説明

排気浄化装置

【課題】排気中のPM及びNOxを同時に浄化するとともに、SCR触媒熱劣化を防止し、かつ、SCR触媒の低温活性を図ることのできる排気浄化装置を提供する。
【解決手段】排気高温時、バタフライ弁25が開かれ、DPF31下流の高温排気の一部はバイパス通路23を通過する。一方、バタフライ弁開弁前、酸化触媒35は外気温度に近い。酸化触媒35は熱容量を有し、高温排気が酸化触媒35を通過するとき、高温排気の熱量の一部は酸化触媒35に吸熱され、高温排気は降温する。これにより、高温排気がSCR触媒33に流入することを防止し、SCR触媒熱劣化を防止する。
排気低温時、バタフライ弁25が開かれ、排気の一部がバイパス通路23を通過する。このとき、酸化触媒35による酸化により、NOは減り、NO2は増え、NO2/NOのモル比が増える。モル比を1付近とすることにより、SCR触媒33の活性化を図る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は排気浄化装置に係わり、特に、排気中のPM(粒子状物質)及びNOx(窒素酸化物)を同時に浄化する排気浄化装置に関する。
【背景技術】
【0002】
ディーゼルエンジンは商用車、発電機、産業機械、作業車両などに多く用いられているが、近年、地球環境保全に対する関心の高まりから、エンジンから排出される排気の規制が強化されている。ガソリンエンジンからの排気を浄化する触媒には、一酸化炭素(CO)及び炭化水素(HC)の酸化とNOxの還元とを同時に行う三元触媒等が用いられる。一方、ディーゼルエンジンの場合、酸素過剰雰囲気であるため一般の三元触媒ではNOxが浄化しにくいという問題が生じる。そこで、ディーゼルエンジンからの排気を浄化するように、多くの方法が提案されている。その中で、DPF(ディーゼルパティキュレートフィルタ)により粒子状汚染物質(PM)を除去した後、SCR触媒により窒素酸化物(NOx)を除去する方法が主流になっている。
【0003】
DPFは、例えば多孔質セラミック材の隔壁によって画成された多数の細長いセルから構成されており、各セルの一方の端部はプラグ(栓部材)によって閉じられている。従って、PM捕集時において、排気上流側が開口したセルから流入した排気は、隔壁を通って排気下流側が開口したセルに抜け、フィルタを通過する。そしてこの隔壁通過の際、排気中のPMが隔壁に捕捉される。
【0004】
DPFは、その使用に伴い、内部に蓄積されるPMの量が増えると通気性が次第に損なわれ、捕集性能も低下する。そこで、適当なタイミングでDPFに堆積したPMを燃焼除去することで、その目詰まりを解消させる再生処理が行われる。
【0005】
SCR触媒上流には、還元剤噴射ノズルが設けられており、排気中に還元剤噴射ノズルから尿素水が噴射されると、加水分解によりアンモニアが生成される。SCR触媒により、排気中のNOxは式(1)〜(3)のようにアンモニアと反応し浄化される。
4NO + 4NH3 + O2 → 4N2 + 6H2O・・・式(1)
8NH3 + 6NO2 → 7N2 + 12H2O・・・式(2)
2NH3 + NO + NO2 → 2N2 + 3H2O・・・式(3)
【0006】
SCR触媒は、排気高温時および排気低温時において、下記の課題を有する。
【0007】
まず、排気高温時に係る課題について説明する。
【0008】
DPFの再生処理中には、炭素を主成分としたPMが燃焼するため、DPF下流には高温の排気が発生する。高温排気がSCR触媒に流入すると、SCR触媒は熱劣化するおそれがある。
【0009】
この熱劣化を防止する従来技術が、特許文献1や特許文献2に開示されている。従来技術に係る排気浄化装置は、基本構成として、エシジンの排気通路に、上流から順に前段酸化触媒、DPF、噴射ノズル、SCR触媒が配設されて構成される。更に、特徴的構成として、DPF下流から分岐してSCR触媒下流で合流するバイパス通路を備えている。
【0010】
DPFの再生処理により排気が高温となる場合には、高温排気がバイパス通路に導かれ、噴射ノズル、SCR触媒をバイパスする。これにより、高温排気がSCR触媒に流入することを防止し、SCR触媒の熱劣化を防止する。
【0011】
次に、排気低温時に係る課題について説明する。
【0012】
アイドリングなどエンジン低回転、エンジン低負荷状態時には、エンジンの排気温度は低温となる。
【0013】
