説明

有機エレクトロルミネッセンス素子、照明装置及び表示装置

【課題】発光効率が高く、かつ、長寿命となる有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供する。
【解決手段】陽極と陰極の間に少なくとも発光層を有する1層または複数層からなる有機層が挟持された有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層が下記一般式(1)で表される構造を有する配位子が配位した、リン光発光性の有機金属錯体を含有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機エレクトロルミネッセンス素子、照明装置、表示装置に関し、詳しくは発光輝度、発光効率及び耐久性に優れた有機エレクトロルミネッセンス素子、照明装置、及びそれらを有する表示装置に関する。
【背景技術】
【0002】
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。
【0003】
無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
【0004】
一方、有機EL素子は、発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、さらに、自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0005】
今後の実用化に向けた有機EL素子の開発としては、さらに低消費電力で効率よく高輝度に発光する有機EL素子が望まれているわけであり、例えば、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術(例えば、特許文献1参照)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特許文献2参照)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特許文献3参照)等が知られている。
【0006】
上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため、発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。
【0007】
ところが、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告(例えば、非特許文献1参照)がされて以来、室温でリン光を示す材料の研究が活発になってきている(例えば、非特許文献2及び特許文献4参照)。
【0008】
励起三重項を使用すると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られ照明用にも応用可能であり注目されている。
【0009】
例えば、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討されている(例えば、非特許文献3参照)。
【0010】
また、ドーパントとして、トリス(2−フェニルピリジン)イリジウムを用いた検討がされている(例えば、非特許文献2参照)。
【0011】
その他、ドーパントとしてLIr(acac)、例えば(ppy)Ir(acac)(例えば、非特許文献4参照)を、また、ドーパントとしてトリス(2−(p−トリル)ピリジン)イリジウム(Ir(ptpy))、トリス(ベンゾ[h]キノリン)イリジウム(Ir(bzq))、Ir(bzq)ClP(Bu)等を用いた検討(例えば、非特許文献5参照)が行われている。また、高い発光効率を得るために、ホール輸送性の化合物をリン光性化合物のホストとして用いることも行われている(例えば、非特許文献6参照)。
【0012】
また、各種電子輸送性材料をリン光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている(例えば、非特許文献4参照)。さらに、ホールブロック層の導入により高い発光効率を得ている(例えば、非特許文献5参照)。
【0013】
現在、このリン光発光を用いた有機EL素子のさらなる発光の高効率化、長寿命化が検討されている。
【0014】
しかし、緑色発光については理論限界である20%近くの外部取り出し効率が達成されているものの、低電流領域(低輝度領域)のみであり、高電流領域(高輝度領域)では、いまだ理論限界は達成されていない。その他の発光色についてもまだ十分な効率が得られておらず改良が必要であり、また、今後の実用化に向けた有機EL素子では、さらに低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。特に青色リン光発光の有機EL素子において高効率に発光する素子が求められている。
【0015】
一方、特許文献5に分岐アルキル基を導入した化合物を用いることで、分子間の相互作用が低減でき有機EL素子の長寿命化が可能になるとの報告がある。しかしながら、有機EL素子の発光効率および更なる発光寿命の長寿命化が重要な課題として挙げられる。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特許第3093796号明細書
【特許文献2】特開昭63−264692号公報
【特許文献3】特開平3−255190号公報
【特許文献4】米国特許第6,097,147号明細書
【特許文献5】米国特許出願公開第2011/0057559号明細書
【非特許文献】
【0017】
【非特許文献1】M.A.Baldo et al.,nature,395巻,151−154頁(1998年)
【非特許文献2】M.A.Baldo et al.,nature,403巻,17号、750−753頁(2000年)
【非特許文献3】S.Lamansky et al.,J.Am.Chem.Soc.,123巻,4304頁(2001年)
【非特許文献4】M.E.Tompson et al.,The 10th International Workshop on Inorganic and OrganicElectroluminescence(EL’00、浜松)
【非特許文献5】Moon−Jae Youn.0g,Tetsuo Tsutsui et al.,The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)
【非特許文献6】Ikai et al.,The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)
【発明の概要】
【発明が解決しようとする課題】
【0018】
本発明は係る課題に鑑みてなされたものであり、本発明の目的は、発光効率が高く、かつ、長寿命となる有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供することである。
【課題を解決するための手段】
【0019】
本発明の上記課題は、以下の構成により達成された。
【0020】
1.陽極と陰極の間に少なくとも発光層を有する1層または複数層からなる有機層が挟持された有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層が下記一般式(1)で表される構造を有する配位子が配位した、リン光発光性の有機金属錯体を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0021】
【化1】

