説明

モータポンプ

【課題】取扱液を移送する主羽根車の裏側に滞留する空気を素早く確実に排出することができるモータポンプを提供する。
【解決手段】モータポンプは、モータと、モータにより回転駆動される回転軸1と、回転軸に固定された羽根車12と、羽根車の上方に配置された円環壁部30とを備える。羽根車12は、取扱液を昇圧する主翼と、円環壁部30に対向して配置された裏羽根14とを有する。円環壁部30は、羽根車12の上方の空間を内周側空間41と外周側空間42とに区分けする。円環壁部30は、裏羽根14によって半径方向外方に移送される取扱液の一部を、内周側空間41へ戻す戻り流路36を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体の移送に使用されるモータポンプに関する。
【背景技術】
【0002】
汚水や廃水、河川水のように夾雑物や汚物が混じった液体の移送用途には水中モータポンプが広く使用されている。一般にモータは羽根車の上方に設置される。よって、水位が低下した状況では、モータが大気中に露出した状態で運転される。そのような状態でもモータの冷却が十分になされるように、モータの周囲にウォータジャケットを設け、ウォータジャケット内に液体を循環させてモータを冷却することが行われている。
【0003】
モータの冷却に使用される液体としては、ポンプの取扱液(ポンプの移送対象となる液体)や、冷却専用の冷却液がある。ポンプの取扱液を用いる場合、汚物や夾雑物がウォータジャケット内に堆積したり、ウォータジャケットを詰まらせたりするため、頻繁なメンテナンスが必要になることがある。そのため、専用の冷却液を用いたウォータジャケットへの需要が高まりつつある。
【0004】
冷却液を用いる場合は、取扱液を移送するための主羽根車とは別に、冷却液を循環させるための機構が必要になる。この循環機構としては、主羽根車とは別に回転軸に設けられた羽根車により、冷却液を循環させる機構が提案されている。冷却液はモータ及び取扱液から十分に隔離されていなければならない。さらに、モータを取扱液から隔離する必要もある。モータを取扱液から隔離するシール機構として、2つのメカニカルシールが直列に配置されたタンデムメカニカルシールが従来から使用されている。この2つのメカニカルシールの間に循環機構の羽根車を設けることも提案されている。しかし、羽根車を組み込んだタンデムメカニカルシールは構造が複雑となる。特に、冷却液の循環用の羽根車として遠心羽根車を採用するには、組立上の構造の工夫が必要になる。
【0005】
また、冷却液を用いたモータの冷却機構においては、モータから奪った熱を冷却液の循環流路外に逃す機構も必要になる。そこで、ポンプケーシングを介して冷却液と取扱液とを熱交換することにより、冷却液の熱を逃がすことが提案されている。しかし、モータとポンプケーシングとの間の空間の大きさは限られているため、熱交換のための十分な伝熱面積を確保することが難しい。また、主羽根車の収容空間内(例えば、主羽根車の裏側など、主羽根車よりも上方の箇所)には空気溜りができやすい。このような空気溜りは、冷却液と取扱液との熱交換を妨げる原因となりうる。また、空気溜りは、メカニカルシールの潤滑および冷却を妨げるため、メカニカルシールの寿命が短くなるおそれがある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開昭56−113093号公報
【特許文献2】特開平11−325258号公報
【特許文献3】特開2000−110768号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、取扱液を移送する主羽根車の裏側に滞留する空気を素早く確実に排出することができるモータポンプを提供することを目的とする。
【課題を解決するための手段】
【0008】
上述した目的を達成するために、本発明の一態様は、モータと、前記モータにより回転駆動される回転軸と、前記回転軸に固定された羽根車と、前記羽根車の上方に配置された円環壁部とを備え、前記羽根車は、取扱液を昇圧する主翼と、前記円環壁部に対向して配置された裏羽根とを有し、前記円環壁部は、前記羽根車の上方の空間を内周側空間と外周側空間とに区分けし、前記円環壁部は、前記裏羽根によって半径方向外方に移送される前記取扱液の一部を、前記内周側空間へ戻す戻り流路を有することを特徴とするモータポンプである。
【0009】
本発明の好ましい態様は、前記内周側空間には、前記取扱液の旋回流を阻害するバッフルが設けられていることを特徴とする。