上記式(1)〜(3)のうち、排気低温時は、式(3)の反応が他に比べて反応速度が速く、NOxを効率よく浄化できる。しかしながら、エンジンから排出される排気においては、NOxの殆どがNOであるため、式(1)の反応となり、効率よく浄化できない。
【0014】
これに対し、SCR触媒の低温活性に係る従来技術が、特許文献3に開示されている。従来技術に係る排気浄化装置は、酸化触媒を設けたメイン通路と、酸化触媒を設けていないバイパス通路を備え、酸化触媒によりNO2を発生させるともに、酸化触媒のNO2吸着状態を推定して、この推定したNO2吸着量の増減に基づいて、メイン通路を通過する排気流量とバイパス通路を通過する排気流量を調整することで、SCR触媒に流入するNOxのNO:NO2のモル比をできるだけ、1:1(NO2/NO=1)に近づける。
【0015】
これにより、式(3)の反応により、排気低温時でも、NOxを効率よく浄化できる。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特開2010−150978号公報
【特許文献2】特許4290037号公報
【特許文献3】特開2009−216019号公報
【発明の概要】
【発明が解決しようとする課題】
【0017】
しかしながら、特許文献1、2に開示されている上記従来技術にあっては、DPF再生処理中、高温排気が噴射ノズル,SCR触媒をバイパスするため、NOxの浄化が行なわれない。
【0018】
一方、特許文献3に開示されている上記従来技術は、NOx浄化に関するものであり、DPF再生処理について考慮されていない。特許文献3に開示されている上記従来技術にDPFを設けた場合、DPF再生処理中、排気中のNO2は式(4)の反応により消費される一方、NOが発生するため、酸化触媒のNO2吸着状態を推定することは難しい。また、DPF再生処理により排気中のNO2が消費される一方、NOが発生するため、モル比を1に近づけることは難しい。
C+2NO2 → CO2+2NO・・・式(4)
【0019】
また、特許文献1、2に開示されている上記従来技術は、排気高温時のSCR触媒熱劣化を防止する技術であり、特許文献3に開示されている上記従来技術は、排気低温時のSCR触媒の低温活性に係る技術であり、両者は相反する課題を解決するものである。したがって、両者を組み合わせることは容易ではない。
【0020】
本発明の目的は、排気中のPM及びNOxを同時に浄化するとともに、SCR触媒熱劣化を防止し、かつ、SCR触媒の低温活性を図ることのできる排気浄化装置を提供することである。
【課題を解決するための手段】
【0021】
(1)上記目的を達成するために、本発明は、エシジンの排気通路に設けられ、上流から順に前段酸化触媒、DPF、液体還元剤又はその前駆体を供給する噴射ノズル、SCR触媒が配設された排気浄化装置において、前記DPF下流から分岐して前記噴射ノズル上流で合流するバイパス通路と、前記バイパス通路に配設され、吸熱機能を有する酸化触媒と、前記DPFを通過した排気の一部を前記バイパス通路に導き、前記バイパス通路を通過する排気流量を調整する排気流量調整手段とを備える。
【0022】
このように構成した本発明においては、排気高温時、排気流量を調整すると、バイパス通路に配設された酸化触媒の吸熱機能により、高温排気は降温する。これにより、排気高温時の課題を解決できる。一方、排気低温時、排気流量を調整し、排気の一部がバイパス通路に配設された酸化触媒を通過すると、NO2/NOのモル比が増える。モル比を1付近とすることにより、排気低温時の課題を解決できる。
【0023】
このように、排気高温時に係る課題と排気低温時に係る課題という、相反する課題を、バイパス通路に配設される酸化触媒および排気流量調整手段という共通の構成により、解決する。それぞれの課題に対応する別々の構成を備えるのに比べて、共通構成とすることで、構成の簡素化が図れる。このように構成が簡素であることにより、コスト低減、メンテナンス容易といった効果が得られる。
【0024】
(2)上記(1)において、好ましくは、前記SCR触媒上流の排気温度を検出する排気温度検出手段を更に備え、前記排気流量調整手段は、前記排気温度検出手段が前記SCR触媒を熱劣化させる第1設定温度以上の温度を検出すると、前記DPFを通過した排気の一部を前記バイパス通路に導き、前記SCR触媒上流の排気温度が第1設定温度未満となるように、排気流量を調整する高温抑制機能部を有する。
【0025】
排気高温時、高温排気を酸化触媒の吸熱機能により降温させて、SCR触媒に導く。これにより、SCR触媒熱劣化を防止しながら、NOxを浄化することができる。
