説明

マスタ型、マスタの作成方法及びマスタ

【課題】光学素子を成形する成形型のマスタ作成の際に、材料のはみ出しを防止でき、高い精度で転写できるマスタ型及びその作成方法を提供する。
【解決手段】基板部1の表面に光学素子の形状を有する成形部が成形された成形体を作成するため、成形体の形状に一致するマスタ型であって、この型は、マスタを構成する基板31の表面に、樹脂からなる造形材料を変形させて成形部に対応する造形部の形状を形成する型面を備え、該型面は、光学素子の光学面に相当する形状を転写する転写部21と、基板31に対面する平面からなる平面部20aと、転写部21と平面部20aの間で転写部21を囲んで形成される凹部であって、転写部21と基板31の表面との間の空間に収納しきれない造形材料を収納する空間を構成する樹脂収納凹部22とからなり、転写部21の表面の樹脂10Rに対する濡れ性が、樹脂収納凹部22の表面の樹脂10Rに対する濡れ性より高い。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マスタ型、マスタの作成方法及びマスタに関する。
【背景技術】
【0002】
近年、携帯電話やPDA(Personal Digital Assistant)などの電子機器の携帯端末には、小型で薄型な撮像ユニットが搭載されている。このような撮像ユニットは、一般に、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどの固体撮像素子と、固体撮像素子上に被写体像を形成するためのレンズと、を備えている。
【0003】
携帯端末の小型化・薄型化に伴って撮像ユニットの小型化・薄型化が要請されている。また、携帯端末のコストの低下を図るため、製造工程の効率化が望まれている。このような小型かつ多数のレンズを製造する方法としては、基板部に複数のレンズを形成した構成であるウェハレベルレンズアレイを製造し、該基板部を切断して複数のレンズをそれぞれ分離させることでレンズモジュールを量産する方法が知られている。
【0004】
また、複数のレンズ部が形成された基板部と複数の固体撮像素子が形成された半導体ウェハとを一体に組み合わせ、各レンズ部と固体撮像素子をセットとして含むように基板部とともに半導体ウェハを切断することで撮像ユニットを量産する方法が知られている。
【0005】
従来、ウェハレベルレンズの製造方法としては、例えば次の工程によりウェハレベルレンズアレイを製造する例がある。このような製造方法としては下記特許文献1に示すものがある。
(1)ウェハ上に造形材料である樹脂を塗布した状態で、1つの転写体(以下、マスタ型という。)の形状を造形材料に転写する。
(2)マスタ型の形状を転写する工程を1500〜2400回程度繰り返し、1つのウェハ上に1500〜2400個のレンズ部の形状と同じ形状の造形部を持つマスタを作成する。
(3)マスタにおける、レンズ部と同じ形状の造形部が造形された面に、電鋳によってNi等の金属イオンを堆積させてスタンパ(Ni電鋳型)を製造する。
(4)スタンパを一対の成形型としてウェハレベルレンズアレイの成形に適用し、これら一対の成形型のうち下型に光硬化性樹脂又は熱硬化性樹脂を供給する。
(5)供給された樹脂を上型のウェハレベルレンズアレイ用成形型で押圧することによって上型及び下型の成形面に倣って樹脂を変形させる。
(6)樹脂に光又は熱を照射して硬化させることでウェハレベルレンズアレイを成形する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】国際公開第2008/153102号
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1のように、マスタを作成する際に、基板にマスタ型で造形材料を押し付けて成形することで、各造形部の形成を繰り返していく手順が行われる。このとき、基板上に供給された造形材料である樹脂をマスタ型で押圧、変形させる際に、造形材料が基板とマスタ型の間からはみ出してしまう可能性がある。基板とマスタ型の間から造形材料がはみ出すと、マスタを構成する基板の表面が汚れるだけでなく、はみ出した部位で成形するときにマスタ型と基板とが適正に密着させることができなくなり、造形部の形状を転写させる精度が低下する。
また、はみ出した造形材料を拭き取るのは時間がかかり、生産性が低下してしまう。はみ出した造形材料が硬化した場合には、除去することが困難になってしまう。
更に、マスタ型を基板に押し当てて、造形材料として用いた紫外線硬化性樹又は熱硬化性の樹脂を変形させて硬化させると、これらの樹脂は硬化に伴って収縮する性質があるため、収縮した樹脂が、マスタ型の転写部の表面から離れてしまい、転写部の形状が適正に転写されなくなることも懸念される。
【0008】
本発明は、ウェハレベルレンズアレイ等の成形体を成形するのに用いる成形型の反転形状に一致するマスタを作成する際に、樹脂のはみ出しを防止でき、また、マスタを構成する造形部を高い精度で転写できるマスタ型及びマスタの作成方法を提供する。
【課題を解決するための手段】
【0009】
本発明は、基板部の表面に光学素子の形状を有する成形部が成形された成形体を作成するため、前記成形体の形状に一致するマスタを作成するマスタ型であって、
該マスタ型は、前記マスタを構成する基板の表面に、樹脂からなる造形材料を変形させて前記成形部に対応する造形部の形状を形成する型面を備え、該型面は、前記光学素子の光学面に相当する形状を転写する転写部と、前記基板に対面する平面からなる平面部と、前記転写部と前記平面部の間で前記転写部を囲んで形成される凹部であって、前記転写部と前記基板の表面との間の空間に収納しきれない前記造形材料を収納する空間を構成する樹脂収納凹部とからなり、前記転写部の表面の前記樹脂に対する濡れ性が、前記樹脂収納凹部の表面の前記樹脂に対する濡れ性より高いマスタ型である。
【0010】
このマスタ型は、マスタを構成する基板に造形部を成形する際に、造形部の形状を転写する転写部と基板との間から流動する造形材料の一部を、樹脂収納凹部と基板との間の空間で収容することができる。このため、造形材料が基板とマスタ型との間からはみ出ることを抑えることができる。また、転写部では濡れ性が高く、樹脂収納凹部では濡れ性が低くなるようにすることで、造形材料を転写部と基板との間で保持させつつ変形させることができる。このため、造形材料と転写部との密着性が高められ、造形部を高い精度で転写できる。
【0011】
また、上記マスタ型を用いたマスタの作成方法によれば、マスタ型と基板との間から造形材料がはみ出すことを抑え、基板の表面が汚れることを防止しつつ、造形部を転写できる。また、転写部と樹脂収納凹部のそれぞれの表面の濡れ性を調整することによって造形部を転写する転写部と造形材料との密着が保たれるため、適正な形状を有する造形部を備えたマスタを得ることができる。
【0012】
また、本発明は、基板部の表面に光学素子の形状を有する成形部が成形された成形体を作成するための前記成形体の形状に一致するマスタを作成するためのマスタ型であって、
該マスタ型は、先端面に少なくとも前記光学素子の光学面に相当する形状を転写する転写部を有する移動型部と、該移動型部の前記先端面の周囲を覆う胴型部とからなるマスタ型である。
このマスタ型は、マスタを構成する基板に造形部を成形する際に、基板に開口を当接させた胴型部の内部で、移動型部の先端面を造形材料に押し付けることで造形部を転写することができる。このため、造形材料が基板とマスタ型との間からはみ出ることを抑えることができる。また、造形材料の移動が胴型部の内部にとどめられるため、造形材料と転写部との密着性が高められ、造形部を高い精度で転写できる。
【0013】
また、本発明は、上記マスタ型を用いたマスタの作成方法であって、前記マスタを構成する前記基板の表面に供給された造形材料を前記胴型部の内側面で囲んで、前記胴型部の前記開口の全面を前記基板の表面に当接させ、前記移動型部の前記先端面を前記基板を接近させて前記造形材料を押圧して変形させ、この状態でエネルギーを付加して前記変形された前記造形材料を硬化させて造形部を形成するマスタの作成方法である。この方法によれば、マスタ型と基板との間から造形材料がはみ出すことを抑え、基板の表面が汚れることを防止しつつ、造形部を形成できる。また、胴型部の内部でのみ造形材料を変形させて造形部を転写することで、転写部と造形材料との密着が保たれ、適正な形状を有する造形部を備えたマスタを得ることができる。
【発明の効果】
【0014】
本発明によれば、ウェハレベルレンズアレイ等の成形体を成形するのに用いる成形型の形状に一致するマスタを作成する際に、造形材料のはみ出しを防止でき、また、マスタを構成する造形部を高い精度で転写できるマスタ型及びマスタの作成方法を提供できる。
【図面の簡単な説明】
【0015】
【図1】ウェハレベルレンズアレイの構成の一例を示す平面図である。
【図2】図1に示すウェハレベルレンズアレイの構成のA−A線断面図である。
【図3】レンズモジュールの構成の一例を示す断面図である。
【図4】撮像ユニットの構成の一例を示す断面図である。
【図5】5A〜5Dは、マスタを製造する手順を示す図である。
【図6】6A〜6Cは、基板に複数の造形部を転写した後で、更に樹脂を埋め込む手順を示す図である。
【図7】7A及び7Bは、マスタを用いてウェハレベルレンズアレイの成形型を作成する手順の一例を示す図である。
【図8】型に成形材料である樹脂を供給している状態を示す図である。
【図9】9Aから図9Dは、基板部にレンズ部を成形する手順を説明する図である。
【図10】10A及び10Bは、基板部にレンズ部を成形する際の別の手順を説明する図である。