本発明の好ましい態様は、前記円環壁部は、前記裏羽根によって半径方向外方に移送される取扱液の一部を、前記裏羽根から上方へ導く上昇流路を有し、前記上昇流路は前記外周側空間に連通することを特徴とする。
本発明の好ましい態様は、前記円環壁部は、前記取扱液と冷却液との間で熱交換を行う熱交換流路を形成し、前記モータポンプは、前記モータを取囲むウォータジャケットと、前記ウォータジャケットと前記熱交換流路との間で前記冷却液を循環させる循環機構とをさらに備えることを特徴とする。
【0010】
本発明の他の態様は、モータと、前記モータにより回転駆動される回転軸と、前記回転軸に固定された羽根車と、前記羽根車の上方に配置された円環壁部とを備え、前記羽根車は、取扱液を昇圧する主翼と、前記円環壁部に対向して配置された裏羽根とを有し、前記円環壁部は、前記羽根車の上方の空間を内周側空間と外周側空間とに区分けし、前記円環壁部は、前記裏羽根によって半径方向外方に移送される取扱液の一部を、前記裏羽根から上方へ導く上昇流路を有し、前記上昇流路は前記外周側空間に連通することを特徴とするモータポンプである。
【0011】
本発明の好ましい態様は、前記円環壁部は、前記取扱液と冷却液との間で熱交換を行う熱交換流路を形成し、前記モータポンプは、前記モータを取囲むウォータジャケットと、前記ウォータジャケットと前記熱交換流路との間で前記冷却液を循環させる循環機構とをさらに備えることを特徴とする。
【発明の効果】
【0012】
羽根車の裏側に設けた裏羽根のポンプ作用により、羽根車の上方の空間に滞留する空気を取扱液と共に攪拌するため、滞留する空気が排出される。また、空気が排出された後も取扱液が攪拌、循環されるため、円環壁部を介して冷却液と取扱液との熱交換が促進される。
【図面の簡単な説明】
【0013】
【図1】本発明の一実施形態に係る水中モータポンプの断面図である。
【図2】図1のA−A線断面図である。
【図3】図1に示すタンデムメカニカルシールおよびポンプケーシングを示す拡大断面図である。
【図4】図4(a)は、主羽根車の一部を示す上面図であり、図4(b)は主羽根車の部分断面図である。
【図5】図5(a)はサイドプレートを示す平面図であり、図5(b)はサイドプレートを示す底面図であり、図5(c)は図5(b)のB−B線断面図である。
【図6】図6(a)は内ケーシングを示す平面図であり、図6(b)は図6(a)のC−C線断面図であり、図6(c)は内ケーシングを示す底面図である。
【図7】図7(a)は中間ケーシングを示す平面図であり、図7(b)は中間ケーシングを示す底面図であり、図7(c)は図7(b)のD−D線断面図である。
【図8】タンデムメカニカルシールを示す分解図である。
【発明を実施するための形態】
【0014】
図1は、本発明の一実施形態に係る水中モータポンプの断面図である。図2は、図1のA−A線断面図である。モータ軸とポンプ軸は一体に回転軸1として形成されている。回転軸1にはモータ回転子3aが固定され、モータ回転子3aを囲むようにモータ固定子3bが配置されている。モータ固定子3bは、円筒状のモータケーシング5の内周面に固定されている。このモータケーシング5の上部および下部には、トップカバー6およびボトムカバー7が取付けられている。モータケーシング5、トップカバー6、およびボトムカバー7によって形成される密閉空間内にモータ回転子3aおよびモータ固定子3bが収容され、モータ3を構成している。
【0015】
トップカバー6およびボトムカバー7には軸受9が設けられており、回転軸1はこれら軸受9によって回転自在に支持されている。回転軸1の端部には、主羽根車12が固定されている。この主羽根車12は、ポンプ吸込口19aおよびポンプ吐出口19bを有するボリュートケーシング19内に収容されている。モータ3と主羽根車12との間には、タンデムメカニカルシール90が設けられている。このタンデムメカニカルシール90により、ポンプの取扱液がモータ3に浸入することを防いでいる。
【0016】
モータケーシング5の外側には円筒状の外カバー8が設けられ、モータケーシング5と外カバー8との間には空間が形成されている。これらモータケーシング5と外カバー8とにより、モータ3の冷却液が流れるウォータジャケット11が構成される。ウォータジャケット11内は冷却液(典型的には、エチレングリコール溶液などの不凍液)で満たされている。タンデムメカニカルシール90には、回転軸1と一体に回転する遠心羽根車20が備えられており、冷却液はこの遠心羽根車20の回転により昇圧される。冷却液はポンプの取扱液と熱交換した後に、ウォータジャケット11に供給される。ウォータジャケット11でモータ3を冷却した冷却液は再び遠心羽根車20に戻ってくる。このように冷却液は遠心羽根車20およびウォータジャケット11を循環する。