【0022】
〔式中、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、R及びRの少なくとも一方が炭素原子数2以上のアルキル基である。Raは、それぞれ独立に、ハロゲン原子、ニトロ基、アシル基、−SO−R11、−SO−R11、−P(R11)(R12)、−P(=O)(R11)(R12)、−P(=S)(R11)(R12)、シリル基、環Aと炭素原子で結合する5員複素芳香環基を表す。ここでR11、R12は、それぞれアルキル基、またはアリール基を表す。
【0023】
Rbは、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、アリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、Rc及びRdはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、naは1〜3の整数を表し、nbは0〜2を表し、ncは1〜4の整数を表し、ndは2を表す。〕
2.陽極と陰極の間に少なくとも発光層を有する1層または複数層からなる有機層が挟持された有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層が下記一般式(2)で表される有機金属錯体を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0024】
【化2】

【0025】
〔式中、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、R及びRの少なくとも一方が炭素原子数2以上のアルキル基である。Raは、それぞれ独立に、ハロゲン原子、ニトロ基、アシル基、−SO−R11、−SO−R11、−P(R11)(R12)、−P(=O)(R11)(R12)、−P(=S)(R11)(R12)、シリル基、環Aと炭素原子で結合する5員複素芳香環基を表す。ここでR11、R12は、それぞれアルキル基、またはアリール基を表す。
【0026】
Rbは、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、アリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、RcおよびRdはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、naは1〜3の整数を表し、nbは0〜2を表し、ncは1〜4の整数を表し、ndは2を表す。LはMに配位したモノアニオン性の二座配位子であり、Mは原子番号40以上且つ元素周期表における8〜10族の遷移金属原子を表し、mは1〜3の整数を表し、nは少0〜2の整数を表し、m+nは2または3である。〕
3.前記一般式(2)中、R及びRが共にアルキル基であることを特徴とする前記2に記載の有機エレクトロルミネッセンス素子。
【0027】
4.前記一般式(2)中、R及びRが共に炭素原子数2以上のアルキル基であることを特徴とする前記2または3に記載の有機エレクトロルミネッセンス素子。
【0028】
5.前記一般式(2)中、環Bがベンゼン環であることを特徴とする前記2〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0029】
6.一般式(2)が一般式(2−1)で表されることを特徴とする前記2に記載の有機エレクトロルミネッセンス素子。
【0030】
【化3】