【図11】11Aから11Gは、マスタ型によって転写されるマスタの造形部の形状のパターンを例示するものである。
【図12】12Aから12Cは、マスタ型の型面を平面視した状態における転写部の形状の例を示す図である。
【図13】13A及び13Bは、マスタの基板に供給された造形材料にマスタ型の型面を押し付ける手順の変形例を説明する図である。
【図14】マスタ型の例を示す図である。
【図15】転写部及び樹脂収納凹部の少なくとも一方の表面に被覆部を設ける構成を説明する図である。
【図16】16A〜16Dは、マスタを製造する手順を示す図である。
【図17】造形材料を硬化させる手順を示す図である。
【図18】造形部の形状の一例を示す図である。
【図19】19Aから19Cは、基板に複数の造形部を転写した後で、更に樹脂を埋め込む手順を示す図である。
【図20】20A及び20Bは、マスタ型で造形部を転写する手順の他の例を示す図である。
【図21】21A及び21Bは、転写部と周囲型部の構成例を説明する図である。
【発明を実施するための形態】
【0016】
基板部の表面に配列された複数の成形部を有する成形体としては、例えば、ウェハレベルレンズアレイがある。以下、成形体の一例としてウェハレベルレンズアレイを例に説明するが、成形体はこれに限定されない。
【0017】
先ず、ウェハレベルレンズアレイ、レンズモジュールと撮像ユニットの構成について説明する。
【0018】
図1は、ウェハレベルレンズアレイの構成の一例を示す平面図である。図2は、図1に示すウェハレベルレンズアレイの構成のA−A線断面図である。
ウェハレベルレンズアレイは、基板部1と、該基板部1に配列された複数のレンズ部10とを備えている。複数のレンズ部10は、基板部1に対して1次元又は2次元に配列されている。レンズ部10は成形部に相当する。図2に見られるように、基板部1の両面に複数のレンズ部10が配列されている。この構成例では、図1のように、複数のレンズ部10が、基板部1に対して2次元に配列されている構成を例に説明する。レンズ部10は、基板部1と同じ材料から構成され、該基板部1に一体成形されたものである。レンズ部10の形状は、特に限定されず、用途などによって適宜変形される。
【0019】
図3は、レンズモジュールの構成の一例を示す断面図である。
レンズモジュールは、基板部1と、及び該基板部1に一体成形されたレンズ部10とを含んだ構成であり、例えば図1及び図2に示すウェハレベルレンズアレイの基板部1をダイシングし、レンズ部10ごとに分離させたものを用いる。
【0020】
基板部1の一方の面又は両方の面には、他の部材と重ね合わせるときの間隔を確保するためのスペーサ12が設けられていてもよい。スペーサ12は、例えば、基板部1の面から突出する壁状の部材で、レンズ部10の周囲の一部又は全部を囲うように設けられている。スペーサ12は、ダイシングする境界に位置し、ダイシングによって同時に分離され、各レンズモジュールの基板部1に付属する。また、スペーサ12は、基板部1に同じ成形材料によって一体に成形されていてもよい。
【0021】
図4は、撮像ユニットの構成の一例を示す断面図である。
撮像ユニットは、上述のレンズモジュールと、センサモジュールとを備える。レンズモジュールのレンズ部10は、センサモジュール側に設けられた固体撮像素子Dに被写体像を結像させる。レンズモジュールの基板部1とセンサモジュールの半導体基板Wとが、互いに略同一となるように平面視略矩形状に成形されている。
【0022】
センサモジュールは、半導体基板Wと、半導体基板Wに設けられた固体撮像素子Dを含んでいる。半導体基板Wは、例えばシリコンなどの半導体材料で形成されたウェハを平面視略矩形状に切り出して成形されている。固体撮像素子Dは、半導体基板Wの略中央部に設けられている。固体撮像素子Dは、例えばCCDイメージセンサやCMOSイメージセンサである。センサモジュールは、チップ化された固体撮像素子Dを配線等が形成された半導体基板上にボンディングした構成とすることができる。又は、固体撮像素子Dは、半導体基板Wに対して周知の成膜工程、フォトリソグラフィ工程、エッチング工程、不純物添加工程等を繰り返し、該半導体基板に電極、絶縁膜、配線等を形成して構成されてもよい。
【0023】
レンズモジュールは、その基板部1がスペーサ12を介してセンサモジュールの半導体基板Wの上に重ね合わされている。レンズモジュールのスペーサ12とセンサモジュールの半導体基板Wとは、例えば接着剤などを用いて接合される。スペーサ12は、レンズモジュールのレンズ部10がセンサモジュールの固体撮像素子D上で被写体像を結像させるように設計され、レンズ部10がセンサモジュールに接触しないように、該レンズ部10と固体撮像素子Dとの間に所定の距離を隔てる厚みで形成されている。
【0024】
スペーサ12は、レンズモジュールの基板部1とセンサモジュールの半導体基板Wとを所定の距離を隔てた位置関係を保持することができる範囲で、その形状は特に限定されず適宜変形することができる。また、スペーサ12は、センサモジュールの固体撮像素子Dの周囲を取り囲むような枠状の部材であってもよい。固体撮像素子Dを枠状のスペーサ12によって取り囲むことで外部から隔絶すれば、固体撮像素子Dにレンズを透過する光以外の光が入射しないように遮光することができる。また、固体撮像素子Dを外部から密封することで、固体撮像素子Dに塵埃が付着することを防止できる。
【0025】
なお、図3に示すレンズモジュールは、レンズ部10が形成された基板部1を1つ備えた構成であるが、レンズ部10が形成された基板部1を複数備えた構成としてもよい。このとき、互いに重ね合わされる基板部1同士がスペーサ12を介して組み付けられる。
【0026】
また、レンズ部10が形成された基板部1を複数備えたレンズモジュールの最下位置の基板部1にスペーサ12を介してセンサモジュールを接合して撮像ユニットを構成してもよい。
【0027】
以上のように構成された撮像ユニットは、携帯端末等に内蔵される図示しない回路基板にリフロー実装される。回路基板には、撮像ユニットが実装される位置に予めペースト状の半田が適宜印刷されており、そこに撮像ユニットが載せられ、この撮像ユニットを含む回路基板に赤外線の照射や熱風の吹付けといった加熱処理が施され、撮像ユニットが回路基板に溶着される。
【0028】
基板部1及びレンズ部10は同一の成形材料(以下、単に材料ともいう。)によって構成される。
【0029】
本発明のウェハレベルレンズアレイに用いられるエネルギー硬化性の樹脂組成物は、熱により硬化する樹脂組成物、あるいは活性エネルギー線の照射(例えば紫外線、電子線照射)により硬化する樹脂組成物のいずれであってもよい。
【0030】
モールド形状の転写適性等、成形性の観点から硬化前には適度な流動性を有していることが好ましい。具体的には常温で液体であり、粘度が1000〜50000mPa・s程度のものが好ましい。
【0031】
一方、硬化後にはリフロー工程を通しても熱変形しない程度の耐熱性を有していることが好ましい。該観点から、硬化物のガラス転移温度は200℃以上であることが好ましく、250℃以上であることがより好ましく、300℃以上であることが特に好ましい。樹脂組成物にこのような高い耐熱性を付与するためには、分子レベルで運動性を束縛することが必要であり、有効な手段としては、(1)単位体積あたりの架橋密度を上げる手段、(2)剛直な環構造を有する樹脂を利用する手段(例えばシクロヘキサン、ノルボルナン、テトラシクロドデカン等の脂環構造、ベンゼン、ナフタレン等の芳香環構造、9,9’−ビフェニルフルオレン等のカルド構造、スピロビインダン等のスピロ構造を有する樹脂、具体的には例えば、特開平9−137043号公報、同10−67970号公報、特開2003−55316号公報、同2007−334018号公報、同2007−238883号公報等に記載の樹脂)、(3)無機微粒子など高Tgの物質を均一に分散させる手段(例えば特開平5−209027号公報、同10−298265号公報等に記載)等が挙げられる。これらの手段は複数併用してもよく、流動性、収縮率、屈折率特性など他の特性を損なわない範囲で調整することが好ましい。
【0032】
形状転写精度の観点からは硬化反応による体積収縮率が小さい樹脂組成物が好ましい。本発明に用いられる樹脂組成物の硬化収縮率としては10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることが特に好ましい。
【0033】
硬化収縮率の低い樹脂組成物としては、例えば、(1)高分子量の硬化剤(プレポリマ−など)を含む樹脂組成物(例えば特開2001−19740号公報、同2004−302293号公報、同2007−211247号公報等に記載、高分子量硬化剤の数平均分子量は200〜100,000の範囲であることが好ましく、より好ましくは500〜50,000の範囲であり、特に好ましくは1,000〜20,000の場合である。また該硬化剤の数平均分子量/硬化反応性基の数で計算される値が、50〜10,000の範囲にあることが好ましく、100〜5,000の範囲にあることがより好ましく、200〜3,000の範囲にあることが特に好ましい。)、(2)非反応性物質(有機/無機微粒子,非反応性樹脂等)を含む樹脂組成物(例えば特開平6−298883号公報、同2001−247793号公報、同2006−225434号公報等に記載)、(3)低収縮架橋反応性基を含む樹脂組成物(例えば、開環重合性基(例えばエポキシ基(例えば、特開2004−210932号公報等に記載)、オキセタニル基(例えば、特開平8−134405号公報等に記載)、エピスルフィド基(例えば、特開2002−105110号公報等に記載)、環状カーボネート基(例えば、特開平7−62065号公報等に記載)、エン/チオール硬化基(例えば、特開2003−20334号公報等に記載)、ヒドロシリル化硬化基(例えば、特開2005−15666号公報等に記載)、(4)剛直骨格樹脂(フルオレン、アダマンタン、イソホロン等)を含む樹脂組成物(例えば、特開平9−137043号公報等に記載)、(5)重合性基の異なる2種類のモノマーを含み相互貫入網目構造(いわゆるIPN構造)が形成される樹脂組成物(例えば、特開2006−131868号公報等に記載)、(6)膨張性物質を含む樹脂組成物(例えば、特開2004−2719号公報、特開2008−238417号公報等に記載)等を挙げることができ、本発明において好適に利用することができる。また上記した複数の硬化収縮低減手段を併用すること(例えば、開環重合性基を含有するプレポリマーと微粒子を含む樹脂組成物など)が物性最適化の観点からは好ましい。