【0017】
ウォータジャケット11の最上部には独立発泡の環状のゴムスポンジ21がはめ込まれている。このゴムスポンジ21を配置する理由は次の通りである。ウォータジャケット11内に空気があると、冷却液の流れに空気が巻き込まれて冷却液が白濁してしまい、冷却効率が若干低下してしまう。一方、ウォータジャケット11内を冷却液で満たすと、温度変化による冷却液の体積変化を吸収できなくなってしまう。そのため、冷却液が浸潤しない柔軟な素材からなる可撓材ブロックとしてのゴムスポンジ21をウォータジャケット11内に設置している。なお、冷却液の白濁による冷却効率の低下は大きくないため、ウォータジャケット11の冷却能力に余裕がある場合には、可撓材ブロックを設けず、空気層を設けても良い。
【0018】
図2に示すように、モータケーシング5の外周面には、縦に延びる4つのリブ5aが設けられている。また、ウォータジャケット11の内部空間を円周方向に区切る4つの仕切板23が4つのリブ5aにそれぞれ取付けられている。外カバー8の内周面と仕切板23とは接触しなくてもよい。この仕切板23は、ウォータジャケット11の下端から所定の位置まで縦に延び、ウォータジャケット11内に4つの循環流路24A,24B,24C,24Dを形成する。4つの循環流路のうち2つは冷却液の往流路(符号24A,24Bで示す)を構成し、他の2つは冷却液の復流路(符号24C,24Dで示す)を構成する。往流路24A,24Bは軸対称に配置され、復流路24C,24Dも同様に軸対称に配置される。
【0019】
モータ3の冷却は、ウォータジャケット11内を流れる冷却液とモータ3との間でモータケーシング5を介して熱交換されることによって行われる。モータ3を冷却した冷却液の温度は上昇するため、冷却液自体を冷却することができなければモータ3が過熱してしまう。外カバー8を介して、ウォータジャケット11の周囲の環境に放熱することも考えられるが、外カバー8が大気中に露出している場合は十分な放熱は期待できない。したがって、以下に述べるように、冷却液とポンプの取扱液との熱交換によって十分な放熱を行うことが望ましい。
【0020】
冷却液と取扱液との混合は避けるべきであるので、冷却液と取扱液との熱交換は何らかの部材(熱交換部材)を介して行なわれることになる。つまり、冷却液と取扱液との熱交換においては、冷却液および取扱液と熱交換部材との熱伝達率が重要になる。一般に、流体と物体間で伝達される熱量は熱伝達面積が大きくなるほど大きくなり、熱伝達率は流体の速度が速いほどに大きくなる。狭い流路を流体が流れると流速が早くなるが、流路の抵抗が大きくなり、圧力損失が大きくなる。よって、冷却液のための循環羽根車20としては流量に対して大きな揚程が実現できる遠心式の羽根車が望ましい。更に効率を高めるために、クローズドタイプの遠心羽根車を採用することが望ましい。
【0021】
冷却液を循環させる羽根車20は、タンデムメカニカルシール90に組み込まれている。タンデムメカニカルシール90は、サイドプレート30、内ケーシング50、および中間ケーシング60から構成されるポンプケーシング内に収容されている。中間ケーシング60は、ボトムカバー7および外カバー8の下部に固定されている。内ケーシング50およびサイドプレート30はボルト45,46により中間ケーシング60の下部に固定されている。内ケーシング50は、サイドプレート30の上方に配置されている。ボリュートケーシング19は中間ケーシング60の下部に固定されており、主羽根車12の収容空間は、サイドプレート30およびボリュートケーシング19により形成される。
【0022】