【0031】
〔一般式(2−1)において、R、R、Ra、Rb、Rc、Rdは前記一般式(2)もおいて定義された基であり、M、L、またna、nb、nc、nd、nおよびmについても一般式(2)と同義である。〕
7.前記一般式(2−1)中、naが1もしくは2であることを特徴とする前記6に記載の有機エレクトロルミネッセンス素子。
【0032】
8.前記一般式(2−1)中、naが1であることを特徴とする前記6または7に記載の有機エレクトロルミネッセンス素子。
【0033】
9.前記一般式(2−1)中、Raが5員複素芳香環基であることを特徴とする前記6〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0034】
10.前記一般式(2−1)中、Raが、酸素原子もしくは硫黄原子のいずれか少なくとも一つ含む、環Aと炭素原子で結合する5員複素芳香環基であることを特徴とする前記6〜9のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0035】
11.前記5員複素芳香環基が、チオフェン環、フラン環からなることを特徴とする前記10に記載の有機エレクトロルミネッセンス素子。
【0036】
12.前記一般式(2−1)中、MがIrであることを特徴とする前記6〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0037】
13.白色に発光することを特徴とする前記1〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0038】
14.前記1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
【0039】
15.前記1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
【発明の効果】
【0040】
本発明により、高い発光効率かつ発光寿命の長い有機EL素子、そのための有機EL素子材料、該有機EL素子を用いた照明装置、および表示装置を提供することができた。
【図面の簡単な説明】
【0041】
【図1】照明装置の概略図である。
【図2】照明装置の断面図である。
【発明を実施するための形態】
【0042】
本発明者は、上記課題に鑑み鋭意検討を行った結果、一対の電極間に発光層を含む少なくとも一層の有機層を有する有機エレクトロルミネッセンス素子であって、前記有機層のうち少なくとも一層に一般式(1)で表される化合物を有する有機EL素子により、発光効率の高効率化、低電圧駆動化および発光寿命の長寿命化が達成されることを見出し、本発明に至った次第である。
【0043】
本発明の有機EL素子材料は、電子吸引性置換基が金属錯体の末端部分に存在しているため隣接する他分子との相溶性が高いことが特徴である。本発明の化合物の特徴により発光層中におけるホストとドーパント間のエネルギー移動やキャリア移動がスムーズになることで有機EL素子の性能が向上したと推測している。
【0044】
本発明の有機EL素子は、陽極と陰極により挟まれた少なくとも一層の発光層を有する有機EL素子であり、前記一般式(1)で表される構造を有する配位子を配位した有機金属錯体を含有することを特徴とする。
【0045】
前記一般式(1)中、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、より好ましくは5員または6員の芳香族炭化水素環であり、特に好ましくは6員環の芳香族炭化水素環である。
【0046】
及びRはそれぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、シアノ基、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、アリールアルキル基(ベンジル基、フェネチル基等)、アリール基(例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、ヘテロアリール基(例えば、フリル基、チエニル基、ピリジル基、ピリダジル基、ピリミジル基、ピラジル基、トリアジル基、イミダゾリル基、ピラゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、キナゾリル基、フタラジル基等)、非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)が挙げられ、好ましくは水素原子、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、より好ましくはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)が挙げられる。
【0047】
また、ここにおいて、R及びRの少なくとも一方は炭素原子数2以上のアルキル基であり、好ましくは炭素原子数3以上、10以下である。
【0048】
特に好ましくはRおよびRが共に炭素原子数2以上のアルキル基(例えば、エチル基、イソプロピル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基)が挙げられ、特に好ましくはRとRの炭素原子総数が6以上15以下であることが挙げられる。
【0049】
これらの置換基はさらに置換されていてもよく、更なる置換基としては下記置換基群から選択される。
【0050】
置換基群:シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられ、より好ましくはアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環(例えば、フリル基、チエニル基、ピリジル基、ピリダジル基、ピリミジル基、ピラジル基、トリアジル基、イミダゾリル基、ピラゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、キナゾリル基、フタラジル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)等が挙げられる。
【0051】
Raは、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、ニトロ基、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、−SOR11(スルフィニル基)(ここで、R11はアルキル基又はアリール基を表す。この例としては、例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等である。)、−SO11(スルホニル基)(ここで、R11はアルキル基又はアリール基を表す。例えば、アルキルスルホニル基としては、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等が、アリールスルホニル基としては、例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等が挙げられる。)、−P(R11)(R12)(ここで、R11、R12はそれぞれアルキル基又はアリール基を表す。例えば、ジメチルホスフィン基、ジエチルホスフィン基、ジプロピルホスフィン基、メチルエチルホスフィン基、ジフェニルホスフィン基等が挙げられる。)、−P(=O)(R11)(R12)(ここで、R11、R12はそれぞれアルキル基又はアリール基を表す。例えば、ジメチルホスフィンオキシド基、ジエチルホスフィンオキシド基、ジフェニルホスフィンオキシド基等が挙げられる。)、−P(=S)(R11)(R12)(ここで、R11、R12はアルキル基又はアリール基を表す。例えば、ジメチルホスフィンスルフィド基、ジエチルホスフィンスルフィド基、ジフェニルホスフィンスルフィド基等の基が挙げられる。)、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、5員複素芳香環基(例えば、チオフェン環基、フラン環基、ピロール環基、ボロール環基、シロール環基、ホスホール環基、ジアゾール環基、トリアゾール環基、テトラゾール環基、オキサゾール環基、オキサジアゾール環基、オキサトリアゾール環基、チアゾール環基、チアジアゾール環基、チアトリアゾール環基等)が挙げられ、好ましくは、チオフェン環基、フラン環基、オキサゾール環基、オキサジアゾール環基、オキサトリアゾール環基、チアゾール環基、チアジアゾール環基、チアトリアゾール環基が挙げられ、より好ましくはチオフェン環基、フラン環基が挙げられ、これらの置換基はさらに置換されていてもよく、更なる置換基としては前記置換基群から選択される。5員複素芳香環基はその炭素原子で環Aに置換している。
【0052】
Rbはそれぞれ独立に、水素原子、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリールアルキル基、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、アリール基(例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、ヘテロアリール基(例えば、フリル基、チエニル基、ピリジル基、ピリダジル基、ピリミジル基、ピラジル基、トリアジル基、イミダゾリル基、ピラゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、キナゾリル基、フタラジル基等)、非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)が挙げられ、好ましくは水素原子、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)が挙げられ、より好ましくは水素原子であり、これらの置換基はさらに置換されていてもよく、更なる置換基としては前記置換基群から選択される。
【0053】
Rc及びRdはそれぞれ独立に、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、シアノ基、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、アリール基(例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、アリールアルキル基(ベンジル基、フェネチル基等)、ヘテロアリール基(例えば、フリル基、チエニル基、ピリジル基、ピリダジル基、ピリミジル基、ピラジル基、トリアジル基、イミダゾリル基、ピラゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、キナゾリル基、フタラジル基等)、非芳香族炭化水素環基(例えば、シクロペンチル基、シクロヘキシル基等)、非芳香族複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)が挙げられ、好ましくは水素原子、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)が挙げられ、より好ましくは水素原子であり、これらの置換基はさらに置換されていてもよく、更なる置換基としては前記置換基群から選択される。
【0054】
naは1〜3の整数を表し、nbは0〜2を表し、ncは1〜4の整数を表し、ndは2を表す。
【0055】
前記一般式(1)で表される構造を有する配位子を配位した有機金属錯体としては、下記一般式(2)で表されることが好ましい。
【0056】
【化4】