【0026】
(3)上記(1)において、好ましくは、前記SCR触媒上流の排気温度を検出する排気温度検出手段と、前記SCR触媒上流の一酸化窒素に対する二酸化窒素のモル比(NO2/NO)を推定するモル比推定手段とを更に備え、前記排気流量調整手段は、前記排気温度検出手段が前記SCR触媒が活性しにくい第2設定温度未満の温度を検出すると、前記DPFを通過した排気の一部を前記バイパス通路に導き、前記推定モル比が1となるように、排気流量を調整する低温時活性化機能部を有する。
【0027】
排気低温時、酸化触媒によりNOを酸化させ、NO2/NOのモル比を1付近とする。これにより、SCR触媒の活性化を図ることができる。
【0028】
(4)上記(3)において、好ましくは、前記SCR触媒上流および下流のNOx濃度を検出するNOx濃度検出手段を更に備え、前記モル比推定手段は、前記NOx濃度検出手段により検出されたSCR触媒上流および下流のNOx濃度から求めるNOx浄化率および前記排気温度検出手段により検出されたSCR触媒上流の排気温度に基づいて、前記モル比を推定する。
【0029】
これにより、精度よくNO2/NOのモル比を推定し、還元剤を過不足無く供給できる。その結果、効率よくNOxを浄化できると伴に、アンモニアスリップを防止できる。
【0030】
(5)上記(1)において、好ましくは、前記排気流量調整手段は、バタフライバルブを有する。
【0031】
これにより、構成の簡素化が図れる。
【発明の効果】
【0032】
本発明によれば、排気中のPM及びNOxを同時に浄化することができる。特に、DPF再生処理により排気が高温となった場合でも、SCR触媒熱劣化を防止しながら、NOxを浄化することができる。また、排気が低温であるときも、SCR触媒の低温活性を図ることができる。
【図面の簡単な説明】
【0033】
【図1】排気浄化装置の全体構成を示す図である。
【図2】再生制御フローに加えて、排気高温時における排気流量調整制御フローを示す図である。
【図3】還元剤供給制御フローに加えて、排気低温時における排気流量調整制御フローを示す図である。
【図4】排気低温時のSCR触媒の浄化性能を示す図である。
【図5】モル比推定マップの一例を示す図である。
【発明を実施するための形態】
【0034】
以下、本発明の実施形態を図面を用いて説明する。
【0035】
〜構成〜
図1は本発明の本実施形態に係わる排気浄化装置の全体構成を示す図である。
【0036】
作業車両(例えば油圧ショベル)はディーゼルエンジン10を搭載している。排気浄化装置20は、エンジン10の排気管21に設けられている。基本構成として、排気管21に、上流から順に前段酸化触媒30、DPF31、噴射ノズル32、SCR触媒33、後段酸化触媒34が配設されている。更に特徴的構成として、DPF31下流において排気管21から分岐して噴射ノズル32上流において排気管21と合流するバイパス通路23と、バイパス通路23に配設される酸化触媒35と、バイパス通路23入口に設けられたバタフライ弁25を備えている。
【0037】
前段酸化触媒30は、NOをNO2に酸化することのできる触媒で有れば特に限定されないが、例えば、白金、パラジウム、イリジウム、ロジウムなどの貴金属のうち少なくとも1種類をチタニア、ジルコニア、アルミナなどに担時した触媒成分をコージェライトハニカム構造体などに担時した触媒などが好適である。
【0038】
DPF31の上流に前段酸化触媒30を配置することにより、DPF31に捕集され堆積しているパティキュレートは、酸化触媒30から供給されたNO2と反応し、比較的低温(例えば300℃)でも酸化される。また、前段酸化触媒30は、排気中に未燃燃料(炭化水素:HC)や一酸化炭素(CO)等があると、これを酸化して、この酸化で発生する熱により排気を昇温し、この昇温した排気により下流側のDPF31を昇温させる。DPF31が詰まった場合には、酸素による酸化除去できる。
【0039】
DPF31はハニカム構造によりPMを捕集する。DPF31に堆積したPMは再生処理により燃焼除去される。
【0040】
差圧センサ40は、DPF31前後に設けられ、排気差圧を検出する。この検出値に基づき、PM堆積量が推定され、再生開始・再生終了等の再生制御が行なわれる。
【0041】
排気温度センサ42,43は、前段酸化触媒30の上流側と下流側とに設けられている。再生制御時には、排気温度を監視することにより、堆積PMが一気に燃焼して異常昇温することによるDPF31の溶損などを防止する。
