説明

吸気組成可変内燃機関及びその制御装置

【課題】エンジン運転状態に応じて吸気の組成を適正化する。
【解決手段】排気管21のうちの触媒22の下流側にガス分離装置24を設け、触媒22で浄化した排出ガスをガス分離装置24に流して、排出ガスから窒素と二酸化炭素を分離する。更に、ガス分離装置24で分離した窒素と二酸化炭素の混合割合及び/又は混合量(吸気系導入量)をエンジン運転状態に応じて変化させてエンジン11の吸気通路に導入する。これにより、エンジン運転状態に応じて吸気の組成(窒素と二酸化炭素の濃度)をエンジン運転状態に適した組成に変化させることが可能となり、ノックの発生やNOxの発生を低減しながら理論熱効率や実効率を高めることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、吸気中の二酸化炭素と窒素の割合(組成比)を変化させる機能を備えた吸気組成可変内燃機関及びその制御装置に関する発明である。
【背景技術】
【0002】
従来の吸気組成可変内燃機関としては、特許文献1(特開平3−217649号公報)に記載されているように、パティキュレートの排出量を増加させることなくNOx排出量を低減することを課題として、排気管から吸気側に還流させるEGRガス中の二酸化炭素ガスを分離するCO2 分離装置を設け、このCO2 分離装置で分離した二酸化炭素ガスを内燃機関の吸気に添加するようにしたものがある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平3−217649号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記特許文献1の技術では、高負荷時に、二酸化炭素ガスの添加により混合気の燃焼温度(圧力)を低下させてNOx排出量を低減する効果を期待できるが、二酸化炭素は比熱比κが空気よりも小さいため、低負荷時に多くの二酸化炭素を吸気に添加すると、吸気の比熱比κが低下して理論熱効率が低下して燃費が低下する。
【0005】
ここで、オットーサイクルにおける理論熱効率は、次式で表され、理論熱効率を高めるには、比熱比κを大きくすれば良いことが分かる。
【0006】
【数1】

【0007】
一般に、図3に示すように、ガソリンを燃料とする車両の排出ガスには、70%の窒素と12.5%の二酸化炭素が含まれる。図4に示すように、二酸化炭素は、空気や窒素と比べて定容モル比熱が大きいため、混合気の燃焼温度を低下させてNOx排出量を低減する場合は、二酸化炭素を吸気に添加すれば良いが、図5に示すように、二酸化炭素は、空気や窒素と比べて比熱比κが小さいため、二酸化炭素を吸気に添加すると、吸気の比熱比κが低下して理論熱効率が低下する。
【0008】
吸気の比熱比κを大きくするには、窒素を吸気に添加して吸気中の窒素の割合を増加させれば良いが、一方、比熱比κが大きいと、オットーサイクル上は圧縮上死点温度が高くなるため、高負荷時のようにノックが発生しやすい条件においては、点火時期を遅角する必要があり、実効率が低下する。圧縮上死点温度は、燃焼ガスの定容モル比熱(熱容量)が大きいほど低下する。図4に示すように、定容モル比熱を大きするには、二酸化炭素を吸気に添加して、吸気中の二酸化炭素の割合を増加させれば良く、これにより、二酸化炭素の割合の増加により、圧縮上死点温度を低下させてノックの発生を抑制することが可能である。
【0009】
そこで、本発明が解決しようとする課題は、内燃機関の運転状態に応じて吸気の組成を適正化して、ノックの発生やNOxの発生を低減しながら理論熱効率や実効率を高めることができる吸気組成可変内燃機関及びその制御装置を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決するために、請求項1に係る発明は、吸気中の二酸化炭素と窒素の割合を変化させる機能を備えた吸気組成可変内燃機関において、内燃機関の排出ガスの少なくとも一部から窒素と二酸化炭素を分離するガス分離手段と、内燃機関の運転状態に応じて前記ガス分離手段で分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて内燃機関の吸気通路に導入する制御手段とを備えた構成としたものである。