【0057】
一般式(2)において、環A、環B、R、R、Ra、Rb、Rc、Rd,na、nb、nc及びndは一般式(2)と同義である。
【0058】
LはMに配位したモノアニオン性の二座配位子であり、Mは原子番号40以上且つ元素周期表における8〜10族の遷移金属原子を表し、mは1〜3の整数を表し、nは0〜2の整数を表し、m+nは2または3である。
【0059】
Lで表される2座の配位子としては、例えば、置換または無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
【0060】
Mは、元素周期表における8〜10族の遷移金属原子を表し、中でもイリジウム、白金が好ましく、特にイリジウムが好ましい。
【0061】
前記一般式(2)中、R及びRが共にアルキル基であることが好ましい。
【0062】
前記一般式(2)中、R及びRが共に炭素原子数2以上のアルキル基であることが好ましい。
【0063】
また、前記一般式(2)中、環Bがベンゼン環であることが好ましい。
【0064】
更に、一般式(2)は、下記一般式(2−1)で表されることが好ましい。
【0065】
【化5】

【0066】
一般式(2−1)におけるR、R、Ra、Rb、Rc、Rd,na、nb、nc、nd、M、L,nおよびmは一般式(2)と同義である。
【0067】
また、前記一般式(2−1)中、MがIrであることが好ましい。
【0068】
本発明に係る一般式(1)で表される配位子又はこれを有する前記一般式(2)また、(2−1)で表される有機金属錯体においては、イミダゾール環に置換する環Aの置換位置の隣接位(RまたはR)に立体的に嵩高い置換基を有し(中でも炭素原子数2以上のアルキル基が好ましい)、且つ、環Aの他の位置に前記Raで表される電子吸引性の基を有している。
【0069】
以下に一般式(1)〜(2−1)で表される化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0070】
【化6】