【0042】
噴射ノズル32は、還元剤であるアンモニアの前躯体である尿素水を排気中に噴射する。尿素水を加水分解することによりアンモニアが発生する。尿素水は尿素水タンク50に貯蔵される。尿素水タンク50と噴射ノズル32とを接続する配管には、還元剤供給ポンプ51と、還元剤制御弁52と還元剤噴射装置54が設けられている。尿素水タンク50には還元剤の濃度を検出する還元剤濃度センサ55が設けられている。
【0043】
SCR触媒33は、通常脱硝に用いられている触媒であれば特に限定されないが、例えば酸化チタンにバナジウム、タングステン等の脱硝活性成分を担時した触媒や、銅、鉄、セリウムなどの遷移金属をイオン交換したゼオライトを、コージェライトハニカム構造体などに担時した触媒などが好適である。
【0044】
排気温度センサ45は、SCR触媒33の上流側に設けられ、排気温度を検出する。なお、SCR触媒33の温度を直接検出する触媒温度センサでもよい。
【0045】
NOx濃度センサ46,47は、SCR触媒33の上流側と下流側とに設けられている。
【0046】
後段酸化触媒34は、SCR触媒33の下流側に設けられ、過剰な尿素水の供給による余剰のアンモニア(アンモニアスリップの発生)を分解するようになっている。なお、アンモニアスリップを発生させない還元剤供給制御を行うことができるならば、後段酸化触媒34を省略してもよい。
【0047】
酸化触媒35は、前段酸化触媒30と同じでよいが、熱容量による吸熱機能を有する(〜動作〜にて詳述)。
【0048】
バタフライ弁25は、開度調整自在であり、開度を調整することで、バイパス通路23を通過する排気流量を調整する(〜制御〜および〜動作〜にて詳述)。
【0049】
〜制御〜
ECU60は、エンジン10の回転数やトルクを制御するとともに、各種制御を行っている。たとえば、ECU60は、差圧センサ40や排気温度センサ42,43からの検出信号を入力し、DPF31の再生制御を行う。他にも、回転数センサや各種センサからの信号を入力し、各種演算を行ない、演算結果を各気筒のインジェクタ、吸気制御弁、EGR弁などの各種デバイスに出力する。
【0050】
ECU60は、CAN通信を介してDCU70と相互に接続されている。たとえば、DCU70は、ECU60に入力される排気温度センサ45、NOx濃度センサ46,47からの検出信号を入力する。
【0051】
DCU70は、NOx濃度センサ46によるNOx濃度、NO2/NOのモル比や、還元剤濃度センサ55による還元剤濃度に基づき、必要な還元剤供給量を演算し、還元剤供給ポンプ51や還元剤制御弁52を制御する(還元剤供給制御)。
【0052】
なお、モル比の推定については、〜動作〜にて詳述する。
【0053】
本実施形態では、DCU70がバタフライ弁25の開度を制御する(排気流量調整制御)。なお、ECU60がバタフライ弁25を制御してもよい。
【0054】
DCU70は、本実施形態の特徴的な制御を行う高温抑制機能部70a、低温時活性化機能部70bおよびモル比推定機能部70cを有している。
【0055】
図2は、ECU60による再生制御フローに加えて、排気高温時におけるDCU70による排気流量調整制御フローを示す図である。
【0056】
まず、再生制御について説明する。
【0057】
ECU60は、差圧センサ40の検出信号に基づきPM堆積量を推定する(ステップS11)。そして、PM堆積量が設定値(再生開始基準値)以上であるか否かを判断する(ステップS12)。PM堆積量が設定値以上でないと判断すると、PM堆積量推定を継続する。PM堆積量が設定値以上である判断すると、再生処理を開始する(ステップS13)。なお、PM堆積量とあわせて作業機械の稼働時間に基づいて再生処理を開始してもよい。
【0058】
再生処理中、排気温度センサ45の検出温度Tが第1設定温度T1以上か否かを判断する(ステップS21)(詳細後述)。
【0059】
さらに、PM堆積量が設定値(再生終了基準値)以下であるか否かを判断する(ステップS14)。PM堆積量が設定値以下でないと判断すると、再生処理を継続する。PM堆積量が設定値以下である判断すると、再生処理を終了する(ステップS15)。なお、PM堆積量とあわせて再生処理時間に基づいて再生処理を終了してもよい。
【0060】
次に、本実施形態の特徴的な制御である排気高温時における排気流量調整制御について説明する。
【0061】