【0011】
この構成では、内燃機関の運転状態に応じて、排出ガスから分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて吸気に添加することで、吸気の組成(窒素と二酸化炭素の濃度)を内燃機関の運転状態に適した組成に変化させることが可能となり、ノックの発生やNOxの発生を低減しながら理論熱効率や実効率を高めることができる。
【0012】
具体的には、請求項2のように、低負荷域では窒素の混合割合を多くし、高負荷になるほど二酸化炭素の混合割合を多くしたガスを吸気通路に導入するようにすると良い。低負荷域では、高負荷域に比べて圧縮上死点温度が低く、ノックが発生しにくいため、低負荷域では、窒素の混合割合を多くして、吸気の比熱比κを大きくすることで、理論熱効率を高めることができる。そして、高負荷になるほど二酸化炭素の混合割合を多くすることで、高負荷になるほど圧縮上死点温度の上昇を抑えることで、高負荷域でもノックの発生を抑制できる。これにより、ノックの発生を抑制できる範囲内で窒素の混合割合を多くして理論熱効率や実効率を高めることができる。
【0013】
また、請求項3のように、内燃機関の冷却水温又は油温に基づいて窒素と二酸化炭素の混合割合及び/又は混合量を変化させるようにすると良い。要するに、内燃機関の温度が低いほど、ノックが発生しにくいため、内燃機関の温度に相関する冷却水温又は油温に基づいて窒素と二酸化炭素の混合割合及び/又は混合量を変化させるようにすれば、内燃機関の温度に応じて窒素と二酸化炭素の混合割合及び/又は混合量を適正に変化させることができる。
【0014】
具体的には、請求項4のように、内燃機関の冷却水温又は油温が低いほど窒素の混合割合及び/又は混合量を増加させるようにすると良い。内燃機関の温度が低いほど、ノックが発生しにくくなるため、低温領域で、窒素の混合割合及び/又は混合量を増加させて理論熱効率を高めるという制御が可能となる。
【0015】
また、請求項5のように、内燃機関の回転速度が低いほど二酸化炭素の混合割合及び/又は混合量を増加させるようにしても良い。内燃機関の回転速度が低いほど、ノックが発生しやすくなるため、内燃機関の回転速度が低いほど、二酸化炭素の混合割合及び/又は混合量を増加させれば、低回転領域でのノックの発生を抑制することができる。
【0016】
本発明は、排出ガスの一部(例えばEGRガス)から窒素と二酸化炭素を分離するようにしても良いが、排出ガス中の二酸化炭素の割合が少ないことを考慮して、請求項6のように、内燃機関の排気通路に、該排気通路を流れる排出ガスを全て通過させてその通過中に該排出ガスから窒素と二酸化炭素を分離して窒素と二酸化炭素の混合ガスを該内燃機関の吸気通路に導入するガス分離装置を設けた構成としても良い。この構成によれば、排気通路を流れる排出ガスを全てガス分離装置に流して、二酸化炭素量を確保することができる。
【0017】
この場合、請求項7のように、ガス分離装置には、分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて吸気通路に導入する混合調整手段を設けた構成とすると良い。このようにすれば、内燃機関の運転状態に応じて窒素と二酸化炭素の混合割合及び/又は混合量を変化させるという制御が可能となる。
【0018】
また、排出ガス中にパティキュレート(粒子状物質PM)が含まれることを考慮して、請求項8のように、排気通路のうちの触媒よりも下流側にガス分離装置を設けるようにすると良い。このようにすれば、排出ガスが触媒を通過する過程で、排出ガス中のパティキュレートが取り除かれてから、該排出ガスがガス分離装置に流れ込むようになるため、ガス分離装置の内部の微細な通気孔がパティキュレートで目詰りする等の不具合の発生を防止することができる。
【図面の簡単な説明】
【0019】
【図1】図1は本発明の一実施例におけるエンジン制御システム全体の概略構成図である。
【図2】図2はガス分離装置の構成例を説明する図である。
【図3】図3は空気(大気)と排出ガスの組成を説明する図である。