【0071】
【化7】

【0072】
【化8】

【0073】
【化9】

【0074】
【化10】

【0075】
【化11】

【0076】
【化12】

【0077】
【化13】

【0078】
【化14】

【0079】
【化15】

【0080】
【化16】

【0081】
【化17】

【0082】
【化18】

【0083】
以下、本発明の有機エレクトロルミネッセンス素子について説明する。
【0084】
〈有機EL素子の構成層〉
本発明の有機EL素子の構成層について説明する。
【0085】
本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(1)陽極/発光層/電子輸送層/陰極
(2)陽極/正孔輸送層/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(4)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
(5)陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極
〈陽極〉
本発明において一対の電極とは、陽極と陰極をいう。
【0086】
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが好ましく用いられる。
【0087】
このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明電導膜を作成可能な材料を用いても良い。
【0088】
陽極は、これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成しても良い。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
【0089】
〈陰極〉
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えばマグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましく50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
【0090】
また、陰極に上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。次に、本発明の有機EL素子の構成層として用いられる、正孔輸送層、電子輸送層、注入層等について説明する。
【0091】
〈正孔輸送層〉
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、単層または複数層設けることができる。
【0092】
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。また、特表2003−519432や特開2006−135145等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
【0093】
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
【0094】
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
【0095】
更に、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
【0096】
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。
【0097】
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
【0098】
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号、特開2000−196140号、特開2001−102175号の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0099】
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
【0100】
〈電子輸送層〉
電子輸送層とは電子を輸送する機能を有する材料からなり、単層または複数層設けることができる。
【0101】
従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0102】
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
【0103】
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
【0104】
電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。
【0105】
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0106】
本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。
【0107】
〈注入層:電子注入層、正孔注入層〉
注入層は必要に応じて設けられ、電子注入層と正孔注入層があり、上記のごとく陽極と発光層または正孔輸送層の間、及び、陰極と発光層または電子輸送層との間に存在させてもよい。
【0108】
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
【0109】
陽極バッファー層(正孔注入層)は、特開平9−45479号、同9−260062号、同8−288069号等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0110】
また、特表2003−519432や特開2006−135145等に記載されているようなアザトリフェニレン誘導体も同様に正孔注入材料として用いることができる。
【0111】
陰極バッファー層(電子注入層)は、特開平6−325871号、同9−17574号、同10−74586号等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
【0112】
上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1nm〜5μmの範囲が好ましい。
【0113】
〈阻止層:正孔阻止層、電子阻止層〉
阻止層は、上記のごとく、有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば特開平11−204258号、同11−204359号、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
【0114】
正孔阻止層とは広い意味では電子輸送層であり、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
【0115】
一方、電子阻止層とは広い意味では正孔輸送層であり、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
【0116】
〈発光層〉
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
【0117】
発光層に使用される材料(以下、発光材料という)は、蛍光または燐光を発する有機化合物または錯体であることが好ましく、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。このような発光材料は、主に有機化合物であり、所望の色調により、例えば、Macromol.Synth.,125巻,17〜25頁に記載の化合物等を用いることができる。発光材料は、発光性能の他に、正孔輸送機能や電子輸送機能を併せ持っていてもよく、正孔輸送材料や電子輸送材料のほとんどが、発光材料としても使用できる。発光材料は、p−ポリフェニレンビニレンやポリフルオレンのような高分子材料でもよく、さらに前記発光材料を高分子鎖に導入した、または前記発光材料を高分子の主鎖とした高分子材料を使用してもよい。
【0118】
この発光層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、LB法等の公知の薄膜化法により製膜して形成することができる。発光層としての膜厚は特に制限はないが、通常は5nm〜5μm、好ましくは5〜200nmの範囲で選ばれる。
【0119】
この発光層は、これらの発光材料1種または2種以上からなる一層構造であってもよいし、あるいは、同一組成または異種組成の複数層からなる積層構造であってもよい。本発明の有機EL素子の好ましい態様は、発光層が2種以上の材料からなり、その内の1種が本発明の化合物であるときである。
【0120】
また、この発光層は、特開昭57−51781号に記載されているように、樹脂等の結着材と共に上記発光材料を溶剤に溶かして溶液とした後、これをスピンコート法等により薄膜化して形成することができる。このようにして形成された発光層の膜厚については、特に制限はなく、状況に応じて適宜選択することができるが、通常は5nm〜5μmの範囲、好ましくは5〜200nmの範囲である。
【0121】
(ホスト化合物)
「ホスト化合物(以下、単にホストともいう)」とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントともいう)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。更に、発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。
【0122】
発光層のホスト化合物は、有機化合物または錯体であることが好ましく、本発明においては、ホスト化合物の励起3重項エネルギーが燐光ドーパントの励起3重項エネルギーよりも大きいことが好ましい。更にホスト化合物の燐光スペクトルにおける0−0バンドの波長が450nm以下であることが好ましい。これにより可視光、特にBGR発光が可能となる。つまりホスト化合物の励起3重項エネルギーが燐光ドーパントの励起3重項エネルギーよりも大きくすることにより、ホスト化合物からドーパントへのエネルギー移動型のドーパント発光が可能である。またホスト化合物の燐光スペクトルにおける0−0バンドの波長が450nm以下である化合物は非常にワイドエネルギーギャップ(イオン化ポテンシャル−電子親和力、HOMO−LUMO)であるので、キャリアトラップ型にも有利に働く。
【0123】
このようなホスト化合物としては、有機EL素子に使用される公知のものの中から任意のものを選択して用いることができ、また後述の正孔輸送材料や電子輸送材料のほとんどが発光層ホスト化合物としても使用できる。ポリビニルカルバゾールやポリフルオレンのような高分子材料でもよく、さらに前記ホスト化合物を高分子鎖に導入した、または前記ホスト化合物を高分子の主鎖とした高分子材料を使用してもよい。
【0124】
ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
【0125】
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内、その層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。
【0126】
発光層のホスト化合物としては、公知のホスト化合物が用いられ、また併用してもよい。ホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。
【0127】
ホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
【0128】
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−14173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−23153号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−2934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
【0129】
本発明においては、複数の発光層を有する場合、これら各層のホスト化合物の50質量%以上が同一の化合物であることが、有機層全体に渡って均質な膜性状を得やすいことから好ましく、更には該化合物のリン光発光エネルギーが2.9eV以上であることが、ドーパントからのエネルギー移動を効率的に抑制し、高輝度を得る上で有利となることからより好ましい。
【0130】
本発明でいうところのリン光発光エネルギーとは、ホスト化合物を基板上に100nmの蒸着膜のフォトルミネッセンスを測定し、そのリン光発光の0−0バンドのピークエネルギーを言う。
【0131】
(ドーパント)
本発明においては、ドーパントとして、前記一般式(1)で表される構造を有する配位子が配位したリン光発光性の有機金属錯体又は一般式(2)、又は一般式(2−1)で表される有機金属錯体をもちいるが、また、白色素子とする場合、これ以外にも異なったドーパントが用いられる。
【0132】
ドーパントについて述べる。
【0133】
原理としては2種挙げられ、一つはキャリアが輸送されるホスト上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをドーパントに移動させることでドーパントからの発光を得るというエネルギー移動型、もう一つはドーパントがキャリアトラップとなり、ドーパント化合物上でキャリアの再結合が起こりドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、ドーパント化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
【0134】