再生処理中、排気温度センサ45の検出温度Tが第1設定温度T1以上か否かを判断する(ステップS21)。検出温度Tが第1設定温度T1以上であると判断すると、バタフライ弁25を開弁し、排気の一部をパイパス通路23に導く(ステップS22)。
【0062】
酸化触媒35は吸熱機能を有し、高温排気はパイパス通路23を通過することにより降温する。バタフライ弁25の開度が大きくなるほど、パイパス通路23の通過流量が多くなり、高温排気はより降温する。DCU70は、排気温度センサ45の検出温度Tに基づいて、バタフライ弁25の開度を調整する(ステップS23)。
【0063】
DCU70は、流量調整が最適であるかを検証する(ステップS24)。具体的には、排気温度センサ45の検出温度Tが第1設定温度T1から所定温度(例えば100℃)以上降温したかどうかを判断する。流量調整が最適でないと判断すると、流量調整を継続する。流量調整が最適であると判断すると、再生制御に戻る。
【0064】
再生処理終了後、バタフライ弁25を閉弁する(ステップS25)。
【0065】
ここで、第1設定温度T1は、SCR触媒33を熱劣化させる排気温度範囲の下限(例えば700℃)である。
【0066】
図3は、DCU70による還元剤供給制御フローに加えて、排気低温時におけるDCU70による排気流量調整制御フローを示す図である。
【0067】
まず、還元剤供給制御について説明する。
【0068】
DCU70は、排気温度センサ45の検出温度Tが第2設定温度T2未満か否かを判断する(ステップS41)(詳細後述)。検出温度Tが第2設定温度T2未満でないと判断すると、還元剤供給制御を開始する。
【0069】
DCU70は、NOx濃度センサ46の検出信号をECU60,CAN通信を介して入力し、SCR触媒33の上流のNOx濃度を測定する(ステップS31)。同時に、NO2/NOのモル比も推定する。一方、還元剤濃度センサ55の検出信号を入力し、還元剤濃度を測定する(ステップS32)。そして、NOx濃度、NO2/NOのモル比、還元剤濃度に基づき、必要な還元剤供給量を演算する(ステップS33)。還元剤供給ポンプ51の圧力・流量や還元剤制御弁52の開度を制御することにより、所定量の還元剤を排気中に供給するように噴射を開始する(ステップS34)。
【0070】
DCU70は、NOx濃度センサ47によりSCR触媒33の下流のNOx濃度を測定し、NOx濃度が規制値以下であるか否かを判断する(ステップS35)。NOx濃度が規制値以下でないと判断すると、噴射を継続する。NOx濃度が規制値以下であると判断すると、噴射を終了する(ステップS36)。なお、還元剤供給制御中、最新の情報に基づいて、適宜、必要な還元剤供給量を修正演算する。
【0071】
次に、本実施形態の特徴的な制御である排気低温時における排気流量調整制御について説明する。
【0072】
還元剤供給制御に先立って、DCU70は、排気温度センサ45の検出温度Tが第2設定温度T2未満か否かを判断する(ステップS41)。
【0073】
検出温度Tが第2設定温度T2未満であると判断すると、バタフライ弁25を開弁し、排気の一部をパイパス通路23に導く(ステップS42)。
【0074】
酸化触媒35はNOを酸化させ、NO2を発生させる。バタフライ弁25の開度が大きくなるほど、パイパス通路23の通過流量が多くなり、NOは減り、NO2は増え、その結果、NO2/NOのモル比が増える。DCU70は、NO2/NOのモル比に基づいて、バタフライ弁25の開度を調整する(ステップS43)。
【0075】
DCU70は、流量調整が最適であるかを検証する(ステップS44)。具体的には、NO2/NOのモル比が1付近かどうかを判断する。流量調整が最適でないと判断すると、流量調整を継続する。流量調整が最適であると判断すると、還元剤供給制御を行う。
【0076】
還元剤供給制御終了後、バタフライ弁25を閉弁する(ステップS45)。
【0077】
ここで、第2設定温度T2は、SCR触媒33が活性しにくい排気温度範囲の上限(例えば、330℃)である。
【0078】
〜請求項との対応関係〜
本実施形態において、バイパス通路23は、DPF31下流から分岐して噴射ノズル32上流で合流するバイパス通路であり、酸化触媒35は、バイパス通路23に配設され、吸熱機能を有する酸化触媒である。バタフライ弁25とDCU70の一部の機能は、DPF31を通過した排気の一部をバイパス通路23に導き、バイパス通路23を通過する排気流量を調整する排気流量調整手段を構成する。
【0079】