【0034】
ウエハレベルレンズアレイには、高−低2種類以上のアッベ数の異なる樹脂組成物が望まれる。
高アッべ数側の樹脂は、アッベ数(νd)が50以上であることが好ましく、より好ましくは55以上であり特に好ましくは60以上である。屈折率(nd)は1.52以上であることが好ましく、より好ましくは1.55以上であり、特に好ましくは1.57以上である。
このような樹脂としては、脂肪族の樹脂が好ましく、特に脂環構造を有する樹脂(例えば、シクロヘキサン、ノルボルナン、アダマンタン、トリシクロデカン、テトラシクロドデカン等の環構造を有する樹脂、具体的には例えば、特開平10−152551号公報、特開2002−212500号公報、同2003−20334号公報、同2004−210932号公報、同2006−199790号公報、同2007−2144号公報、同2007−284650号公報、同2008−105999号公報等に記載の樹脂)が好ましい。
【0035】
低アッべ数側の樹脂は、アッベ数(νd)が30以下であることが好ましく、より好ましくは25以下であり特に好ましくは20以下である。屈折率(nd)は1.60以上であることが好ましく、より好ましくは1.63以上であり、特に好ましくは1.65以上である。
このような樹脂としては芳香族構造を有する樹脂が好ましく、例えば9,9’‐ジアリールフルオレン、ナフタレン、ベンゾチアゾール、ベンゾトリアゾール等の構造を含む樹脂(具体的には例えば、特開昭60−38411号公報、特開平10−67977号公報、特開2002−47335号公報、同2003−238884号公報、同2004−83855号公報、同2005−325331号公報、同2007−238883号公報、国際公開2006/095610号公報、特許第2537540号公報等に記載の樹脂等)が好ましい。
【0036】
成形材料の樹脂には屈折率を高める目的やアッベ数を調整する目的のために、無機微粒子をマトリックス中に分散させることが好ましい。無機微粒子としては、例えば、酸化物微粒子、硫化物微粒子、セレン化物微粒子、テルル化物微粒子が挙げられる。より具体的には、例えば、酸化ジルコニウム、酸化チタン、酸化亜鉛、酸化スズ、酸化ニオブ、酸化セリウム、酸化アルミニウム、酸化ランタン、酸化イットリウム、硫化亜鉛等の微粒子を挙げることができる。
特に上記高アッべ数の樹脂に対しては、酸化ランタン、酸化アルミニウム、酸化ジルコニウム等の微粒子を分散させることが好ましく、低アッベ数の樹脂に対しては、酸化チタン、酸化スズ、酸化ジルコニウム等の微粒子を分散させることが好ましい。無機微粒子は、単独で用いても2種以上を併用してもよい。また、複数の成分による複合物であってもよい。また、無機微粒子には光触媒活性低減、吸水率低減などの種々の目的から、異種金属をドープしたり、表面層をシリカ、アルミナ等異種金属酸化物で被覆したり、シランカップリング剤、チタネートカップリング剤、有機酸(カルボン酸類、スルホン酸類、リン酸類、ホスホン酸類等)又は有機酸基を持つ分散剤などで表面修飾してもよい。無機微粒子の数平均粒子サイズは通常1nm〜1000nm程度とすればよいが、小さすぎると物質の特性が変化する場合があり、大きすぎるとレイリー散乱の影響が顕著となるため、1nm〜15nmが好ましく、2nm〜10nmが更に好ましく、3nm〜7nmが特に好ましい。また、無機微粒子の粒子サイズ分布は狭いほど望ましい。このような単分散粒子の定義の仕方はさまざまであるが、例えば、特開2006−160992号に記載されるような数値規定範囲が好ましい粒径分布範囲に当てはまる。ここで上述の数平均1次粒子サイズとは、例えばX線回折(XRD)装置あるいは透過型電子顕微鏡(TEM)などで測定することができる。無機微粒子の屈折率としては、22℃、589nmの波長において、1.90〜3.00であることが好ましく、1.90〜2.70であることが更に好ましく、2.00〜2.70であることが特に好ましい。無機微粒子の樹脂に対する含有量は、透明性と高屈折率化の観点から、5質量%以上であることが好ましく、10〜70質量%が更に好ましく、30〜60質量%が特に好ましい。
【0037】
樹脂組成物に微粒子を均一に分散させるためには、例えばマトリックスを形成する樹脂モノマーとの反応性を有する官能基を含む分散剤(例えば特開2007−238884号公報実施例等に記載)、疎水性セグメント及び親水性セグメントで構成されるブロック共重合体(例えば特開2007−211164号公報に記載)、あるいは高分子末端又は側鎖に無機微粒子と任意の化学結合を形成しうる官能基を有する樹脂(例えば特開2007−238929号公報、特開2007−238930号公報等に記載)等を適宜用いて微粒子を分散させることが望ましい。
【0038】
また、成形材料として用いられる樹脂組成物には、シリコン系、フッ素系、長鎖アルキル基含有化合物等の公知の離型剤やヒンダードフェノール等の酸化防止剤等の添加剤が適宜配合されていてもよい。
【0039】
硬化性樹脂組成物には、必要に応じて硬化触媒又は開始剤を配合することができる。具体的には、例えば特開2005−92099号公報(段落番号〔0063〕〜〔0070〕)等に記載の熱又は活性エネルギー線の作用により硬化反応(ラジカル重合あるいはイオン重合)を促進する化合物を挙げることができる。これらの硬化反応促進剤の添加量は、触媒や開始剤の種類、あるいは硬化反応性部位の違いなどによって異なり一概に規定することはできないが、一般的には硬化反応性樹脂組成物の全固形分に対して0.1〜15質量%程度が好ましく、0.5〜5質量%程度がより好ましい。
【0040】
硬化性樹脂組成物は上記成分を適宜配合して製造することができる。この際、液状の低分子モノマー(反応性希釈剤)等に他の成分を溶解することができる場合には別途溶剤を添加する必要はないが、このケースに当てはまらない場合には溶剤を用いて各構成成分を溶解することにより硬化性樹脂組成物を製造することができる。該硬化性樹脂組成物に使用できる溶剤としては、組成物が沈殿することなく、均一に溶解又は分散されるものであれば特に制限はなく適宜選択することができ、具体的には、例えば、ケトン類(例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等)、エステル類(例えば、酢酸エチル、酢酸ブチル等)、エーテル類(例えば、テトラヒドロフラン、1,4−ジオキサン等)アルコール類(例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール、エチレングリコール等)、芳香族炭化水素類(例えば、トルエン、キシレン等)、水等を挙げることができる。硬化性組成物が溶剤を含む場合には該組成物を基板及び/又は型の上にキャストし溶剤を乾燥させた後にモールド形状転写操作を行うことが好ましい。
【0041】
次に、ウェハレベルレンズアレイを成形する成形型を作成するためのマスタを製造する手順と、該マスタの製造に用いられるマスタ型について説明する。この手順では、図2に示すように、基板部1に、該基板部1から突出する曲面を有するレンズ部10が成形されたウェハレベルレンズアレイを成形する成形型を想定する。以下、図2のウェハレベルレンズアレイの構成を適宜参照するものとする。
【0042】
図5A〜5Dは、マスタを製造する手順を示す図である。
図5Aに示すように、マスタの基板31の表面に造形材料である樹脂Rを供給する。基板31の材料や樹脂Rとしては、上記成形材料と同様の材料を用いることができ、紫外線硬化性樹脂や熱硬化性樹脂を用いてもよい。
【0043】
マスタ型20は、レンズ部が複数配列されたウェハレベルレンズアレイの形状に一致するマスタを作成するものである。マスタ型20は、型面で樹脂Rを押し付けることで、樹脂Rを変形させ、基板31の表面に目的とするレンズ部10に対応する造形部30の形状を転写する。
【0044】
マスタ型20の型面は、光学素子の光学面に相当する形状を転写する転写部21と、基板31に当接又は近接するように対面する平面からなる平面部20aと、転写部21と平面部20aの間で転写部21を囲んで形成される凹部であって、転写部21と基板31の表面との間の空間に収納しきれない造形材料を収納する空間を構成する樹脂収納凹部22とからなる。ここでいう、光学面はレンズ部10の表面に相当する。転写部21の形状は、レンズ部10の光学面の形状を反転させたものと一致する。なお、後述するように、レンズ部10の形状は特に限定されず、適宜変更可能である。言い換えると、転写部21の形状は、レンズ部の光学面を反転させた形状に一致するように予め設計される。
【0045】
図5Bに示すように、マスタ型20の型面を樹脂Rに押し付ける。樹脂Rは、最初に、転写部21に密着し、その後、転写部21からの圧力によって、周囲の樹脂収納凹部22へ流動していく。樹脂Rと転写部21との密着の際に、樹脂Rの一部が樹脂収納凹部22と接触してもよい。