本発明における「リン光ドーパント」、「リン光性化合物」とは励起三重項からの発光が観測される化合物であり、リン光量子収率が、25℃において0.001以上の化合物である。リン光量子収率は好ましくは0.01以上、更に好ましくは0.1以上である。
【0135】
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に用いられるリン光ドーパントは、任意の溶媒の何れかにおいて上記リン光量子収率が達成されればよい。
【0136】
本発明で用いられるリン光ドーパントとしては、好ましくは元素の周期律表で8族の金属を含有する錯体系化合物であり、更に好ましくは、イリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。
【0137】
本発明の有機EL素子においては、発光層のホスト化合物、発光層に隣接する正孔輸送層、発光層に隣接する電子輸送層全ての材料の励起3重項エネルギーがリン光ドーパントの励起3重項エネルギーよりも大きいことが好ましい。特に発光層のホスト化合物、発光層に隣接する正孔輸送層、発光層に隣接する電子輸送層のリン光スペクトルにおける0−0バンドの波長が450nm以下であることが好ましい。
【0138】
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
【0139】
本発明でいうところの白色素子とは、2℃視野角正面輝度を上記方法により測定した際に、1000Cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.07の領域内にあることをいう。
【0140】
発光層は上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。
【0141】
本発明においては、発光層は発光極大波長が各々430〜480nm、510〜550nm、600〜640nmの範囲にある発光スペクトルの異なる層、あるいはこれらが積層された層を含む。
【0142】
発光層の積層順としては特に制限はなく、また各発光層間に非発光性の中間層を有していてもよい。本発明においては、少なくとも一つの青発光層が全発光層中最も陽極に近い位置に設けられていることが好ましい。
【0143】
また、発光層を4層以上設ける場合には、陽極に近い順から、例えば、青/緑/赤/青、青/緑/赤/青/緑、青/緑/赤/青/緑/赤のように青、緑、赤を順に積層することが、輝度安定性を高める上で好ましい。
【0144】
発光層の膜厚の総和は特に制限はないが、通常2nm〜5μm、好ましくは2〜200nmの範囲で選ばれる。本発明においては、更に10〜20nmの範囲にあるのが好ましい。薄すぎると膜の均質性が得られにくい。またこれより厚いと発光を得るのに高電圧を要するため好ましくない。膜厚を20nm以下にすると電圧面のみならず、駆動電流に対する発光色の安定性が向上する効果があり好ましい。
【0145】
個々の発光層の膜厚は、好ましくは2〜100nmの範囲で選ばれ、2〜20nmの範囲にあるのが更に好ましい。青、緑、赤の各発光層の膜厚の関係については、特に制限はないが、3発光層中、青発光層(複数層ある場合はその総和)が最も厚いことが好ましい。
【0146】
また、前記の極大波長を維持する範囲において、各発光層には複数の発光性化合物を混合してもよい。例えば、青発光層に極大波長430〜480nmの青発光性化合物と、同510〜550nmの緑発光性化合物を混合して用いてもよい。
【0147】
〈支持基板〉
本発明の有機EL素子に用いることのできる支持基板(以下、基板、支持体等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
【0148】
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
【0149】
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、水蒸気透過度が0.01g/m/day・atm以下のバリア性フィルムであることが好ましく、更には、酸素透過度10−3g/m/day以下、水蒸気透過度10−5g/m/day以下の高バリア性フィルムであることが好ましい。
【0150】
該バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの侵入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
【0151】
該バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
【0152】
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
【0153】
本発明の有機EL素子の発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは5%以上である。ここに、
外部取り出し量子効率(%)=(有機EL素子外部に発光した光子数/有機EL素子に流した電子数)×100
である。
【0154】
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
【0155】
〈封止〉
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
【0156】
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また、透明性、電気絶縁性は特に問わない。
【0157】
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、酸素透過度10−3g/m/day以下、水蒸気透過度10−5g/m/day以下のものであることが好ましい。
【0158】
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
【0159】
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
【0160】
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
【0161】
また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの侵入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
【0162】
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体、フッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
【0163】
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
【0164】
〈保護膜、保護板〉
有機層を挟み支持基板と対向する側の前記封止膜あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
【0165】
〈光取り出し〉
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15〜20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
【0166】
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性をもたせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
【0167】
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
【0168】
本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
【0169】
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
【0170】
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
【0171】
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
【0172】
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間、もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
【0173】
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
【0174】
回折格子を導入する位置としては前述の通り、いずれかの層間、もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
【0175】
このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
【0176】
回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
【0177】
〈集光シート〉
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより、特定方向、例えば、素子発光面に対し正面方向に集光し、特定方向上の輝度を高めることができる。
【0178】
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10〜100μmが好ましい。
【0179】
これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
【0180】
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基板に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
【0181】
また、発光素子からの光放射角を制御するために光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
【0182】
〈有機EL素子の作製方法〉
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法について説明する。
【0183】
まず適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ、陽極を作製する。
【0184】
次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。
【0185】
この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においては、スピンコート法、インクジェット法、印刷法等の塗布法による製膜が特に好ましい。
【0186】
本発明においては、発光層の形成において、本発明に係る一般式(1)で表される化合物を溶解または分散した液を用いて塗布法により成膜することが好ましく、特に塗布法がインクジェット法であることが好ましい。
【0187】
本発明に係る一般式(1)で表される化合物を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また、分散方法としては超音波、高剪断力分散やメディア分散等の分散方法で分散することができる。
【0188】
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
【0189】
また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
【0190】
〈用途〉
本発明の有機EL素子は、表示装置や照明装置として用いることができる。
【0191】
《表示装置》
本発明の表示装置について説明する。本発明の表示装置は上記有機EL素子を有する。
【0192】
本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
【0193】
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを用いたパターニングが好ましい。
【0194】
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
【0195】
多色表示装置は表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
【0196】
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
【0197】
発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではない。
【0198】
《照明装置》
本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
【0199】
本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
【0200】
また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
【0201】
このように、本発明に係る有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。
【0202】
その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
【0203】
本発明の有機EL素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよい。
【実施例】
【0204】
以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
【0205】
〈合成例〉
(例示化合物の1合成)
例示化合物1は以下のスキームに従って合成できる。
【0206】
【化19】