高温抑制機能部70aと、DCU70によるステップS21〜ステップS25の処理は、排気温度センサ45が第1設定温度T1以上の温度を検出すると、DPF31を通過した排気の一部をバイパス通路23に導き、SCR触媒33上流の排気温度が第1設定温度T1未満となるように、排気流量を調整する高温抑制機能部を構成する。
【0080】
低温時活性化機能部70bと、DCU70によるステップS41〜ステップS45の処理は、排気温度センサ45が第2設定温度T2未満の温度を検出すると、DPF31を通過した排気の一部をバイパス通路23に導き、推定モル比が1となるように、排気流量を調整する低温時活性化機能部を構成する。
【0081】
排気温度センサ45とNOx濃度センサ46,47とモル比推定マップ(後述する図5参照)とモル比推定機能部70cとは、SCR触媒33上流の一酸化窒素に対する二酸化窒素のモル比(NO2/NO)を推定するモル比推定手段を構成する。
【0082】
〜動作〜
(動作1) 通常時(T2≦T<T1)における排気浄化装置20の動作について説明する。
【0083】
排気浄化装置20は、DPF31に関して、再生処理を行う(S11→S12→S13→S21→S14→S15→S25)。これにより、PMを浄化する。再生処理中、排気温度センサ42,43により排気温度を監視し、異常昇温を防止する。したがって、SCR触媒33熱劣化のおそれはほとんど無い。
【0084】
一方、排気浄化装置20は、DPF31を通過した排気に噴射ノズル32から還元剤を供給する(S41→S12→S13→S21→S14→S15→S25)。さらに、SCR触媒33によりNOxを浄化する。
【0085】
このとき、バタフライ弁25は閉じられ、バイパス通路23を通過する排気流量はゼロである。言い換えると、全ての排気が排気管21を通過する。
【0086】
したがって、バイパス通路23に高温排気が導かれることはない。バイパス通路23に配設された酸化触媒35は、熱容量を有している。その結果、酸化触媒35は外気により外気温度に近い温度(例えば、40℃)となる。
【0087】
ところで、エンジンから排出される排気に含まれるNOxの殆どがNOである。通常時であれば、式(1)の反応速度と式(3)の反応速度は同程度である(図4参照)。したがって、式(1)の反応によりNOを効率よく浄化できる。
【0088】
(動作2) 高温時(T≧T1)における排気浄化装置20の動作について説明する。
【0089】
排気浄化装置20は、再生処理中、排気温度を監視して異常昇温を防止しているが、PM堆積量が多くなると、DPF31通過後の排気が高温となるおそれもある。高温排気がSCR触媒33に流入すると、SCR触媒33は熱劣化するおそれがあり、これを防止する必要がある。
【0090】
排気浄化装置20は、排気高温時に排気流量調整制御を行う(S21→S22→S23→S24→S21)。バタフライ弁25は開かれ、高温排気(例えば700℃)の一部がバイパス通路23を通過する。一方、バタフライ弁開弁前、酸化触媒35は外気温度に近い温度(例えば、40℃)である。酸化触媒35は熱容量を有し、高温排気が酸化触媒35を通過するとき、高温排気の熱量の一部は酸化触媒35に吸熱され、高温排気は降温する。バタフライ弁25の開度が大きくなるほど、パイパス通路23の通過流量が多くなり、高温排気はより降温する。バイパス通路23の降温した排気は、排気管21内の高温排気と合流する。
【0091】
適切な排気流量調整制御を行うことにより、排気温度センサ45の検出温度Tは第1設定温度T1から所定温度(例えば100℃)以上降温する。これにより、高温排気がSCR触媒33に流入することを防止し、SCR触媒熱劣化を防止できる。
【0092】
排気浄化装置20は、還元剤供給制御を行い、DPF31通過後の排気に含まれるNOxを浄化する。このとき、バイパス通路23を通過する排気に含まれるNOは、酸化触媒35によりNO2となる。NO2/NOのモル比を推定し、式(1)および式(3)の反応によりNOxを効率よく浄化する。
【0093】
ところで、DPF再生処理は、常時、行われるものではなく、また、DPF再生処理が行われても、必ずしも排気高温(T≧T1)となるわけではない。排気流量調整制御の必要がないときは、バタフライ弁25は閉じられ、バイパス通路23を通過する排気流量はゼロとなる。酸化触媒35は外気により外気温度に近い温度(例えば、40℃)に徐々に戻る。これにより、酸化触媒35は吸熱機能を回復する。
【0094】