【図4】図4はCO2 、空気、N2 、O2 、Arの温度と定容モル比熱との関係を説明する図である。
【図5】図5はCO2 、空気、N2 、O2 、Arの温度と比熱比との関係を説明する図である。
【図6】図6は吸気組成可変制御プログラムの処理の流れを示すフローチャートである。
【図7】図7(a)は、混合割合ベース値マップの一例を概念的に示す図、同図(b)はN2 割合乗算係数マップの一例を概念的に示す図である。
【図8】図8(a)は導入量ベース値マップの一例を概念的に示す図、同図(b)は導入量補正係数マップの一例を概念的に示す図である。
【図9】図9は吸気組成可変制御の実行例を示すタイムチャートである。
【発明を実施するための形態】
【0020】
以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12(吸気通路)には、吸入空気量を調整するスロットルバルブ13と、このスロットルバルブ13の開度(スロットル開度)を検出するスロットル開度センサ14とが設けられている。スロットルバルブ13の下流側には、サージタンク15(吸気通路)が設けられ、このサージタンク15には、エンジン11の各気筒に空気を導入する吸気マニホールド16(吸気通路)が設けられ、各気筒の吸気マニホールド16の吸気ポート近傍に、それぞれ吸気ポートに向けて燃料を噴射する燃料噴射弁17が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ18が取り付けられ、各点火プラグ18の火花放電によって筒内の混合気に着火される。
【0021】
一方、エンジン11の排気管21(排気通路)には、排出ガスを浄化する三元触媒等の触媒22が設けられ、この触媒22の上流側には、排出ガスの空燃比又はリッチ/リーンを検出する排出ガスセンサ23(空燃比センサ又は酸素センサ等)が設けられている。
【0022】
更に、排気管21のうちの触媒22の下流側には、ガス分離装置24が設けられている。このガス分離装置24は、図2に示すように、ケーシング25内に例えばポリイミド樹脂製の中空糸膜により形成した筒状のガス分離膜26(ガス分離手段)を設け、排気管21内を流れる排出ガスが全て筒状のガス分離膜26に流れ込むようになっている。このガス分離膜26は、排出ガス中のN2 (窒素)よりもCO2 (二酸化炭素)の方が透過しやすいように構成されている。
【0023】
ガス分離装置24のケーシング25には、ガス分離膜26を透過したCO2 を取り出す二酸化炭素通路27と、ガス分離膜26を透過せずに流れるN2 を取り出す窒素通路28とが設けられている。二酸化炭素通路27と窒素通路28は、下流側で合流排気管29に合流すると共に、二酸化炭素通路27と窒素通路28との間には、CO2 とN2 とを混合させる混合通路30が設けられ、この混合通路30には、CO2 とN2 の混合割合を調整する混合割合調整バルブ31が設けられている。この混合割合調整バルブ31の開度調整によりCO2 とN2 の混合割合が調整された混合ガスは、EGR通路32を通してエンジン11のスロットルバルブ13の下流側の吸気通路(サージタンク15、排気管21、吸気マニホールド16のいずれか)に導入される。合流排気管29には、導入量調整バルブ33が設けられ、この導入量調整バルブ33の開度調整により排気圧力を調整することで、EGR通路32を通してエンジン11の吸気側に導入する混合ガス量を調整するように構成されている。この場合、混合割合調整バルブ31と導入量調整バルブ33は、特許請求の範囲でいう混合調整手段として機能する。
【0024】
尚、図2の構成例では、合流排気管29に導入量調整バルブ33を設けたが、EGR通路32に導入量調整バルブを設け、この導入量調整バルブの開度調整によりエンジン11の吸気側に導入する混合ガス量を調整するようにしても良い。
【0025】
また、エンジン11には、冷却水温を検出する冷却水温センサ34や、クランク角センサ35が設けられ、このクランク角センサ35の出力信号に基づいてクランク角やエンジン回転速度Ne が検出される。
【0026】
これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)36に入力される。このECU36は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁17の燃料噴射量や点火プラグ18の点火時期を制御する。更に、ECU36は、後述する図6の吸気組成可変制御プログラムを実行することで、エンジン運転状態に応じて混合割合調整バルブ31と導入量調整バルブ33の開度を調整することで、ガス分離膜26で分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させてエンジン11の吸気通路に導入して、吸気の組成(窒素と二酸化炭素の濃度)をエンジン運転状態に適した組成に変化させる。
【0027】
オットーサイクルにおける理論熱効率は、次式で表され、理論熱効率を高めるには、比熱比κを大きくすれば良いことが分かる。
【0028】
【数2】

【0029】
一般に、図3に示すように、ガソリンを燃料とする車両の排出ガスには、70%のN2 と12.5%のCO2 が含まれる。図4に示すように、CO2 は空気やN2 と比べて定容モル比熱が大きいため、混合気の燃焼温度を低下させてNOx排出量を低減する場合は、CO2 を吸気に添加すれば良いが、図5に示すように、CO2 は空気やN2 と比べて比熱比κが小さいため、CO2 を吸気に添加すると、吸気の比熱比κが低下して理論熱効率が低下する。
【0030】
吸気の比熱比κを大きくするには、N2 を吸気に添加して吸気中のN2 の割合を増加させれば良いが、一方、比熱比κが大きいと、オットーサイクル上は圧縮上死点温度が高くなるため、高負荷時のようにノックが発生しやすい条件においては、点火時期を遅角する必要があり、実効率が低下する。圧縮上死点温度は、燃焼ガスの定容モル比熱(熱容量)が大きいほど低下する。図4に示すように、定容モル比熱を大きするには、CO2 を吸気に添加して、吸気中のCO2 の割合を増加させれば良く、これにより、CO2 の割合の増加により、圧縮上死点温度を低下させてノックの発生を抑制することが可能である。
【0031】
このような特性を考慮して、本実施例では、低負荷域ではN2 の混合割合を多くし、高負荷になるほどCO2 の混合割合を多くしたガスをエンジン11の吸気系に導入するようにしている。低負荷域では、高負荷域に比べて圧縮上死点温度が低く、ノックが発生しにくいため、低負荷域では、N2 の混合割合を多くして、吸気の比熱比κを大きくすることで、理論熱効率を高めるようにすれば良い。そして、高負荷になるほどCO2 の混合割合を多くすることで、高負荷になるほど圧縮上死点温度の上昇を抑えることで、高負荷域でもノックの発生を抑制できる。これにより、ノックの発生を抑制できる範囲内でN2 の混合割合や混合量を多くして理論熱効率や実効率を高めることができる。
【0032】
また、エンジン11の温度が低いほど、ノックが発生しにくいため、エンジン11の温度に相関する冷却水温(又は油温)に基づいてN2 とCO2 の混合割合と吸気系導入量を変化させるようにすれば、エンジン11の温度に応じてN2 とCO2 の混合割合と吸気系導入量を適正に変化させることができる。
【0033】
具体的には、エンジン11の冷却水温(又は油温)が低いほどN2 の混合割合と混合量を増加させるようにしている。エンジン11の温度が低いほど、ノックが発生しにくくなるため、低温領域で、N2 の混合割合と混合量を増加させて理論熱効率を高めるという制御が可能となる。
【0034】
また、エンジン回転速度Ne が低いほどCO2 の混合割合と混合量を増加させるようにしている。エンジン回転速度Ne が低いほど、ノックが発生しやすくなるため、エンジン回転速度Ne が低いほど、CO2 の混合割合と混合量を増加させれば、低回転領域でのノックの発生を抑制することができる。
【0035】
以上説明した本実施例の吸気組成可変制御は、ECU36によって図6の吸気組成可変制御プログラムに従って次のようにして実行される。