図3は、図1に示すタンデムメカニカルシールおよびポンプケーシングを示す拡大断面図である。図3に示すように本実施形態では冷却液の循環羽根車としてクローズドタイプの遠心羽根車20が採用されている。遠心羽根車20は、内ケーシング50とサイドプレート30との間に挟まれている。内ケーシング50とサイドプレート30との間には、円盤状に広がる熱交換流路80が形成されている。より具体的には、内ケーシング50の下面とサイドプレート30の上面とによって熱交換流路80が形成されている。この熱交換流路80は、遠心羽根車20の流体出口から径方向外側に拡がり、軸方向から見たときに円形となっている。遠心羽根車20の流体出口は、この熱交換流路80の入口に面しており、遠心羽根車20から吐出された冷却液は熱交換流路80に流れ込むようになっている。熱交換流路80の壁面を構成する内ケーシング50の下面とサイドプレート30の上面との間隔は狭く、熱交換流路80の全体に亘ってほとんど間隔が一定となっている。したがって、熱交換流路80の断面積は半径位置とともに拡がるのみであり、熱交換流路80の高さはその全長に亘って実質的に一定である。
【0023】
熱交換流路80は、遠心羽根車20を囲む内側水平流路(第1径方向流路区間)81、この内側水平流路81に接続される内側軸方向流路(第1軸方向流路区間)82、この内側軸方向流路82に接続される外側水平流路(第2径方向流路区間)83、およびこの外側水平流路83に接続される外側軸方向流路(第2軸方向流路区間)84から構成される。内側水平流路81は、遠心羽根車20から径方向外側に拡がる平坦な環状の形状を有している。内側軸方向流路82は、内側水平流路81から主羽根車12に向かって軸方向に延びながら、径方向外側にも延びており、全体として概ね円錐台の形状を有している。外側水平流路83は、内側軸方向流路82から径方向外側に拡がる平坦な環状の形状を有している。外側軸方向流路84は、外側水平流路83からモータ3に向かって軸方向に延びており、全体として概ね円筒形状を有している。
【0024】
内側軸方向流路82は、軸方向の流路長と径方向の流路長との両方を持っていて、軸方向の流路長は径方向の流路長よりも長く設定されている。内側軸方向流路82が径方向の流路長を持っているのは次の理由による。第1の理由は、遠心羽根車20を出た直後の大きな運動エネルギーをもった冷却液の流れ方向を大きく変える(径方向から軸方向へ)ことによる圧力損失を抑制するためである。第2の理由は、内側軸方向流路82が軸方向の流路長のみを持つとすると、熱交換流路80のサイドプレート30を隔てた内側の空間(符号41で示す)が狭くなり取扱液が滞留しやすくなるからである。
【0025】
遠心羽根車20で昇圧された冷却液は旋回方向の速度成分を持っている。この旋回流を妨げないようにすることによって、熱交換部材としてのサイドプレート30と冷却液との相対速度を高く維持することができる。また、熱交換流路80は、略軸方向に延びる軸方向流路区間を有している。このような軸方向流路区間では流路断面積がほとんど増加しない。したがって、軸方向流路区間を設けることにより、冷却液の速度低下を抑制しつつ、大きな熱伝達面積を確保することができる。主羽根車12の径やモータ3の径などにより、熱交換に使用できる熱交換流路80の最大半径が制約を受けるが、軸方向に延びる流路を設けることにより、熱交換流路80を長くすることができる。
【0026】
図4(a)は、主羽根車の一部を示す上面図であり、図4(b)は主羽根車の部分断面図である。主羽根車12は、取扱液を昇圧するための複数の主翼13を有している。主羽根車12は、これら主翼13がポンプ吸込口19a(図1参照)を向くように配置される。主羽根車12の裏面(上面)には、複数の裏羽根14が設けられている。より具体的には、主羽根車12の裏面には放射状に延びる複数の溝15が設けられており、これら溝15の間に裏羽根14が形成される。この裏羽根14は、主羽根車12の中心周りに等間隔に配列されており、図3に示すように、サイドプレート30に対向するように配置されている。裏羽根14は主羽根車12とともに回転し、サイドプレート30の周囲の取扱液を攪拌、循環させることにより熱交換効率の低下を抑制している。なお、本実施形態では、主羽根車12は斜流渦巻ポンプを構成する羽根車として記載されているが、主羽根車12はこの例に限られない。
【0027】
図5(a)はサイドプレートを示す平面図であり、図5(b)はサイドプレートを示す底面図であり、図5(c)は図5(b)のB−B線断面図である。サイドプレート(円環壁部)30は概略円環状の形状をしている。サイドプレート30の上面には熱交換流路80が形成され、下面には取扱液が接触する。サイドプレート30は冷却液と取扱液との熱交換を行う熱交換部材を構成する。サイドプレート30は青銅、黄銅など熱伝導率の高い材料で製作されていることが望ましい。サイドプレート30は中間ケーシング60にボルト46で取付けられ、タンデムメカニカルシール90の第1静止シール部が固定されるのみであり、モータ3やボリュートケーシング19等の重量物を支持する必要がないため、比較的強度の弱い材質や形状が許容される。