【0046】
そして、図5Cに示すように、平面部20aを基板31に当接させる。このとき、樹脂Rが転写部21に密着し、該転写部21の形状に倣って変形する。また、樹脂Rの一部が樹脂収納凹部と基板31との間の空間に収容される。
【0047】
型面の転写部21によって樹脂Rを変形させた状態で、樹脂Rを硬化させる。樹脂Rが紫外線硬化性の樹脂の場合には、紫外線を照射して硬化させる。又は、樹脂Rが熱硬化性の樹脂の場合には、熱を供給して硬化させる。こうすることで、基板31の表面に造形部が形成される。
【0048】
図5Dに示すように、樹脂Rが硬化した後、マスタ型20を基板31から離間させる。基板31の表面に転写された造形部30は、転写部で転写されたレンズ形状部30aと、樹脂収納凹部で転写された台部30bとで構成される。レンズ形状部30aは、製造の目的であるウェハレベルレンズアレイのレンズ部の形状と一致する。台部30bは、レンズ形状部30aの周囲に、基板31の表面に対して段差状に突出した形状である。
【0049】
この手順では、基板31の表面に樹脂Rを供給したが、マスタ型20の転写部の一部に樹脂Rを予め供給し、マスタ型の型面で樹脂Rを基板31に押し付けることで造形部30を転写してもよい。
【0050】
この手順では、樹脂Rを押し付ける際に平面部20aを基板31の表面に当接させた。しかし、図5Bに示すように、平面部20aを基板31に近接させることで、樹脂Rを変形させてもよい。平面部20aを基板31に近接させる状態とは、図5Bのようにマスタ型20の平面部20aと基板31との表面に隙間gをおく状態をいう。この状態で、先に樹脂Rの硬化を行い、樹脂Rの収縮に応じて平面部20aを基板31に近づく方へ移動させてもよい。こうすれば、硬化の際に樹脂Rが収縮することに起因して転写部と樹脂Rとの間が離間してしまうことを抑えることができ、造形部の形状の転写不良を防止することができる。
【0051】
また、マスタ型20の平面部20aを基板31との表面に近接させて隙間gをおくことで、造形部30を所定の高さとなるように調整できる。このとき、転写部21で樹脂Rに光学面に相当する領域全体を転写した後で、隙間gに樹脂Rを更に追加して供給することで、造形部30を所定の高さを確実に調整できる。
【0052】
図5Cに示すように、マスタ型20の平面部20aに対する樹脂収納凹部22の深さをtbとし、平面部20aに対する転写部21の最も深い部位の深さをtaとする。このとき、樹脂収納凹部22の深さtbが転写部21の最も深い部位の深さtaの0.2倍〜3倍であることが好ましい。この例では、樹脂収納凹部22の深さtbが転写部21の最も深い部位の深さtaより小さいが、目的とするレンズ部の形状及び造形部の形状によっては、樹脂収納凹部22の深さtbが転写部21の最も深い部位の深さtaより大きくしてもよい。樹脂収納凹部22の深さtbが転写部21の最も深い部位の深さtaに対して上記範囲となるようにすることで、樹脂Rを押し付ける際に、樹脂収納凹部22と基板31との間で確実に収容させることができる。
【0053】
供給する樹脂(造形材料)Rの量は、樹脂Rを造形部の形状に変形し終えたときの、転写部21と基板31の該転写部21に対面する部分との間の空間の容積より多く、かつ、転写部21から樹脂収納凹部22までの領域と基板31の転写部21から樹脂収納凹部22までの領域と対面する部分との間の空間の容積より少なくすることが好ましい。
【0054】
転写部21は濡れ性の高い材料で構成し、樹脂収納凹部22は濡れ性の低い材料で構成する。
この例では、マスタ型の樹脂収納凹部22の表面に、樹脂Rに対して濡れ性の低い物質(例えば離型材)からなる被覆部を設ける。被覆部の形成方法としては、塗布、蒸着などにより成膜する方法がある。一方で、転写部21の表面には、樹脂Rに対して濡れ性の高い物質からなる被覆部を設ける。被覆部の例については後述する。
【0055】
図6A及び6Bは、基板に複数の造形部を転写した後で、更に樹脂を埋め込む手順を示す図である。
造形部30は、基板31の表面に所定の配列で複数転写されている。ここで、所定の配列とは、造形部30は、目的とするウェハレベルレンズアレイの基板部1におけるレンズ部10のピッチに基づく配列である。
【0056】
図6Aに示すように、基板31上で、隣り合う造形部30の台部30b同士の間の窪みが設けられている。図6Bに示すように、台部30b同士の窪みに、樹脂Rを埋め込む。この例では、窪みに埋め込む樹脂Rは、造形部30を構成する造形材料である樹脂Rと同じものとした。しかし、台部30b同士の間の窪みには、造形部30の造形材料とは異なる樹脂を用いてもよい。窪みに樹脂Rを埋め込んだ後、硬化させ、図6Cに見られるように、基板31の表面において、レンズ形状部30a以外の領域が平坦化される。
【0057】
上記手順によって、図2に示すウェハレベルレンズアレイの形状と同一のマスタを得ることができる。
【0058】
図7A及び7Bは、マスタを用いてウェハレベルレンズアレイの成形型を作成する手順の一例を示す図である。
図7Aに示すように、マスタの基板31上に、レンズ形状部30aの表面形状を反転させた形状を有するスタンパ102を作成する。スタンパ102は、一例として、マスタの造形部30が設けられた基板31の表面に、電鋳によってNi等の金属イオンを堆積させることで得ることができる。そして、図7Bに示すように、マスタから離型させたスタンパ102には、レンズ形状部30aの表面形状を反転させた形状に一致するレンズ転写部102aが形成される。レンズ転写部102aは、所望のレンズ部10の表面形状を反転させた形状に一致する。
【0059】
次に、上記手順で得られたスタンパ102を一対の成形型のそれぞれに適用し、成形体であるウェハレベルレンズアレイを成形する手順の一例を説明する。なお、以下の説明では、スタンパ102を単に型ともいう。
【0060】
図8は、型に成形材料である樹脂を供給している状態を示す図である。図8に示すように、型部材102のレンズ転写部102aにディペンサのノズル31から樹脂10Rを滴下する。各レンズ転写部102aに対して、1つのレンズ部に相当する所定量の樹脂が供給される。なお、各レンズ転写部102aに滴下される樹脂10Rの量は均一であり、所望のレンズ部の容積によって予め決められる。型部材102に供給する樹脂は、別工程で製造される基板部1を構成する樹脂と同一である。
【0061】
図9Aから図9Dは、基板部にレンズ部を成形する手順を説明する図である。
最初に、基板部1を準備する。ここで、基板部1の成形材料としては、該基板部1に成形されるレンズ部10と同じ成形材料を用いて、予め成形又は製作される。成形材料としては、紫外線硬化性樹脂又は熱硬化性樹脂を用いる。次に、供給された樹脂を下型と上型とで押圧することでウェハ形状にし、押圧した状態で樹脂に紫外線又は熱を照射することで樹脂を硬化させ、基板部を成形する。
【0062】
基板部1は、成形材料として用いる樹脂からなるブロックを切り出して作ってもよい。基板部1は、平行平板の形状であってもよい。また、基板部1には、反り防止用のリブやスペーサなどの構造体を同時に一体成形したものでよい。
【0063】
なお、以下の手順では、基板部1とレンズ部10とを別々に得る手順を説明するが、基板部1とレンズ部10とを同じ成形工程で一体に成形してもよい。
【0064】
図9Aに示すように、予め樹脂10Rが供給された型部材102と、該型部材102の上に、先に別工程で成形された基板部1を配置する。ここで、型部材102に供給される樹脂10Rは、別工程で成形された基板部1を構成する樹脂と同一である。型部材102の複数のレンズ転写部102aのそれぞれには、レンズ部10の一つに対応する量の樹脂10Rが供給される。
【0065】
図9Bに示すように、型部材102に基板部1を重ね合わせることで、型部材102のレンズ転写部102aに供給された樹脂10Rを押圧してレンズ転写部102aに倣った形状に変形させる。型部材102と基板部1との互いの位置決めのため、基板部1にはマーキング部M11が設けられている。また、型部材102には、基板部1と重ね合わせた状態で該基板部1のマーキング部M11に対する基準位置を示すマーキング部M2が設けられている。こうすることで、基板部1と型部材102との位置決めを容易に行うことができる。型部材102に基板部1を重ね合わせた状態で、基板部1の上方から紫外線又は熱を照射する。こうして、樹脂10Rを硬化させ、基板部1における図中の下面側にレンズ部10を一体成形する。樹脂10Rが硬化した後、基板部1を型部材102から剥離する。
【0066】
次に、図9Cに示すように、基板部1におけるレンズ部10が形成されていない側の面にレンズ部10を成形する。基板部1を、レンズ部10が成形された面を上方に向け、該基板部1の下方に予め樹脂10Rが供給された型部材104を配置する。型部材104に樹脂10Rを供給する手順は、図8で説明した、型部材102に樹脂10Rを供給する手順と同様である。
【0067】
図9Dに示すように、型部材104に基板部1を重ね合わせることで、型部材104のレンズ転写部104aに供給された樹脂10Rを押圧してレンズ転写部104aに倣った形状に変形させる。型部材104と基板部1との互いの位置決めのため、基板部1にはマーキング部M12が設けられている。また、型部材104には、基板部1と重ね合わせた状態で該基板部1のマーキング部M12に対する基準位置を示すマーキング部M20が設けられている。こうすることで、基板部1と型部材104との位置決めを容易に行うことができる。型部材104に基板部1を重ね合わせた状態で、紫外線又は熱を照射する。こうして、樹脂10Rを硬化させ、基板部1における図中の下面側にレンズ部10を一体成形する。樹脂10Rが硬化した後、基板部1を型部材104から剥離する。こうして、基板部1の両方の面それぞれに複数レンズ部10が一体成形されたウェハレベルレンズアレイを得ることができる。