【0207】
ベンゾイルクロライドと4−ブロモ2−エチルアニリンをトリエチルアミン存在下トルエンを溶媒として2時間撹拌することで収率97%で化合物Aが得られた。次いで、化合物Aをトリクロロホスフィンオキシドとトルエン溶媒で1時間加熱還流させた後、アミノアセタールとトリエチルアミンで反応させることで、化合物Bを得た。
【0208】
化合物Bをトルエン溶媒中、リン酸と反応させることで化合物Cを収率90%で得た。
【0209】
化合物Cと2,4,5−トリメチルチオフェンボロン酸と鈴木カップリングさせることで、化合物Dを収率60%で得た。
【0210】
化合物Dを塩化イリジウムと2−エトキシエタノール、水混合溶媒中6時間加熱還流させることで、化合物Eを収率72%で得た。化合物Eと化合物Dをトリフルオロ酢酸銀と反応させることで、化合物1を収率45%で得た。配位子また錯体の構造はマススペクトル及びH−NMRで確認した。
【0211】
(例示化合物の20合成)
例示化合物20は以下のスキームに従って合成できる。
【0212】
【化20】

【0213】
ベンゾイルクロライドと4−ブロモ2−イソプロピルアニリンをトリエチルアミン存在下トルエンを溶媒として2時間撹拌することで収率90%で化合物Fが得られた。化合物Fをトリクロロホスフィンオキシドとトルエン溶媒で1時間加熱還流させた後、アミノアセタールとトリエチルアミンで反応させることで、化合物Gを得た。化合物Gをトルエン溶媒中、リン酸と反応させることで化合物Hを収率82%で得た。化合物Hと2−フランボロン酸と鈴木カップリングさせることで、化合物Iを収率63%で得た。化合物Iを塩化イリジウムと2−エトキシエタノール、水混合溶媒中6時間加熱還流させることで、化合物Jを収率66%で得た。化合物Jと化合物Iをトリフルオロ酢酸銀と反応させることで、化合物20を収率50%で得た。配位子また錯体の構造はマススペクトル及びH−NMRで確認した。
【0214】
(例示化合物の32合成)
例示化合物32は以下のスキームに従って合成できる。
【0215】
【化21】

【0216】
化合物Hと3−フラニルボロン酸と鈴木カップリングさせることで、化合物Kを収率70%で得た。化合物Kを塩化イリジウムと2−エトキシエタノール、水混合溶媒中6時間加熱還流させることで、化合物Lを収率61%で得た。化合物Lと化合物Hをトリフルオロ酢酸銀と反応させることで、化合物32を収率59%で得た。配位子また錯体の構造はマススペクトル及びH−NMRで確認した。
【0217】
(例示化合物の93合成)
例示化合物93は以下のスキームに従って合成できる。
【0218】
【化22】

【0219】
ベンゾイルクロライドと4−ブロモ2,6−ジイソプロピルアニリンをトリエチルアミン存在下トルエンを溶媒として2時間撹拌することで収率90%で化合物Mが得られた。化合物Mをトリクロロホスフィンオキシドとトルエン溶媒で1時間加熱還流させた後、アミノアセタールとトリエチルアミンで反応させることで、化合物Nを得た。化合物Nをトルエン溶媒中、リン酸と反応させることで化合物Oを収率81%で得た。化合物OのTHF溶液にn−ブチルリチウムを−78度で滴下後、同温度でトリフェニルシリルクロライドを滴下し、室温で2時間撹拌することで化合物Pを95%で得た。化合物Pを塩化イリジウムと2−エトキシエタノール、水混合溶媒中6時間加熱還流させることで、化合物Qを60%で得た。化合物Qと化合物Pをトリフルオロ酢酸銀と反応させることで、化合物93を65%で得た。配位子また錯体の構造はマススペクトル及びH−NMRで確認した。
【0220】
(例示化合物の105合成)
例示化合物105は以下のスキームに従って合成できる。
【0221】
【化23】