【0028】
サイドプレート30の上面には、内側案内羽根31と外側案内羽根32が設けられている。内側案内羽根31は内側水平流路81内に位置しており、外側案内羽根32は外側水平流路83内に位置している。内側案内羽根31および外側案内羽根32は、冷却液の流れを整える目的で設けられている。図5(a)に示すように、回転軸1と同心状に置かれた仮想円(図示せず)の接線方向に対する内側案内羽根31の角度は、外側案内羽根32の上記接線方向に対する角度よりも小さくなっており、内側案内羽根31が冷却液の旋回成分を阻害しないようになっている。
【0029】
サイドプレート30の上面(表面)は冷却液に接触し、サイドプレート30の下面(裏面)は取扱液に接触する。サイドプレート30の下面には、主羽根車12に向かって延びる円筒状の垂直延長壁33が形成されており、さらに垂直延長壁33の下端から径方向内側に延びる水平延長壁34が設けられている。これらの延長壁33,34により取扱液とサイドプレート30との接触面積、つまり、熱伝達面積が増える。水平延長壁34は裏羽根14に対向するように配置される。サイドプレート30は、図1および図3に示すように、主羽根車12の上方の空間を内周側空間41と外周側空間42とに仕切る。
【0030】
垂直延長壁33の一部は内側に窪んだ形状をしており、凹部35を形成している。この凹部35は、裏羽根14によって半径方向外方に移送される取扱液の一部を、裏羽根14から上方へ導く上昇流路を構成する。凹部35は、裏羽根14および外周側空間42に面している。凹部35の内端は、対向する裏羽根14の内端よりも半径方向外側にある。したがって、凹部35には裏羽根14で加圧された取扱液が供給される。この加圧された取扱液は、裏羽根14から凹部35を通って上昇し、サイドプレート30の外周面上を流れる。この取扱液の流れは、主羽根車12の裏側にある外周側空間42内の取扱液を攪拌し、循環させる。
【0031】
また、水平延長壁34の一部には貫通孔36が設けられている。この貫通孔36は、裏羽根14によって半径方向外方に移送される取扱液の一部を、内周側空間41へ戻す戻り流路を構成する。貫通孔36の内端は、対向する裏羽根14の内端よりも半径方向外側にある。したがって、貫通孔36には裏羽根14で加圧された取扱液が供給される。この加圧された取扱液は回転軸1の軸方向に流れ、主羽根車12の裏側にある内周側空間41内の取扱液を攪拌し、循環させる。この取扱液の流れは旋回成分を持つが、サイドプレート30の下面に設けられた複数のバッフル(リブ)37によってこの旋回流れが邪魔され、取扱液の攪拌がより促進される。これらバッフル37は、径方向内側に張り出した垂直壁として構成されている。
【0032】
このような取扱液の攪拌作用および循環作用は、サイドプレート30と熱交換する取扱液の滞留を防止し、熱交換効率を高めることにつながる。内周側空間41および外周側空間42の最上部には、特にポンプ運転開始時には空気溜りができやすい。このような空気の存在は熱交換効率を低下させるだけでなく、メカニカルシールの潤滑にも悪影響を与える。裏羽根14、貫通孔36、凹部35、バッフル37によりこれらの空間41,42内の取扱液を攪拌することができるため、溜まっていた空気を取扱液の流れによって排出することができる。なお、本実施形態は水中モータポンプであるが、主羽根車12の裏側の空間に滞留する空気を効果的に排出するための構成は、水中モータポンプ以外のポンプに適用することもできる。
【0033】
図6(a)は内ケーシングを示す平面図であり、図6(b)は図6(a)のC−C線断面図であり、図6(c)は内ケーシングを示す底面図である。内ケーシング50は概略円環状の形状を有している。内ケーシング50の上面には、放射状に延びる複数のリブ51が設けられている。内ケーシング50の裏面はサイドプレート30と共に熱交換流路80を形成する。内ケーシング50の内周端52は遠心羽根車20のライナーリングとなる。つまり内ケーシング50の上部開口は冷却液の循環ポンプの吸込口を構成する。
【0034】