【0068】
基板部1と複数のレンズ部10とを別の工程で、かつ、同じ成形材料で作ると、基板部1を成形する際の硬化による収縮がレンズ部10に影響を与えることがない。そして、成形された基板部1にレンズ部10を成形することで、レンズ部10同士の位置のずれが発生することを防止できる。
また、基板部1と複数のレンズ部10とが同じ成形材料で成形されているため、基板部1とレンズ部10との間の界面で光の屈折が生じることを回避でき、設計が容易である。また、撮像レンズとして用いた場合に、界面での光の反射が生じないため、フレア等による画質の劣化を避けることができる。
【0069】
なお、以上の手順では、レンズ部10の形状が凸状である場合を例に説明したが、形状は特に限定されず、凹状や非球面の形状であってもよい。
【0070】
図10A及び10Bは、基板部にレンズ部を成形する際の別の手順を説明する図である。
図10Aに示すように、一対の型部材102と型部材104との間に基板部1を配置する。このとき、型部材102のレンズ転写部102aと、型部材104のレンズ転写部104aとがいずれも基板部1に対向している。また、型部材104のレンズ転写部104aのそれぞれには予め樹脂が供給されている。
【0071】
基板部1における型部材102側の面には、レンズ部10を形成する部位毎に、樹脂10Rが供給されている。基板部1において、レンズ部10を成形する部位毎に、レンズ部10の一つに対応する量の樹脂10Rが供給される。基板部1へ樹脂10Rを供給する手順は、図8で説明した手順と同様とすることができる。
【0072】
次に、図10Bに示すように、型部材102と型部材104とを基板部1を挟んで重ね合わせる。基板部1の図中上面に供給された樹脂10Rは、型部材102のレンズ転写部102aの形状に倣って変形する。また、型部材104のレンズ転写部104aに供給された樹脂10Rは、基板部1とレンズ転写部104aとに押圧され、該レンズ転写部104aの形状に倣って変形する。型部材102,型部材104及び基板部1を重ね合わせた状態で、紫外線又は熱を照射し、樹脂10Rを硬化させる。こうすることで、基板部1の両方の面に対して同時に、複数のレンズ部10を一体成形してなる、ウェハレベルレンズアレイを得ることができる。
【0073】
また、図10A及び図10Bに見られるように、基板部1、型部材102,104のそれぞれにマーキング部M11、M12、M10、M20を設けることで、基板部1に対する複数のレンズ部10の位置決めを容易に行うことができる。
【0074】
上記手順のように、マスタで得られた型(スタンパ)を一対用いることで、基板部1の両面に複数のレンズ部10が成形されたウェハレベルレンズアレイを得ることができる。基板部の表面に配列された複数の成形部を有する成形体であれば、ウェハレベルレンズアレイに限らず、同様の手順で作成することができる。
【0075】
図11Aから11Gは、マスタ型によって転写されるマスタの造形部の形状のパターンを例示するものである。各図の造形部の形状は、目的とするウェハレベルレンズアレイのレンズ部の形状に一致する。なお、各図では、単一の造形部の形状のみを示しているが、同じ形状を有する造形部が基板の表面に並べられているものとする。各図の造形部の台部30bと、図示する造形部30と隣り合う図示しない造形部30の台部30bとの間に、造形材料である樹脂Rが埋め込まれてもよい。
【0076】
図11Aに示す造形部30は、凸面を有するレンズ形状部30aと、該レンズ形状部30aの周囲に、レンズ形状部30aと基板31との間で段差状に設けられた台部30bとを有する例である。
【0077】
図11Bに示す造形部30は、凹面を有するレンズ形状部30aを有し、レンズ形状部30aの周縁が台部30bの表面から突出する形状である。また、造形部30は、レンズ形状部30aの周囲に段差状の台部30bを有する。
【0078】
図11Cに示す造形部30は、凸面を有するレンズ形状部30aを有し、レンズ形状部30aの周囲には、凸面よりも高く突出する壁状の台部30bが設けられている。
【0079】
図11Dに示す造形部30は、凹面を有するレンズ形状部30aを有する。レンズ形状部30aの周囲に、レンズ形状部30aと基板31との間には、段差状に設けられた台部30bが設けられている。
【0080】
図11Eに示す造形部30は、凸面を有するレンズ形状部30aと、該レンズ形状部30aの周囲に、レンズ形状部30aと基板31との間で段差状に設けられた台部30bとを有する例である。この例では、レンズ形状部30aの周縁と台部30bとの間にも段差が設けられている。
【0081】
図11Fに示す造形部30は、凹面を有するレンズ形状部30aと、該レンズ形状部30aの周囲に台部30bとを有する例である。基板31の表面から台部30bの上面に渡る面は、段差ではなく湾曲した面である。
【0082】
図11Gに示す造形部30は、凸面を有するレンズ形状部30aを有し、レンズ形状部30aの周囲には、凸面とほぼ同じ高さで突出する壁状の台部30bが設けられている。
【0083】
図11Aから図11Gの造形部30はいずれも、レンズ形状部30aが、所望のレンズ部と同じ光学面の形状を有する。図5のマスタ型20の構成に参照されるように、レンズ形状部30aは、マスタ型20の転写部21によって転写され、台部30bは、マスタ型20の樹脂収納凹部22によって転写される。
【0084】
図12Aから12Cは、マスタ型の型面を平面視した状態における転写部の形状の例を示す図である。なお、各図中の点線は、造形材料である樹脂Rを示している。
【0085】
図12Aに示すように、平面部20aを平面視した状態で、樹脂収納凹部22の形状が、円形であってもよい。また、樹脂収納凹部22の形状が円形ではなく楕円形としてもよい。
【0086】
図12Bに示すように、平面部20aを平面視した状態で、樹脂収納凹部22の形状が、正方形や長方形等の矩形であってもよい。
【0087】
図12Cに示すように、平面部20aを平面視した状態で、樹脂収納凹部22の形状が、多角形であってもよい。
【0088】
図12Aから12Cでは、平面部20aを平面視した状態で、転写部21の形状を円形とした。ここで、転写部21の直径をD1とする。
【0089】
図12Aに示すように、樹脂収納凹部22の形状の直径をD2とすると、直径D2が直径D1の1.5倍以上とすることが好ましい。この理由としては、こうすることで、マスタの基板と樹脂収納凹部22との間で樹脂を十分に収容可能な空間を設けることができる。樹脂収納凹部22の形状が楕円形の場合には、長径が直径D2に相当するものとする。
【0090】
同様の理由で、図12Bや12Cに示すように、樹脂収納凹部22が四角形又は長方形等の矩形や多角形の場合、その最大対角長をD2とすると、最大対角長D2が転写部21の直径D1の1.5倍以上とすることが好ましい。
【0091】
複数のマスタ型が互いに接合され、それぞれの平面部20aを同一平面状に並べて固められてマスタ型のブロック体を構成してもよい。
【0092】
図13A及び13Bは、マスタの基板に供給された造形材料にマスタ型の型面を押し付ける手順の変形例を説明する図である。図13Aに示すように、マスタ型20の転写部21の表面に樹脂Rの造形材料の一部を予め付着させている。図13Bに示すように、予め付着させる樹脂R’は、平面部20aを基板31上の樹脂Rに押し付ける際の呼び水として機能する。こうすることで、造形材料である樹脂Rと転写部21との間に気泡が残ることを防止することができ、造形部をより高い精度で転写できる。
【0093】
図14は、マスタ型の一例を示す断面図である。
マスタ型20は、円柱状の第1の型部材201と、第1の型部材201の周面に設けられた第2の型部材202とから構成されている。第1の型部材201は転写部21を備えている。第2の型部材202は、樹脂収納凹部22を備えている。第1の型部材201は、樹脂Rに対して濡れ性の高い材料で構成されている。第2の型部材202は、樹脂Rに対して濡れ性の低い材料で構成されている。このため、第1の型部材に設けられた転写部21の表面の樹脂Rに対する濡れ性が、第2の型部材202に設けられた樹脂収納凹部22の表面の樹脂Rに対する濡れ性より高い。
【0094】
造形材料としてエポキシ樹脂を用いる場合、濡れ性の低い材料としては、エポキシ樹脂に対して濡れ性の低いフッ素系の材料やシリコーン系の材料、又は、それらを混合した材料を用いることができる。
造形材料としてエポキシ樹脂を用いる場合、濡れ性の高い材料としては、ガラス、金属(アルミなどが蒸着しやすくて好ましい。)、セラミックス、プラスチック類(フッ素系、シリコン系を除く)を用いることができる。
【0095】
図15は、転写部及び樹脂収納凹部の少なくとも一方の表面に被覆部を設ける構成を説明する図である。この例では、樹脂収納凹部にのみ被覆部24を設けた構成とした。
被覆部24は、造形材料である樹脂Rに対して、濡れ性を調整する機能を有する。ここでいう濡れ性とは、固体の表面に液体が接触しているときの接触状態を表し、同じ量の液体が、固体表面の相対的に広い面積に接触する(接触角が小さい)場合には濡れ性が高いとされ、相対的に狭い面積で接触する(接触角が大きい)場合には濡れ性が低いとされる。つまり、被覆部に樹脂Rが付着したときに、表面に樹脂Rが接触する部分が拡がるほど濡れ性が高い。一方で、表面に樹脂Rが接触する部分が狭いほど濡れ性が低い。
