0030】
以上、説明した熱電式ガスセンサ10においては、熱電膜13がジルコニアからなるセラミックス基板12の上面に形成されている。ジルコニア(ZrO)基板は、例えばMEMSプロセスで作製する場合に適用される窒化珪素(Si)に比べ、熱伝導率が非常に小さい。即ち、Siの熱伝導率は29.3W/mKであるのに対し、ZrOの熱伝導率は1.7W/mKである。従って、触媒16で発生した熱が触媒16の近くから熱電膜13の厚さ方向において逃げることを効果的に抑制でき、触媒16で発生した熱を触媒16の近く(熱電膜13における触媒16の近く)に効率的に集めておくことができる。
【0031】
加えて、上述したように、熱電膜13には、平面視にて粒子間の一部に隙間が形成されている。従って、熱電膜13そのものの熱伝導率が小さくなる。この結果、触媒16で発生した熱が触媒16の近くから熱電膜13の平面方向において逃げることを効果的に抑制できる。これによっても、触媒16で発生した熱を触媒16の近くに効率的に集めておくことができる。
【0032】
更には、上述したように、熱電膜13とセラミックス基板12との境界には、側面視にて一部に隙間が形成されている。この結果、熱電膜13からセラミックス基板12への熱伝達(放熱)が抑制され得る。この結果、これによっても、触媒16で発生した熱が触媒16の近くから熱電膜13の厚さ方向において逃げることを効果的に抑制でき、触媒16で発生した熱を触媒16の近くに効率的に集めておくことができる。
【0033】
以上のことから、熱電膜13内部に「可燃性ガスの濃度に応じた大きな温度差(可燃性ガス濃度に敏感に変化する温度差)を発生させることができる。即ち、触媒反応に対して発生する温度差を大きくすることができ、この結果、熱電式ガスセンサ10の感度を格段に高くすることができる。
【0034】
他方、熱電膜13を構成する粒子が扁平であって、且つ熱電膜13が厚さ方向にて単一の粒子から構成されている。これにより、熱電膜13内部において、熱電膜13の平面方向にて粒界が少ない。この結果、熱電膜13の電子伝導度が高くなる。即ち、熱電膜13における温度差に対する発生電圧を高くすることができる。これによっても、熱電式ガスセンサ10の感度を高くすることができる。この効果は、熱電膜13が、他の部分(配向されていない部分)の結晶面に比べて電子伝導度の高い結晶面を含むように配向された部分を有している場合に一層効果的に発揮され得る。
【0035】
また、セラミックス基板12は、中央部が窪むように図1において下方に向けて反っていることが好適である。セラミックス基板12の上面が熱電膜13を介して触媒16の熱で加熱されると、セラミックス基板12の上面側が下面側に比して温度が高くなる。この場合、セラミックス基板12には、中央部が上方に向けて出っ張る方向にセラミックス基板12を反らせる熱応力が発生する。ここで、上述のようにセラミックス基板12の中央部が予め下方に反っていると、この熱応力に対してセラミックス基板12の中央部が図1において上方向へ変形し難くなる。従って、この熱応力に起因するセラミックス基板12の中央部の上方向への変形量を小さくすることができる。
【0036】
また、セラミックス基板12は、ジルコニアからなる一体焼成体であり、耐衝撃性が非常に高い。従って、触媒16で発生した熱により局所的に加熱されて局所的な熱応力が内部で発生しても、セラミックス基板12には破壊が極めて生じ難い。
【0037】
セラミックス基板12は、例えば、セラミックス基板12に対応する形状に切断された薄いセラミックグリーンシートが所定条件下にて焼成されて作製される。作製されたセラミックス基板12は、エポキシ系の接着剤、ガラス、ろう材などにより基台部11の上に接合、固定される。また、基台部11もジルコニアの緻密な焼成体である場合、先ず、基台部11に対応する形状に切断された複数枚の薄いセラミックグリーンシートが積層される。この基台部11となる焼成前の積層体の上に上述したセラミックス基板12となる焼成前の薄いセラミックグリーンシートが積層される。そして、これらが所定条件下にて焼成されて、セラミックス基板12と基台部11との一体物が作製される。
【0038】
熱電膜13は、例えば、以下のように作製される。先ず、図4に示すように、熱電膜13を構成する材質の微細な粒径(例えば、1μm以下)の粉末からなる厚さt2のセラミックグリーンシートが作製され、これが熱電膜13に対応する形状に切断されてセラミックス基板12の上に載せられる。次いで、このセラミックグリーンシートが所定条件下にて焼成される。この焼成過程において、図5に示すように、各粒子が成長して次第に大きくなっていくと共に、シートの厚さ方向における粒子数が減少していく。そして、最終的には、上述した図2、図3と同様、図6に示すように、膜が厚さ方向にて単一の粒子から構成されるようになるとともに、各粒子が更に成長して扁平形状となる。このようにして、熱電膜13が作製される。また、熱電膜13となるグリーンシートを自立した状態で焼成して熱電膜13を作製した後、これをセラミックス基板12の上に接着することもできる。グリーンシートを使用する方法以外にも、スクリーン印刷法、エアロゾルデポジション法、スパッタ法、MOCVD法、ゾルゲル法などを用いて、セラミックス基板12へ直接成膜して熱電膜13を形成してもよい。