図7(a)は中間ケーシングを示す平面図であり、図7(b)は中間ケーシングを示す底面図であり、図7(c)は図7(b)のD−D線断面図である。中間ケーシング60の上面には、4つの開口(2つの入口61A,61B、2つの出口61C,61D)が設けられており、これら開口61A,61B,61C,61Dは周方向に沿って等間隔に配列されている。入口61A,61Bはウォータジャケット11の復流路24C,24Dにそれぞれ接続され、出口61C,61Dはウォータジャケット11の往流路24A,24Bにそれぞれ接続されている。2つの入口61A,61Bは、中間ケーシング60を縦方向に貫通する2つの入口流路(吸込流路)62を通じて、中間ケーシング60の下部の中心部にある収容空間64に連通する。この収容空間64には、メカニカルシール90や遠心羽根車20などが設置される。2つの出口61C,61Dは中間ケーシング60を縦方向に貫通する2つの出口流路63を通じて、中間ケーシング60の下面に設けられた2つの冷却液吐出口65にそれぞれ連通する。
【0035】
図7(b)に点線で示すように、中間ケーシング60の入口流路62と出口流路63とは2つの隔壁66によって隔てられていて、互いに連通していない。2つの入口流路62は収容空間64を通じて互いに連通しているのに対して、2つの出口流路63は互いに連通せず独立した流路を形成している。2つの冷却液吐出口65は熱交換流路80の終端の一部に接続され、取扱液によって冷却された冷却液は出口流路63を通ってウォータジャケット11に流入する。したがって、熱交換流路80と出口流路63により、遠心羽根車20とウォータジャケット11とを連通する吐出流路が構成される。
【0036】
熱交換流路80の終端は、中間ケーシング60に設けられた出口流路63に接続されている。熱交換流路80の終端は環状であるが、出口流路63は、上述したように、中間ケーシング60を軸方向に貫通するように設けられた4つの流路のうちの2つによって構成される。出口流路63は、ウォータジャケット11の2つの軸対称な往流路24A,24Bに接続されている。冷却液は往流路24A,24Bを軸方向に流れてモータ3を冷却し、ゴムスポンジ21に衝突してその流れ方向を変え、隣の復流路24C,24Dを下降する。軸対称な2つの復流路24C,24Dは、中間ケーシング60の2つの入口流路62(中間ケーシング60を軸方向に貫通するように設けられた4つの流路のうちの他の2つ)にそれぞれ接続されていて、冷却液は遠心羽根車20の吸込口へと導かれる。このように、冷却液は、遠心羽根車20、熱交換流路80、出口流路63、ウォータジャケット11(往流路24A,24Bと復流路24C,24D)、入口流路62、遠心羽根車20を循環する。
【0037】
図8はタンデムメカニカルシールを示す分解図である。本実施形態のタンデムメカニカルシール90は、遠心羽根車を備えない第1シールユニット100と、遠心羽根車20を備える第2シールユニット120とから構成される。第1シールユニット100と第2シールユニット120は、独立した組立体として構成されており、互いに分離可能となっている。
【0038】
第1シールユニット100は、回転側要素として、回転軸1に固定される第1スリーブ102と、この第1スリーブ102とピン103を介して一体に回転する第1回転シールリング104とを備えている。第1スリーブ102と第1回転シールリング104との間にはOリング106が配置されている。第1シールユニット100は、さらに、静止側要素として、サイドプレート30(回転機械の枠体)に固定される第1固定部材107と、この第1固定部材107にOリング108を介して支持される第1静止シールリング109と、第1静止シールリング109を第1回転シールリング104に対して押し付けるばね110とを備えている。ばね110は、第1固定部材107と第1静止シールリング109との間に配置されている。第1静止シールリング109と第1固定部材107とは係合部111により係合し、第1静止シールリング109が回転してしまわないようになっている。なお、本実施形態では、第1静止シールリング109と第1固定部材107とにより第1静止シール部が構成される。
【0039】
第1固定部材107、第1回転シールリング104、および第1静止シールリング109は、第1スリーブ102を囲むように配置されている。第1スリーブ102の外周面には、ばね110が伸びきらない位置で、且つ、第1静止シールリング109と第1固定部材107との係合が外れない位置に、ばね110による第1固定部材107の第1スリーブ102に対する変位を制限する止め輪115が取付けられている。この止め輪115によって、第1シールユニット100が回転機械に設置されていないときであっても、第1シールユニット100は一体的に組み立てられた状態を維持できる。よって、第1固定部材107を枠体(サイドプレート30)に固定するだけで、第1シールユニット100をポンプに組み付けることができる。特に、第1シールユニット100をポンプに組み付ける前に、係合部111やピン103の位置合わせを完了させておくことができるので、ポンプの組み立てが容易になる。