図6の吸気組成可変制御プログラムは、エンジン運転中に所定周期で繰り返し実行され、特許請求の範囲でいう制御手段としての役割を果たす。本プログラムが起動されると、まずステップ101で、エンジン回転速度Ne 、負荷、冷却水温を読み込み、次のステップ102で、図7(a)の混合割合ベース値マップを参照して現在のエンジン回転速度Ne と負荷に応じてN2 とCO2 の混合割合ベース値を算出すると共に、図7(b)のN2 割合乗算係数マップを参照して、現在の冷却水温に応じたN2 割合乗算係数を算出し、このN2 割合乗算係数を混合割合ベース値に乗算することで、N2 とCO2 の混合割合を求める。
【0036】
ここで、図7(a)の混合割合ベース値マップは、低負荷域では、N2 の混合割合を多くし、高負荷になるほどCO2 の混合割合を多くするように設定されている。また、図7(b)のN2 割合乗算係数マップは、冷却水温(又は油温)が低いほど、N2 割合乗算係数を大きくしてN2 の混合割合を増加させるように設定されている。
【0037】
この後、ステップ103に進み、上記ステップ102で算出したN2 とCO2 の混合割合に基づいて、当該混合割合を実現する混合割合調整バルブ31の開度をマップ等により算出する。
【0038】
この後、ステップ104に進み、図8(a)の導入量ベース値マップを参照して現在のエンジン回転速度Ne と負荷に応じた導入量ベース値を算出すると共に、図8(b)の導入量補正係数マップを参照して、現在の冷却水温に応じた導入量補正係数を算出し、この導入量補正係数を導入量ベース値に乗算することで、吸気系導入量を求める。
【0039】
ここで、図8(a)の導入量ベース値マップは、低負荷域では、導入量を少なくし、高負荷になるほど導入量を多くするように設定されている。また、図8(b)の導入量補正係数マップは、冷却水温(又は油温)が低いほど、導入量補正係数を小さくして吸気系導入量を減少させるように設定されている。
【0040】
この後、ステップ105に進み、上記ステップ104で算出した吸気系導入量に基づいて、当該吸気系導入量を実現する導入量調整バルブ33の開度をマップ等により算出する。そして、次のステップ106で、混合割合調整バルブ31の開度と導入量調整バルブ33の開度を、それぞれ上記ステップ103、105で算出した開度に駆動することで、上記ステップ102、104で算出したN2 とCO2 の混合割合と吸気系導入量を実現する。
【0041】
以上説明した本実施例の吸気組成可変制御の実行例を図9を用いて説明する。図9の例では、エンジン回転速度Ne が上昇すると、それから少し遅れて負荷が上昇し、エンジン回転速度Ne が低下すると、それから少し遅れて負荷が低下する。低温時と高温時とを比較すると、全ての運転条件で、N2 の混合割合は、低温時の方が高温時よりも多く、一方、CO2 の混合割合は、高温時の方が低温時よりも多くなる。また、吸気系導入量は、高温時の方が低温時よりも多くなる。
【0042】
低温時と高温時のいずれの場合も、負荷が上昇すると、N2 の混合割合が減少して、CO2 の混合割合が増加し、吸気系導入量が増加する。反対に、負荷が低下すると、N2 の混合割合が増加して、CO2 の混合割合が減少し、吸気系導入量が減少する。
【0043】
また、低温時と高温時のいずれの場合も、エンジン回転速度Ne が上昇すると、吸気系導入量が少しだけ増加し、エンジン回転速度Ne が低下すると、N2 の混合割合が減少して、CO2 の混合割合が増加し、吸気系導入量が増加する。
【0044】
以上説明した本実施例によれば、エンジン運転状態に応じて混合割合調整バルブ31と導入量調整バルブ33の開度を調整することで、ガス分離膜26で分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させてエンジン11の吸気通路に導入するようにしたので、エンジン運転状態に応じて吸気の組成(窒素と二酸化炭素の濃度)をエンジン運転状態に適した組成に変化させることが可能となり、ノックの発生やNOxの発生を抑制しながら理論熱効率や実効率を高めることができる。
【0045】