【0096】
被覆部24は、転写部21及び樹脂収納凹部22の少なくとも一方の表面に設ければよい。
【0097】
マスタ型20の転写部21には、樹脂Rに対する濡れ性が高い被覆部24を設けることが好ましい。また、樹脂収納凹部22には、樹脂Rに対する濡れ性が低い被覆部24を設けることが好ましい。こうすることで、樹脂Rが、転写部21と基板31との間で樹脂Rを保持しやすくなる。そして、樹脂Rと転写部21との密着性をより一層向上させることができ、造形部をより高い精度で転写できる。
【0098】
造形材料としてエポキシ樹脂を用いる場合、濡れ性の低い被覆部24としては、エポキシ樹脂に対して濡れ性の低いフッ素系の材料やシリコーン系の材料、又は、それらを混合した材料を用いることができる。
造形材料としてエポキシ樹脂を用いる場合、濡れ性の高い被覆部24としては、ガラス、金属、セラミックス、プラスチック類(フッ素系、シリコン系を除く)を用いることができる。
【0099】
このマスタ型20は、転写部21及び樹脂収納凹部22の少なくとも一方の表面に造形材料に対する濡れ性を調整する被覆部を設けることで、造形材料である樹脂Rがマスタ型20の転写部の表面から離れてしまうことを抑えるものである。こうすることで、マスタ型20の転写部の形状が樹脂Rに適正に転写され、造形部を高い精度で転写できる。
なお、図14のように濡れ性の異なる複数の材料からなるマスタ型の構成においても、転写部21及び樹脂収納凹部22の少なくとも一方の表面に造形材料に対する濡れ性を調整する被覆部を設けてもよい。
【0100】
上記のマスタ型を用いて作成する場合には、所謂、ステップ・アンド・リピートによってマスタを得ることができる。ステップ・アンド・リピートでマスタを作成する場合には、基板の表面の所定部位に、(1)造形部の少なくとも1つを形成するための前記造形材料を供給し、(2)供給された該造形材料にマスタ型の少なくとも前記転写部を押し付けて造形材料を転写部の形状に倣って変形させ、(3)変形させた状態で造形材料にエネルギーを付加して硬化させることで、少なくとも1つの造形部を形成し、基板表面の部位を変えて、(1)〜(3)を繰り返して、基板の表面に複数の造形部を構成する。
【0101】
次に、成形型を作成するためのマスタを製造する手順と、該マスタの製造に用いられるマスタ型について他の例を説明する。以下の説明では既に説明した構成や手順の説明は省略し、すでに説明した部材には同等の参照番号を付すことで説明を簡略又は省略する。なお、以下の手順では、上述したように、基板部1に、該基板部1から突出する曲面を有するレンズ部10が成形されたウェハレベルレンズアレイを成形する成形型を想定する。以下、図2のウェハレベルレンズアレイの構成を適宜参照するものとする。
【0102】
図16A〜16Dは、マスタを製造する手順を示す図である。図17は、造形材料を硬化させる手順を示す図である。図18は、造形部の形状の一例を示す図である。以下の手順の説明では、造形部30の形状を適宜参照する。しかし、造形部30の形状は、図18のものに限定されない。
【0103】
図16Aに示すように、マスタの基板31の表面に造形材料である樹脂Rを供給する。基板31の材料としては、上述したものと同じものを用いることができる。
【0104】
マスタ型120は、略筒形状の胴型部122と、該胴型部122の内側面と外側面に摺接して筒形状の長さ方向(図5Aでは上下方向)に移動可能に保持される移動型部121とからなる。基板31の表面に対向するように配置された先端面を有する移動型部121を備えている。移動型部121は、円柱体又は角柱体形状を有する。移動型部121の一方の端部がプレス板123の表面に固定されている。移動型部121のプレス板123に固定されていない他方の端部の断面積が、プレス板23に固定された側の一方の端部の断面積に比べて大きく構成されている。移動型部121のプレス板123に固定されていない他方の端部の端面を先端面とする。
【0105】
胴型部122は、その内側面に移動型部121の外側面が摺接しつつ移動可能に収容する。胴型部122の筒形状の長さ方向に対する一方の端部(図16A中下側の端部)には、基板31の表面に向かって開放された開口122aが設けられている。開口122aは、全面が平面である端面に形成されている。
【0106】
移動型部121は、その先端面がプレス板123の摺接方向の移動に伴い、胴型部122の内部でプレス板123の移動する方向に同じ移動量で移動する。なお、移動型部121の一部を胴型部122の内部で移動させることができれば、移動させるための機構はプレス板123に限定されない。
【0107】
移動型部121は、その先端面が樹脂Rに接触させることで所定の形状を転写するように形成されている。マスタ型120は、型面で樹脂Rを押し付けることで、該樹脂Rを変形させ、基板31の表面に目的とする成形部と同一の表面形状を有する造形部30を転写する。
【0108】
移動型部121は、先端面に、造形部30のうち少なくとも光学面の形状を転写する転写部121aと、転写部121aの周囲に連接する周囲型部121bとを有する。ここでいう、光学面はレンズ部10の表面のうち光学性能を有する領域の面に相当する。転写部121aの形状は、レンズ部10の光学面の形状を反転させたものと一致する。なお、レンズ部10の形状は特に限定されず、適宜変更可能である。言い換えると、転写部121aの形状は、レンズ部10の光学面を反転させたものと形状に一致するように予め設計される。
【0109】
周囲型部121bは、造形部30のうち光学面以外の面を転写するものであって、平面に形成される。マスタ型120の胴型部122の開口122aの全周を基板31に当接させた状態で周囲型部121bは、基板31の表面に対して平行となる。
【0110】
最初に、図16Aに示すように、基板31に樹脂Rを供給し、供給された樹脂Rを覆うようにマスタ型120の胴型部122を被せる。このとき、移動型部121は、胴型部122において開口122aの反対側に位置するように保持されている。
【0111】
図16Bに示すように、移動型部121の先端面を樹脂Rに押し付ける。樹脂Rは、最初に、転写部121aに密着し、その後、転写部121aからの圧力によって、周囲の周囲型部121bへ流動していく。樹脂Rと転写部121aとの密着の際に、樹脂Rの一部が周囲型部121bと接触してもよい。
【0112】
そして、図16Cに示すように、移動型部121を所定の量だけ基板31に近づけると、胴型部122の内部で押圧された樹脂Rが、型面と基板31との間の空間に完全に満たされる。このとき、樹脂Rが転写部121a及び周囲型部121bに密着し、また、胴型部122の内側面にも密着する。
【0113】
図17に示すように、マスタ型120の移動型部121の先端面で押圧しながら、樹脂Rを硬化させる。樹脂Rが紫外線硬化性の樹脂の場合には、照射装置141から紫外線を照射して硬化させる。なお、樹脂Rが熱硬化性の樹脂の場合には、熱を供給して硬化させる。こうすることで、基板31の表面に造形部が転写される。
【0114】
ここで、移動型部121の型面で樹脂Rを押圧し、該樹脂Rを硬化させるまでの間、移動型部121の自重によって、樹脂Rに所定の圧力がかかるように押圧することが好ましい。こうすれば、樹脂Rに硬化による収縮が生じても、移動型部121の型面が樹脂Rに追従するため、型面と樹脂Rとの間が離れることがなく、造形部30に転写不良が生じることを防止できる。また、樹脂Rに所定の圧力をかける方法としては、移動型部121の自重ではなく、プレス123を制御することによって加圧してもよい。
【0115】
基板上で位置を変えて複数の造形部を形成するときに、樹脂Rを押圧して変形させ、UV光や熱などのエネルギーを与えて硬化させたときの、移動型部121の先端面と基板31との間隔を前記造形部ごとに一定に制御してもよい。こうすれば、造形部ごとに供給される樹脂Rにばらつきがあっても、転写する造形部30の基板31に対する高さ寸法を常に均一にすることができる。
【0116】
図18に示すように、樹脂Rが硬化した後、マスタ型120を基板31から離間させる。基板31の表面に転写された造形部30は、転写部で転写されたレンズ形状部130aと、周囲型部で転写された台部130bとで構成される。レンズ形状部130aは、製造の目的であるウェハレベルレンズアレイのレンズ部の形状と一致する。台部130bは、レンズ形状部130aの周囲に、基板31の表面に対して段差状に突出した形状である。
【0117】
この手順では、基板31の表面に樹脂Rを供給したが、マスタ型120の移動型部121側に樹脂Rを予め供給し、移動型部121の先端面を基板31に近づけることで、樹脂Rを押し付けて変形させ、基板31に造形部30を形成してもよい。
【0118】
マスタ型120は、マスタを構成する基板31に造形部30を成形する際に、基板31に開口122aを当接させた胴型部122の内部で、移動型部121の先端面を樹脂Rに押し付けた状態で造形部30を転写することができる。このため、樹脂Rが胴型部122の内部で保持され、基板31とマスタ型120との間からはみ出ることを抑えることができる。また、樹脂Rの移動が胴型部122の内部にとどめられるため、樹脂Rと転写部121aとの密着性が高められ、造形部30を高い精度で形成できる。
【0119】