【0040】
第2シールユニット120は、静止側要素として、中間ケーシング60(回転機械の枠体)に固定される第2固定部材121と、この第2固定部材121にOリング122を介して支持される第2静止シールリング123とを備えている。第2静止シールリング123は、係合部124を介して第2固定部材121と係合し、回転しないようになっている。なお、本実施形態では、第2静止シールリング123と第2固定部材121とにより、第2静止シール部が構成される。さらに第2シールユニット120は、回転側要素として、回転軸1に固定される第2スリーブ131と、この第2スリーブ131と一体に回転する第2回転シールリング132と、第2回転シールリング132を第2静止シールリング123に対して押し付けるばね133とを備えている。第2スリーブ131と第2回転シールリング132との間にはOリング134が介装されている。
【0041】
第2回転シールリング132は、ボルト136により第2スリーブ131に連結されている。このボルト136は第2回転シールリング132に固定されており、かつ、第2スリーブ131には緩やかに係合している。第2回転シールリング132およびボルト136は、第2スリーブ131に対して相対的に軸方向に移動可能となっている。ボルト136は、第2回転シールリング132の第2スリーブ131に対する変位を制限するストッパとして機能する。
【0042】
第2スリーブ131の外周面には遠心羽根車20が一体に形成されている。遠心羽根車20は、その流体入口が第2固定部材121に対向するように配置されている。遠心羽根車20は、第1シールユニット100のシール面(すなわち、第1回転シールリング104と第1静止シールリング109との接触面)と第2シールユニット120のシール面(すなわち、第2回転シールリング132と第2静止シールリング123との接触面)との間に位置している。ばね133は、遠心羽根車20のボス部に設けられている。ばね133の伸びによる第2回転シールリング132の変位をボルト136が制限するので、回転側要素が回転機械に組みつけられていないときでも、回転側要素は一体に組み立てられた状態を保つことができる。さらに、第1スリーブ102と第2スリーブ131は別体となっているので、第1シールユニット100と第2シールユニット120とは独立した組立体として互いに分離可能となっている。
【0043】
タンデムメカニカルシール90の回転機械への組み付けの手順は、次の通りである。
1.第2シールユニット120の静止側要素を中間ケーシング60にボルト55(図3参照)で固定する。
2.内ケーシング50を中間ケーシング60にボルト45(図1参照)で固定する。
3.回転軸1にキー140(図3参照)を取付け、第2シールユニット120の回転側要素を回転軸1に取付ける。
4.サイドプレート30を中間ケーシング60にボルト46(図1参照)で固定する。
5.回転軸1にピン141(図3参照)を取付け、第1シールユニット100をサイドプレート30にボルト56(図3参照)で固定する。
6.主羽根車12を回転軸1にボルト47(図1参照)で固定する。
【0044】
主羽根車12を回転軸1に取付けることによって、第1シールユニット100および第2シールユニット120が図3の上方向に付勢され、ばね110,133が縮む。図8に示すように、第1スリーブ102の下部には、小径部102aが形成されており、この小径部102aの上端面(第1位置決め面)105は、図3に示すように、回転軸1の第1段付き面1aに当接する。第1スリーブ102の上端は第2スリーブ131の下端に当接し、さらに第2スリーブ131の上端面(第2位置決め面)135は回転軸1の第2段付き面1bに当接する。このようにして第1スリーブ102および第2スリーブ131が位置決めされる。回転軸1の回転力は、回転力伝達部としてのピン141およびキー140を介して第1スリーブ102および第2スリーブ131にそれぞれ伝達される。
【0045】