なお、排気高温の理由として、DPF再生処理を例示したが、その他の理由で排気高温となる場合も、排気流量調整制御を行う。
【0095】
(動作3) 低温時(T<T2)における排気浄化装置20の動作について説明する。
【0096】
アイドリングなどエンジン低回転、エンジン低負荷状態時には、エンジンの排気温度は低温となる。
【0097】
図4は排気低温時のSCR触媒の浄化性能を示す図である。図示細線は、NO2/NOのモル比が0(すなわち式(1)の反応)のときの浄化性能を示し、図示太線は、NO2/NOのモル比が1(すなわち式(3)の反応)のときの浄化性能を示す。横軸は排気温度であり、縦軸はNOx浄化率である。NOx浄化率は、NOx濃度センサ46,47により検出されるSCR触媒33の上流側と下流側のNOx濃度の差を、上流側NOx濃度で除した値である。
【0098】
第2設定温度T2は、SCR触媒33が活性しにくい排気温度範囲の上限(例えば、330℃)であり、言い換えると、式(1)と式(3)の反応において、同等の浄化率が得られる温度である。
【0099】
排気低温時(T<T2)においては、式(1)の反応では、高い浄化率は得られない。すなわち、効率よくNOxを浄化できない。一方、式(3)の反応では、式(1)の反応に比べて、高い浄化率が得られる。
【0100】
排気浄化装置20は、排気低温時に排気流量調整制御を行う(S41→S42→S43→S44→S31)。バタフライ弁25は開かれ、排気の一部がバイパス通路23を通過する。このとき、排気に含まれるNOxの殆どがNOである。バイパス通路23を通過する排気に含まれるNOは、酸化触媒35によりNO2となる。NO2を含む排気は、排気管21内のNOを含む排気と合流する。バタフライ弁25の開度が大きくなるほど、パイパス通路23の通過流量が多くなり、NOは減り、NO2は増え、その結果、NO2/NOのモル比が増える。
【0101】
ここで、モル比推定について説明する。
【0102】
モル比推定機能部70cは、NOx濃度センサ46,47からの検出信号を入力し、Nox浄化率を演算し、DCU70に記憶されているモル比推定マップを読込み、NOx浄化率と排気温度センサ45による排気温度とモル比推定マップに基づいて、SCR触媒33上流の一酸化窒素に対する二酸化窒素のモル比(NO2/NO)を推定する。
【0103】
図5は、モル比推定マップの一例を示す図である。横軸はモル比であり、縦軸はNOx浄化率である。排気温度ごとに、モル比とNOx浄化率の関係を予め実験に基づき記録している。
【0104】
一般的な傾向として、排気温度が上がると、NOx浄化率も上がる。また、同じ排気温度では、モル比が小さいときは、式(1)の反応が優先するため、NOx浄化率が低い。モル比が大きくなるにつれ、式(1)の反応に加えて式(3)の反応もおこり、NOx浄化率が高くなり、モル比が1付近になると、式(3)の反応が優先する為、NOx浄化率が最高になる。
【0105】
モル比が1を超えて大きくなるにつれ、NO2供給過多になり、式(3)の反応に加えて式(2)の反応も起こり、NOx浄化率が低くなる。
【0106】
図5において、1つの排気温度と1つのNOx浄化率が決まると、モル比について2つの解が得られる。モル比推定機能部70cは、直前のモル比推定結果を記憶しておき、NOx浄化率増加傾向にあるかNOx浄化率低減傾向にあるかに基づき、モル比に係る2つの解のうち1つを選択する。これにより、排気浄化装置20は、モル比を推定する。
【0107】
低温時動作の説明に戻る。適切な排気流量調整制御を行うことにより、NO2/NOのモル比が1付近となる。式(3)の反応により、排気低温時でも、NOxを効率よく浄化できる。
【0108】
一方、排気低温時、SCR触媒33熱劣化のおそれは無い。
【0109】
なお、以上に示した温度等の数値は、発明の理解の補助となるように例示したものであり、本発明はこの数値に限定されるものではない。
【0110】
〜効果〜
(効果1) 排気浄化装置20は、DPF31のPM捕集およびDPF再生処理により、排気中のPMを浄化できる。一方、噴射ノズル32からの還元剤供給およびSCR触媒33によりNOxを浄化できる。
【0111】
ところで、従来技術にかかる排気浄化装置は、DPF再生処理中、SCR触媒熱劣化を防止するように、高温排気が噴射ノズル,SCR触媒をバイパスするため、NOxの浄化が行なわれないという課題があった。
【0112】
排気浄化装置20は、高温排気を酸化触媒35の吸熱機能により降温させて、SCR触媒33に導く。これにより、SCR触媒熱劣化を防止しながら、NOxを浄化することができる。