また、マスタ型120の転写部121aの表面は樹脂Rに対して濡れ性が高いことが望ましい。マスタ型120の転写部121aに、樹脂Rに対する濡れ性を高めるコーティングが施されていてもよい。ここでいう濡れ性とは、固体の表面に液体が接触しているときの接触状態を表し、同じ量の液体が、固体表面の相対的に広い面積に接触する(接触角が小さい)場合には濡れ性が高いとされ、相対的に狭い面積で接触する(接触角が大きい)場合には濡れ性が低いとされる。つまり、被覆部に樹脂Rが付着したときに、表面に樹脂Rが接触する部分が拡がるほど濡れ性が高い。一方で、表面に樹脂Rが接触する部分が狭いほど濡れ性が低い。こうすることで、樹脂Rが、転写部121aと基板31との間で保持されやすく、樹脂Rと転写部121aとの密着性をより一層向上させることができ、造形部をより高い精度で転写できる。
また、周囲型部121bの表面及び胴型部122の内側面は樹脂Rに対して濡れ性が低いことが望ましい。周囲型部121bには、樹脂Rに対する濡れ性を低下させるコーティングが施されていてもよい。こうすることで、樹脂Rが、周囲型部121bと基板31との間で保持されにくくなり、転写部121aとの密着性がより一層向上する。
【0120】
造形材料としてエポキシ樹脂を用いる場合、濡れ性の低い材料としては、エポキシ樹脂に対して濡れ性の低いフッ素系の材料やシリコーン系の材料、又は、それらを混合した材料を用いることができる。
造形材料としてエポキシ樹脂を用いる場合、濡れ性の高い材料としては、ガラス、金属(アルミなどが蒸着しやすくて好ましい。)、セラミックス、プラスチック類(フッ素系、シリコン系を除く)を用いることができる。
【0121】
図19Aから19Cは、基板に複数の造形部を転写した後で、更に樹脂を埋め込む手順を示す図である。
図19Aに示すように、造形部30は、基板31の表面に所定の配列で複数転写されている。ここで、所定の配列とは、造形部30は、目的とするウェハレベルレンズアレイの基板部1におけるレンズ部10のピッチに基づく配列である。
【0122】
図19Aに示すように、基板31上で、隣り合う造形部30の台部130b同士の間には窪みが設けられている。図19Bに示すように、台部130b同士の間の窪みに、樹脂Rを埋め込む。この例では、窪みに埋め込む樹脂Rは、造形部30を構成する造形材料である樹脂Rと同じものとした。しかし、台部130b同士の間の窪みには、造形部30の造形材料とは異なる樹脂を用いてもよい。窪みに樹脂Rを埋め込んだ後、硬化させ、図19Cに見られるように、基板31の表面において、レンズ形状部130a以外の領域が平坦化される。
【0123】
上記手順によって、図2に示すウェハレベルレンズアレイの形状と同一のマスタを得ることができる。
【0124】
上記図7A及び7Bに示す手順と同様の手順を行うことで、マスタを用いてウェハレベルレンズアレイの成形型を作成することができる。
【0125】
図20A及び20Bは、マスタ型で造形部を転写する手順の他の例を示す図である。
この例では、マスタの基板31には貫通孔133が設けられている。基板31に樹脂Rを供給し、マスタ型20の胴型部122で樹脂Rを覆って、開口122aを基板31の表面に当接させる。そして、移動型部121を基板31側に接近させ、型面で樹脂Rを押圧し、変形させる。
【0126】
図20Bに示すように、移動型部121で樹脂Rを押圧する際に、貫通孔33から樹脂Rの一部を基板31の裏面に逃がす。こうすることで、供給される樹脂Rの量が多い場合に、余分な樹脂を貫通孔133を通して排出することができる。貫通孔133は、樹脂Rの粘性などを考慮してその開口径が設定され、樹脂Rの自重で漏れ出ることがない寸法で形成されている。このとき、移動型部121の先端面と基板31の表面との隙間Hを一定になるように制御することで、貫通孔133から樹脂Rが排出されすぎて転写される造形部30の高さ寸法にばらつきが生じることがない。
【0127】
また、基板31に貫通孔133を設けない場合であっても、樹脂Rを押圧して変形させてから、樹脂Rを硬化させるまでの間、移動型部121の先端面と基板31との間隔を一定に制御することで、常に同じ高さ寸法の造形部30を転写することができる。
【0128】
図21A及び21Bは、転写部と周囲型部の構成例を説明する図である。図21Aにおいて、D1は、転写部の水平方向(図中の左右方向)の寸法とし、D2は、転写部から胴型部122までの水平方向の寸法を示している。寸法D2を大きくすることで、周囲型部121bと基板31との間で収容できる樹脂Rの量が多くなる。このため、樹脂Rのばらつきを抑える場合には、寸法D2を大きくして、周囲型部121bと基板31との間の容積を大きくすればよい。
【0129】
図21Bに示すように、移動型部121の先端面と基板31の表面との隙間Hを一定になるように制御すれば、寸法D2の大きさにかかわらず、造形部30の高さ寸法にばらつきが生じることを防止できる。
【0130】
上記の例では、移動型部121の先端面を平面視した状態で、転写部121aの外周形状を円形とし、周囲型部121bの外周形状もこの円形の中心に均等に拡がった円形とした。転写部121aの外周形状は、目標とするウェハレベルレンズアレイのレンズ部の外形によって規定される。一方で、移動型部121の先端面を平面視した状態で、周囲型部121bは、周囲型部121bの形状の中心が転写部121aの形状の中心と一致すればよい。このため、周囲型部121bの形状は、円形に限らず、四角形や多角形としてもよい。
上記のマスタ型を用いて作成する場合には、所謂、ステップ・アンド・リピートによってマスタを得ることができる。ステップ・アンド・リピートでマスタを作成する場合には、基板上に所定量の造形材料を供給し、マスタ型を用いて造形材料を変形させ、変形した造形材料を硬化させ、マスタ型を取り除く。この手順を所定数の造形部を形成するときに、造形部ごとに繰り返し行う。
【0131】
本明細書は以下の内容を開示する。
(1)基板部の表面に光学素子の形状を有する成形部が成形された成形体を作成するため、前記成形体の形状に一致するマスタを作成するマスタ型であって、
該マスタ型は、前記マスタを構成する基板の表面に、樹脂からなる造形材料を変形させて前記成形部に対応する造形部の形状を形成する型面を備え、該型面は、前記光学素子の光学面に相当する形状を転写する転写部と、前記基板に対面する平面からなる平面部と、前記転写部と前記平面部の間で前記転写部を囲んで形成される凹部であって、前記転写部と前記基板の表面との間の空間に収納しきれない前記造形材料を収納する空間を構成する樹脂収納凹部とからなり、前記転写部の表面の前記樹脂に対する濡れ性が、前記樹脂収納凹部の表面の前記樹脂に対する濡れ性より高いマスタ型。
(2)(1)に記載のマスタ型であって、
前記転写部及び前記樹脂収納凹部のうち少なくともいずれかの表面に、前記樹脂との濡れ性を調整する膜が設けられたマスタ型。
(3)(2)に記載のマスタ型であって、
前記樹脂収納凹部に前記膜を設ける場合、該膜が前記造形材料に対して濡れ性が低いマスタ型。
(4)(1)から(3)のいずれか1つに記載のマスタ型であって、
前記平面部に対する前記樹脂収納凹部の深さが、前記平面部に対する前記転写部の最も深い部位の深さに対して、0.2倍〜3倍であるマスタ型。
(5)(1)から(4)のいずれか1つに記載のマスタ型であって、
前記平面部を平面視した状態で、前記樹脂収納凹部の形状が、円形、楕円形、矩形、多角形のいずれかであるマスタ型。
(6)(5)に記載のマスタ型であって、
前記平面部を平面視した状態で前記転写部の形状が円形であって、前記樹脂収納凹部の直径、長径、最大対角長のいずれかが前記転写部の直径の1.5倍以上であるマスタ型。
(7)基板部の表面に光学素子の形状を有する成形部が成形された成形体を作成するための前記成形体の形状に一致するマスタを作成するためのマスタ型であって、
該マスタ型は、先端面に少なくとも前記光学素子の光学面に相当する形状を転写する転写部を有する移動型部と、該移動型部の前記先端面の周囲を覆う胴型部とからなるマスタ型。
(8)(7)に記載のマスタ型であって、
前記胴型部は前記筒形状の内側面と、該内側面と直交する平面で切断された形状の開口とを有し、
前記内側面の内部に、前記移動型部の先端部を収容してその周囲を覆い、該内側面は前記移動型部の外側面とを摺接して、前記移動型部を前記筒状の長さ方向に移動可能に保持するマスタ型。
(9)(7)又は(8)に記載のマスタ型であって、
前記移動型部はその先端面が前記転写部と、前記転写部を囲んで前記外側面に至る周囲型部とを備えるマスタ型。
(10)(9)に記載のマスタ型であって、
前記周囲型部は平面であるマスタ型。
(11)(7)から(10)のいずれか1つに記載のマスタ型であって、
前記胴型部の前記内側面及び前記移動型部の前記外側面は円筒形であるマスタ型。
(12)(7)から(11)のいずれか1つに記載のマスタ型であって、
前記転写部の中心が、前記移動型部の中心と一致するマスタ型。
(13)(7)から(12)のいずれか1つに記載のマスタ型であって、
前記転写部の表面は前記周囲型部の表面よりも造形材料に対する濡れ性が高いマスタ型。
(14)(1)から(6)に記載のマスタ型を用いた前記マスタの作成方法であって、
前記基板と前記マスタ型の前記型面との間に、前記造形部の1つを形成するために供給する造形材料の量は、前記造形材料を前記造形部の形状に変形し終えたときの、前記転写部と前記基板の該転写部に対面する部分との間の空間の容積より多く、かつ、前記転写部から前記樹脂収納凹部までの領域と前記基板の前記転写部から前記樹脂収納凹部までの領域と対面する部分との間の空間の容積より少なくするマスタの作成方法。
(15)(14)に記載のマスタの作成方法であって、
前記型面を前記造形材料に押し付ける前に、前記マスタ型の前記転写部の表面に前記量の一部を予め付着させ、前記型面を前記基板に近接又は当接させることで、前記造形材料を変形させるマスタの作成方法。
(16)(14)又は(15)に記載のマスタの作成方法であって、