クローズドタイプの遠心羽根車20にはライナーリングの設置が必要になる。図3から分かるように、遠心羽根車20の流体入口の径は小さいため、ライナーリングは第2固定部材121と遠心羽根車20との間の位置に配置しなければならない。本実施形態では、第2シールユニット120が静止側要素および回転側要素からなる2つの独立した組立体から構成され、これら2つの組立体が別々に回転機械に組み付けられるように構成されているので、径の小さいライナーリングを静止側要素と遠心羽根車20との間に配置することができる。
【0046】
また、第1スリーブ102と第2スリーブ131とを別体とし、第1シールユニット100と第2シールユニット120とを分離可能としたため、第1シールユニット100の第1固定部材107と遠心羽根車20とに挟まれた空間にもポンプの枠体(この例ではサイドプレート30)を挿入することができる。この構成により、メカニカルシールの外径を小さくすることができる。また、熱伝導率の高い材質で成形したサイドプレート30を遠心羽根車20の流体出口よりも内側まで挿入できるため、吐出直後の流速の早い冷却液と取扱液との熱交換をサイドプレート30を介して確実に行うことができる。
【0047】
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうることである。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
【符号の説明】
【0048】
1 回転軸
3 モータ
8 外カバー
11 ウォータジャケット
12 主羽根車
14 裏羽根
20 遠心羽根車
21 ゴムスポンジ
23 仕切板
30 サイドプレート
33 垂直案内壁
34 水平案内壁
35 凹部
36 貫通孔
37 バッフル
50 内ケーシング
60 中間ケーシング
80 熱交換流路
90 タンデムメカニカルシール
100 第1シールユニット
120 第2シールユニット

【特許請求の範囲】
【請求項1】
モータと、
前記モータにより回転駆動される回転軸と、
前記回転軸に固定された羽根車と、
前記羽根車の上方に配置された円環壁部とを備え、
前記羽根車は、取扱液を昇圧する主翼と、前記円環壁部に対向して配置された裏羽根とを有し、
前記円環壁部は、前記羽根車の上方の空間を内周側空間と外周側空間とに区分けし、
前記円環壁部は、前記裏羽根によって半径方向外方に移送される前記取扱液の一部を、前記内周側空間へ戻す戻り流路を有することを特徴とするモータポンプ。
【請求項2】
前記内周側空間には、前記取扱液の旋回流を阻害するバッフルが設けられていることを特徴とする請求項1に記載のモータポンプ。
【請求項3】
前記円環壁部は、前記裏羽根によって半径方向外方に移送される取扱液の一部を、前記裏羽根から上方へ導く上昇流路を有し、前記上昇流路は前記外周側空間に連通することを特徴とする請求項1または2に記載のモータポンプ。
【請求項4】
前記円環壁部は、前記取扱液と冷却液との間で熱交換を行う熱交換流路を形成し、
前記モータポンプは、
前記モータを取囲むウォータジャケットと、
前記ウォータジャケットと前記熱交換流路との間で前記冷却液を循環させる循環機構とをさらに備えることを特徴とする請求項1乃至3のいずれか一項に記載のモータポンプ。
【請求項5】
モータと、
前記モータにより回転駆動される回転軸と、
前記回転軸に固定された羽根車と、
前記羽根車の上方に配置された円環壁部とを備え、
前記羽根車は、取扱液を昇圧する主翼と、前記円環壁部に対向して配置された裏羽根とを有し、
前記円環壁部は、前記羽根車の上方の空間を内周側空間と外周側空間とに区分けし、
前記円環壁部は、前記裏羽根によって半径方向外方に移送される取扱液の一部を、前記裏羽根から上方へ導く上昇流路を有し、前記上昇流路は前記外周側空間に連通することを特徴とするモータポンプ。
【請求項6】
前記円環壁部は、前記取扱液と冷却液との間で熱交換を行う熱交換流路を形成し、
前記モータポンプは、
前記モータを取囲むウォータジャケットと、
前記ウォータジャケットと前記熱交換流路との間で前記冷却液を循環させる循環機構とをさらに備えることを特徴とする請求項5に記載のモータポンプ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2011−163264(P2011−163264A)
【公開日】平成23年8月25日(2011.8.25)
【国際特許分類】
【出願番号】特願2010−28864(P2010−28864)
【出願日】平成22年2月12日(2010.2.12)
【出願人】(000000239)株式会社荏原製作所 (1,477)
【Fターム(参考)】