【0113】
(効果2) 排気低温時、排気浄化装置20は、酸化触媒35によりNOを酸化させ、NO2/NOのモル比を1付近とすることにより、SCR触媒33の活性化を図ることができる。
【0114】
(効果3) 排気浄化装置20は、排気高温時に係る課題と排気低温時に係る課題という、相反する課題を、バタフライ弁25およびバイパス通路23に配設される酸化触媒35という共通の構成により、解決する。それぞれの課題に対応する別々の構成を備えるのに比べて、共通構成とすることで、構成の簡素化が図れる。このように構成が簡素であることにより、コスト低減、メンテナンス容易といった効果が得られる。
【0115】
(効果4) 排気浄化装置20は、精度よくNO2/NOのモル比を推定することにより、還元剤を過不足無く供給できる。これにより、効率よくNOxを浄化できると伴に、アンモニアスリップを防止できる。
【符号の説明】
【0116】
10 エンジン
20 排気浄化装置
21 排気管
23 バイパス通路
25 バタフライ弁
30 前段酸化触媒
31 DPF
32 噴射ノズル
33 SCR触媒
34 後段酸化触媒
35 酸化触媒(バイパス通路配設)
40 差圧センサ
42 排気温度センサ(前段酸化触媒上流)
43 排気温度センサ(前段酸化触媒下流)
45 排気温度センサ(SCR触媒上流)
46 NOx濃度センサ(SCR触媒上流)
47 NOx濃度センサ(SCR触媒下流)
50 尿素水タンク
51 還元剤供給ポンプ
52 還元剤制御弁
54 還元剤噴射装置
55 還元剤濃度センサ
60 エンジンコントロールユニット(ECU)
70 還元剤噴射制御ユニット(DCU)
70a 高温抑制機能部
70b 低温時活性化機能部
70c モル比推定機能部

【特許請求の範囲】
【請求項1】
エシジンの排気通路に設けられ、上流から順に前段酸化触媒、DPF、液体還元剤又はその前駆体を供給する噴射ノズル、SCR触媒が配設された排気浄化装置において、
前記DPF下流から分岐して前記噴射ノズル上流で合流するバイパス通路と、
前記バイパス通路に配設され、吸熱機能を有する酸化触媒と、
前記DPFを通過した排気の一部を前記バイパス通路に導き、前記バイパス通路を通過する排気流量を調整する排気流量調整手段と
を備えることを特徴とする排気浄化装置。
【請求項2】
請求項1記載の排気浄化装置において、
前記SCR触媒上流の排気温度を検出する排気温度検出手段
を更に備え、
前記排気流量調整手段は、
前記排気温度検出手段が前記SCR触媒を熱劣化させる第1設定温度以上の温度を検出すると、前記DPFを通過した排気の一部を前記バイパス通路に導き、前記SCR触媒上流の排気温度が第1設定温度未満となるように、排気流量を調整する高温抑制機能部を有する
ことを特徴とする排気浄化装置。
【請求項3】
請求項1記載の排気浄化装置において、
前記SCR触媒上流の排気温度を検出する排気温度検出手段と、
前記SCR触媒上流の一酸化窒素に対する二酸化窒素のモル比(NO2/NO)を推定するモル比推定手段と
を更に備え、
前記排気流量調整手段は、
前記排気温度検出手段が前記SCR触媒が活性しにくい第2設定温度未満の温度を検出すると、前記DPFを通過した排気の一部を前記バイパス通路に導き、前記推定モル比が1となるように、排気流量を調整する低温時活性化機能部を有する
ことを特徴とする排気浄化装置。
【請求項4】
請求項3記載の排気浄化装置において、
前記SCR触媒上流および下流のNOx濃度を検出するNOx濃度検出手段
を更に備え、
前記モル比推定手段は、
前記NOx濃度検出手段により検出されたSCR触媒上流および下流のNOx濃度から求めるNOx浄化率および前記排気温度検出手段により検出されたSCR触媒上流の排気温度に基づいて、前記モル比を推定する
ことを特徴とする排気浄化装置。
【請求項5】
請求項1記載の排気浄化装置において、
前記排気流量調整手段は、バタフライバルブを有する
ことを特徴とする排気浄化装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−2283(P2013−2283A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−130594(P2011−130594)
【出願日】平成23年6月10日(2011.6.10)
【出願人】(000005522)日立建機株式会社 (2,611)
【Fターム(参考)】