前記型面を前記造形材料に押し付けた際に、該型面と前記基板との間に隙間をおき、前記造形材料を硬化させる際に、該造形材料の収縮に応じて前記型面を前記基板に近づく方へ移動させるマスタの作成方法。
(17)(7)から(12)のいずれか1つに記載のマスタ型を用いたマスタの作成方法であって、
前記マスタを構成する前記基板の表面に供給された造形材料を前記胴型部の内側面で囲んで、前記胴型部の前記開口の全面を前記基板の表面に当接させ、前記移動型部の前記先端面を前記基板に接近させて前記造形材料を押圧して変形させ、この状態でエネルギーを付加して前記変形された前記造形材料を硬化させて造形部を形成するマスタの作成方法。
(18)(17)に記載のマスタ型を用いたマスタの作成方法であって、
前記移動型部の自重によって、前記先端面で前記造形材料を押圧しながら、該造形材料を硬化させるマスタの作成方法。
(19)(17)又は(18)に記載のマスタの作成方法であって、
前記基板に貫通孔を設け、該貫通孔から前記造形材料の一部を前記基板の裏面に逃がしながら、前記移動型部で前記造形材料を押圧するマスタの作成方法。
(20)(14)から(19)のいずれか1つに記載のマスタの作成方法であって、
前記基板の表面の所定部位に、(1)前記造形部の少なくとも1つを形成するための前記造形材料を供給し、(2)供給された該造形材料に前記マスタ型の少なくとも前記転写部を前記型面を押し付けることで、て前記造形材料を前記転写部の形状に倣って変形させ、(3)変形させた状態で前記造形材料にエネルギーを付加して硬化させることで、少なくとも1つの前記造形部を形成し、前記基板表面の部位を変えて、前記(1)〜(3)を繰り返して、前記基板の表面に複数の前記造形部を構成するマスタの作成方法。
(21)(20)に記載のマスタの作成方法であって、
前記基板の表面に、前記造形部を複数並べて転写した後、隣り合う該造形部の前記樹脂収納凹部で成形された台部同士の間の窪みに、前記造形材料を埋め込み、硬化させるマスタの作成方法。
(22)(14)から(21)のうちいずれか1つに記載のマスタの作成方法で作成されたマスタ。
【産業上の利用可能性】
【0132】
上記ウェハレベルレンズアレイの製造方法は、デジタルカメラ、内視鏡装置、携帯型電子機器等の撮像部に設けられる撮像レンズを製造する際に適用することができる。
【符号の説明】
【0133】
1 基板部
10 レンズ部(成形部)
10R 樹脂(成形材料)
20 マスタ型
21 転写部
22 樹脂収納凹部
30 造形部
30a レンズ形状部
30b 台部
31 基板
102,104 型部材
120 マスタ型
121 移動型部
121a 転写部
121b 周囲型部
122 胴型部
R 樹脂(造形材料)

【特許請求の範囲】
【請求項1】
基板部の表面に光学素子の形状を有する成形部が成形された成形体を作成するため、前記成形体の形状に一致するマスタを作成するマスタ型であって、
該マスタ型は、前記マスタを構成する基板の表面に、樹脂からなる造形材料を変形させて前記成形部に対応する造形部の形状を形成する型面を備え、該型面は、前記光学素子の光学面に相当する形状を転写する転写部と、前記基板に対面する平面からなる平面部と、前記転写部と前記平面部の間で前記転写部を囲んで形成される凹部であって、前記転写部と前記基板の表面との間の空間に収納しきれない前記造形材料を収納する空間を構成する樹脂収納凹部とからなり、前記転写部の表面の前記樹脂に対する濡れ性が、前記樹脂収納凹部の表面の前記樹脂に対する濡れ性より高いマスタ型。
【請求項2】
請求項1に記載のマスタ型であって、
前記転写部及び前記樹脂収納凹部のうち少なくともいずれかの表面に、前記樹脂との濡れ性を調整する膜が設けられたマスタ型。
【請求項3】
請求項2に記載のマスタ型であって、
前記樹脂収納凹部に前記膜を設ける場合、該膜が前記造形材料に対して濡れ性が低いマスタ型。
【請求項4】
請求項1から3のいずれか1つに記載のマスタ型であって、
前記平面部に対する前記樹脂収納凹部の深さが、前記平面部に対する前記転写部の最も深い部位の深さに対して、0.2倍〜3倍であるマスタ型。
【請求項5】
請求項1から4のいずれか1つに記載のマスタ型であって、
前記平面部を平面視した状態で、前記樹脂収納凹部の形状が、円形、楕円形、矩形、多角形のいずれかであるマスタ型。
【請求項6】
請求項5に記載のマスタ型であって、
前記平面部を平面視した状態で前記転写部の形状が円形であって、前記樹脂収納凹部の直径、長径、最大対角長のいずれかが前記転写部の直径の1.5倍以上であるマスタ型。
【請求項7】
基板部の表面に光学素子の形状を有する成形部が成形された成形体を作成するための前記成形体の形状に一致するマスタを作成するためのマスタ型であって、
該マスタ型は、先端面に少なくとも前記光学素子の光学面に相当する形状を転写する転写部を有する移動型部と、該移動型部の前記先端面の周囲を覆う胴型部とからなるマスタ型。
【請求項8】
請求項7に記載のマスタ型であって、
前記胴型部は前記筒形状の内側面と、該内側面と直交する平面で切断された形状の開口とを有し、
前記内側面の内部に、前記移動型部の先端部を収容してその周囲を覆い、該内側面は前記移動型部の外側面とを摺接して、前記移動型部を前記筒状の長さ方向に移動可能に保持するマスタ型。
【請求項9】
請求項7又は8に記載のマスタ型であって、
前記移動型部はその先端面が前記転写部と、前記転写部を囲んで前記外側面に至る周囲型部とを備えるマスタ型。
【請求項10】
請求項9に記載のマスタ型であって、
前記周囲型部は平面であるマスタ型。
【請求項11】
請求項7から10のいずれか1つに記載のマスタ型であって、
前記胴型部の前記内側面及び前記移動型部の前記外側面は円筒形であるマスタ型。
【請求項12】
請求項7から11のいずれか1つに記載のマスタ型であって、
前記転写部の中心が、前記移動型部の中心と一致するマスタ型。
【請求項13】
請求項7から12のいずれか1つに記載のマスタ型であって、
前記転写部の表面は前記周囲型部の表面よりも造形材料に対する濡れ性が高いマスタ型。
【請求項14】
請求項1から6に記載のマスタ型を用いた前記マスタの作成方法であって、
前記基板と前記マスタ型の前記型面との間に、前記造形部の1つを形成するために供給する造形材料の量は、前記造形材料を前記造形部の形状に変形し終えたときの、前記転写部と前記基板の該転写部に対面する部分との間の空間の容積より多く、かつ、前記転写部から前記樹脂収納凹部までの領域と前記基板の前記転写部から前記樹脂収納凹部までの領域と対面する部分との間の空間の容積より少なくするマスタの作成方法。
【請求項15】
請求項14に記載のマスタの作成方法であって、
前記型面を前記造形材料に押し付ける前に、前記マスタ型の前記転写部の表面に前記量の一部を予め付着させ、前記型面を前記基板に近接又は当接させることで、前記造形材料を変形させるマスタの作成方法。
【請求項16】
請求項14又は15に記載のマスタの作成方法であって、
前記型面を前記造形材料に押し付けた際に、該型面と前記基板との間に隙間をおき、前記造形材料を硬化させる際に、該造形材料の収縮に応じて前記型面を前記基板に近づく方へ移動させるマスタの作成方法。
【請求項17】
請求項7から12のいずれか1つに記載のマスタ型を用いたマスタの作成方法であって、
前記マスタを構成する前記基板の表面に供給された造形材料を前記胴型部の内側面で囲んで、前記胴型部の前記開口の全面を前記基板の表面に当接させ、前記移動型部の前記先端面を前記基板に接近させて前記造形材料を押圧して変形させ、この状態でエネルギーを付加して前記変形された前記造形材料を硬化させて造形部を形成するマスタの作成方法。
【請求項18】
請求項17に記載のマスタ型を用いたマスタの作成方法であって、
前記移動型部の自重によって、前記先端面で前記造形材料を押圧しながら、該造形材料を硬化させるマスタの作成方法。
【請求項19】
請求項17又は18に記載のマスタの作成方法であって、
前記基板に貫通孔を設け、該貫通孔から前記造形材料の一部を前記基板の裏面に逃がしながら、前記移動型部で前記造形材料を押圧するマスタの作成方法。
【請求項20】
請求項14から19のいずれか1つに記載のマスタの作成方法であって、
前記基板の表面の所定部位に、(1)前記造形部の少なくとも1つを形成するための前記造形材料を供給し、(2)供給された該造形材料に前記マスタ型の少なくとも前記転写部を前記型面を押し付けることで、て前記造形材料を前記転写部の形状に倣って変形させ、(3)変形させた状態で前記造形材料にエネルギーを付加して硬化させることで、少なくとも1つの前記造形部を形成し、前記基板表面の部位を変えて、前記(1)〜(3)を繰り返して、前記基板の表面に複数の前記造形部を構成するマスタの作成方法。
【請求項21】
請求項20に記載のマスタの作成方法であって、
前記基板の表面に、前記造形部を複数並べて転写した後、隣り合う該造形部の前記樹脂収納凹部で成形された台部同士の間の窪みに、前記造形材料を埋め込み、硬化させるマスタの作成方法。
【請求項22】
請求項14から21のうちいずれか1つに記載のマスタの作成方法で作成されたマスタ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2011−104811(P2011−104811A)
【公開日】平成23年6月2日(2011.6.2)
【国際特許分類】
【出願番号】特願2009−259965(P2009−259965)
【出願日】平成21年11月13日(2009.11.13)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】