【0039】
なお、熱電膜13が上述したコバルト酸化物等の酸化物材料から構成されている場合、作製されたセラミックス基板12の上に、熱電膜13となる焼成前の膜をスクリーン印刷法などにより形成した後、焼成して熱電膜13を作製し、さらに第1電極14a及び第2電極14b等を印刷法などにより形成することも可能である。コバルト酸化物系熱電材料では、結晶構造が層状構造となる。粒の成長は、各層を含む結晶面が広がる方向に発生し易い。従って、コバルト酸化物系熱電材料では、粒子が板状(扁平形状)に成長しやすい性質がある。このため、図6に示すように膜が厚さ方向にて粒子から構成されるようになるとともに、さらに各粒子が成長して扁平形状になるときには上記層状構造が寝た向きに配向する傾向がある。この場合、電子伝導度の高い結晶面が含まれるように熱電膜が配向することになり、熱電式ガスセンサ10の感度を高めることができる。
【0040】
触媒16は、例えば、熱電膜13の上に形成された保護膜15の上に、触媒16となる膜を、印刷法、ディスペンサ、インクジェット法などにより形成することで作製される。
【0041】
上述した実施形態においては、触媒16の下面に、第1電極14a及び第2電極14b等との絶縁が確保されたヒータ(例えば、白金ヒータ)を形成し、触媒16の温度を適切な活性温度に維持することも望ましい。
【図面の簡単な説明】
【0042】
【図1】本発明の実施形態に係る熱電式ガスセンサの主要縦断面図である。
【図2】図1に示した熱電膜の周りの部分側面図である。
【図3】図1に示した熱電膜の部分平面図である。
【図4】図1に示した熱電膜を作製する過程における焼成前の膜の状態を示した図(aは平面図、bは側面図)である。
【図5】図1に示した熱電膜を作製する過程における焼成中の膜の状態を示した図(aは平面図、bは側面図)である。
【図6】図1に示した熱電膜を作製する過程における焼成後の膜の状態を示した図(aは平面図、bは側面図)である。
【符号の説明】
【0043】
10…熱電式ガスセンサ、12…セラミック基板、13…熱電膜、16…触媒

【特許請求の範囲】
【請求項1】
セラミックスからなる焼成されたセラミックス基板と、
前記セラミックス基板の上面に形成された、内部に生じる温度差を熱電効果により電圧信号に変換する熱電膜と、
前記熱電膜の上面側の所定箇所に形成された、被検出ガスとの接触に起因する触媒反応により発熱する触媒材からなる触媒と、
を備え、
前記被検出ガスが前記触媒に接触した状態で得られる前記熱電膜の前記電圧信号に基づいて前記被検出ガスの状態を検出する熱電式ガスセンサ。
【請求項2】
請求項1に記載の熱電式ガスセンサにおいて、
前記セラミックス基板は、中央部が窪むように下方に向けて反っている熱電式ガスセンサ。
【請求項3】
請求項1に記載の熱電式ガスセンサにおいて、
前記セラミックス基板の厚さは0.1μm〜10μmである熱電式ガスセンサ。
【請求項4】
請求項1に記載の熱電式ガスセンサにおいて、
側面視にて、前記熱電膜を構成する2以上の所定個数の粒子を含む視野内において、前記所定個数の粒子について前記熱電膜の平面方向に沿った方向の幅に対する前記熱電膜の厚さ方向に沿った方向の高さの割合の平均値が0.5以下である熱電式ガスセンサ。
【請求項5】
請求項1に記載の熱電式ガスセンサにおいて、
前記熱電膜は、
前記熱電膜の厚さ方向において単一の粒子から構成された熱電式ガスセンサ。
【請求項6】
請求項1に記載の熱電式ガスセンサにおいて、
前記熱電膜には、平面視にて粒子間の一部に隙間が形成された熱電式ガスセンサ。
【請求項7】
請求項1に記載の熱電式ガスセンサにおいて、
前記熱電膜と前記セラミックス基板との境界には、側面視にて一部に隙間が形成された熱電式ガスセンサ。
【請求項8】
請求項1に記載の熱電式ガスセンサにおいて、
前記熱電膜は、他の部分の結晶面に比べて電子伝導度の高い結晶面を含むように配向された部分を有する熱電式ガスセンサ。
【請求項9】
請求項1に記載の熱電式ガスセンサにおいて、
前記熱電膜は、熱電効果を有する酸化物から構成された熱電式ガスセンサ。
【請求項10】
請求項1に記載の熱電式ガスセンサにおいて、
前記熱電膜の厚さは0.1μm〜15μmである熱電式ガスセンサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−53068(P2009−53068A)
【公開日】平成21年3月12日(2009.3.12)
【国際特許分類】
【出願番号】特願2007−220592(P2007−220592)
【出願日】平成19年8月28日(2007.8.28)
【出願人】(000004064)日本碍子株式会社 (2,325)
【Fターム(参考)】