しかも、本実施例では、排出ガス中のCO2 の割合が少ないことを考慮して、排気管21にガス分離装置24を設けて、排気管21内を流れる排出ガスを全てガス分離装置24に流すようにしたので、CO2 量を確保しやすい利点がある。但し、本発明は、排出ガスの一部を吸気系に戻すEGR通路にガス分離装置を設けた構成としても良い。
【0046】
更に、本実施例では、排気管21のうちの触媒22の下流側にガス分離装置24を設けたので、排出ガスが触媒22を通過する過程で、排出ガス中のパティキュレートが取り除かれてから、該排出ガスがガス分離装置24に流れ込むようになり、ガス分離装置24の内部のガス分離膜26の微細孔がパティキュレートで目詰りする等の不具合の発生を防止することができる。
【0047】
尚、本発明は、ガス分離装置24の構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。
【符号の説明】
【0048】
11…エンジン(内燃機関)、12…吸気管(吸気通路)、15…サージタンク(吸気通路)、16…吸気マニホールド(吸気通路)、21…排気管(排気通路)、22…触媒、24…ガス分離装置、26…ガス分離膜(ガス分離手段)、27…二酸化炭素通路、28…窒素通路、29…合流排気管、30…混合通路、31…混合割合調整バルブ(混合調整手段)、32…EGR通路、33…導入量調整バルブ(混合調整手段)、34…冷却水温センサ、35…クランク角センサ、36…ECU(制御手段)

【特許請求の範囲】
【請求項1】
吸気中の二酸化炭素と窒素の割合を変化させる機能を備えた吸気組成可変内燃機関において、
内燃機関の排出ガスの少なくとも一部から窒素と二酸化炭素を分離するガス分離手段と、
内燃機関の運転状態に応じて前記ガス分離手段で分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて内燃機関の吸気通路に導入する制御手段と
を備えていることを特徴とする吸気組成可変内燃機関の制御装置。
【請求項2】
前記制御手段は、低負荷域では窒素の混合割合を多くし、高負荷になるほど二酸化炭素の混合割合を多くしたガスを吸気通路に導入することを特徴とする請求項1に記載の吸気組成可変内燃機関の制御装置。
【請求項3】
前記制御手段は、内燃機関の冷却水温又は油温に基づいて窒素と二酸化炭素の混合割合及び/又は混合量を変化させることを特徴とする請求項1又は2に記載の吸気組成可変内燃機関の制御装置。
【請求項4】
前記制御手段は、内燃機関の冷却水温又は油温が低いほど窒素の混合割合及び/又は混合量を増加させることを特徴とする請求項3に記載の吸気組成可変内燃機関の制御装置。
【請求項5】
前記制御手段は、内燃機関の回転速度が低いほど二酸化炭素の混合割合及び/又は混合量を増加させることを特徴とする請求項1乃至4のいずれかに記載の吸気組成可変内燃機関の制御装置。
【請求項6】
吸気中の二酸化炭素と窒素の割合を変化させる機能を備えた吸気組成可変内燃機関において、
内燃機関の排気通路に、該排気通路を流れる排出ガスを全て通過させてその通過中に該排出ガスから窒素と二酸化炭素を分離して窒素と二酸化炭素の混合ガスを該内燃機関の吸気通路に導入するガス分離装置を設けたことを特徴とする吸気組成可変内燃機関。
【請求項7】
前記ガス分離装置は、分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて吸気通路に導入する混合調整手段を有することを特徴とする請求項6に記載の吸気組成可変内燃機関。
【請求項8】
前記排気通路には、排出ガス浄化用の触媒が設けられ、
前記ガス分離装置は、前記排気通路のうちの前記触媒よりも下流側に設けられていることを特徴とする請求項6又は7に記載の吸気組成可変内燃機関。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−255500(P2010−255500A)
【公開日】平成22年11月11日(2010.11.11)
【国際特許分類】
【出願番号】特願2009−105726(P2009−105726)
【出願日】平成21年4月23日(2009.4.23)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】