【0222】
化合物Qと1,2,3,5−オキサトリアゾールボロン酸と鈴木カップリングさせることで、化合物Rを収率74%で得た。化合物Rを塩化イリジウムと2−エトキシエタノール、水混合溶媒中6時間加熱還流させることで、化合物Sを61%で得た。化合物Sと化合物Rをトリフルオロ酢酸銀と反応させることで、化合物105を67%で得た。
【0223】
配位子また錯体の構造はマススペクトル及びH−NMRで確認した。
【0224】
実施例1
《有機EL素子1−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0225】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン抵抗加熱ボートに正孔注入材料として銅フタロシアニンを200mg入れ、別のモリブデン抵抗加熱ボート正孔輸送材料としてα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてH−1を200mg入れ、別のモリブデン製抵抗加熱ボートに発光性ドーパント化合物としてD−1を200mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料としてAlqを200mg入れ、真空蒸着装置に取り付けた。
【0226】
次いで真空槽を4×10−4Paまで減圧した後、銅フタロシアニンの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し20nmの正孔注入層を設けた。
【0227】
更にα−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔注入層上に蒸着し20nmの正孔輸送層を設けた。
【0228】
更にホスト化合物H−1とドーパント化合物D−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.006nm/秒で、前記正孔輸送層上に共蒸着し20nmの発光層を設けた。
【0229】
更にAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着し20nmの電子輸送層を設けた。
【0230】
引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。
【0231】
《有機EL素子1−2〜1−20の作成》
有機EL素子1−1の作製において、D−1とH−1を表1のように変更した以外は同様にして、有機EL素子1−2〜1−20を作製した。
【0232】
以下に、上記実施例1、また実施例2以降で用いる、電子輸送材料のAlq、正孔輸送材料のα−NPD、ホスト材料H−1〜H−3および比較のドーパント材料D−1〜D−3の構造を示す。
【0233】
【化24】

【0234】
【化25】

【0235】
〈有機EL素子1−1〜1−20の評価〉
作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図1、2に示すような照明装置を形成して評価した。
【0236】
図1は本発明の有機EL素子を用いた照明装置の一例を示す概略図であり、発光した光が白矢印方向(下方向)へ取り出される場合を示している。有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。図2は本発明の有機EL素子を用いた照明装置の一例を示す断面図である。図2において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
【0237】
(外部取り出し量子効率)
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm定電流を印加した時の外部取り出し量子効率(%)を測定した。なお、測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。
【0238】
表1の外部取り出し量子効率の測定結果は、有機EL素子1−1の測定値を100とした時の相対値で表した。
【0239】
(発光寿命)
2.5mA/cmの一定電流で駆動したときに、輝度が発光開始直後の輝度(初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間(τ0.5)として寿命の指標とした。なお、測定には分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いた。また、表1の寿命の測定結果は、有機EL素子1−1を100とした時の相対値で表した。
【0240】
(発光色)
2.5mA/cmの定電流条件下における連続発光を行った際の発光色を目視で評価した。
【0241】
【表1】

【0242】
表1より、発光層のドーパント化合物に本発明の化合物を含む本発明の有機EL素子は、比較の有機EL素子に比べ高効率化、ならびに長寿命化が達成されていることが分かる。
【0243】
実施例2
《有機EL素子2−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0244】
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔輸送層を設けた。
【0245】
この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、50mgのα−NPDを10mlのトルエンに溶解した溶液を用いて1500rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約20nmの第2正孔輸送層とした。
【0246】
この第2正孔輸送層上に、100mgのホスト化合物H−2と10mgのドーパント化合物D−1とを10mlの酢酸ブチルに溶解した溶液を用いて600rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約70nmの発光層とした。
【0247】
次に、この発光層上に、50mgのAlqを10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約30nmの電子輸送層とした。
【0248】
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10−4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2−1を作製した。
【0249】
《有機EL素子2−2〜2−10の作成》
有機EL素子2−1の作製において、D−1とH−2を表2のように変更した以外は同様にして、有機EL素子1−2〜1−10を作製した。
【0250】
(有機EL素子2−1〜2−10の評価)
得られた有機EL素子を評価するに際しては、実施例1の有機EL素子1−1〜1−20と同様に封止し、図1、図2に示すような照明装置を形成して評価した。
【0251】
次いで、下記の評価を行い、表2にその結果をまとめた。
【0252】
(外部取り出し量子効率)
外部取り出し効率については実施例1と同様の方法で評価した。
【0253】
(発光寿命)
発光寿命については実施例1と同様の方法で評価した。
【0254】
(発光色)
発光色については実施例1と同様の方法で評価した。
【0255】
【表2】

【0256】
表2より、発光層のドーパント化合物に本発明の化合物を含む本発明の有機EL素子は、比較の有機EL素子に比べ高効率化、ならびに長寿命化が達成されていることが分かる。
【0257】
実施例3
《有機EL素子3−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0258】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン抵抗加熱ボートに正孔注入材料として銅フタロシアニンを200mg入れ、別のモリブデン抵抗加熱ボート正孔輸送材料としてα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてH−2を200mg入れ、別のモリブデン製抵抗加熱ボートに青色発光性ドーパント化合物としてD−1を200mg入れ、別のモリブデン製抵抗加熱ボートに緑色発光性ドーパント化合物としてIr(piq)を200mg入れ、別のモリブデン製抵抗加熱ボートに赤色発光性ドーパント化合物としてIr(ppy)を200mg入れ、別のモリブデン製抵抗加熱ボートに電子輸送材料としてAlqを200mg入れ、真空蒸着装置に取り付けた。
【0259】
次いで真空槽を4×10−4Paまで減圧した後、銅フタロシアニンの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、透明支持基板に蒸着し20nmの正孔注入層を設けた。
【0260】
更にα−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記正孔注入層上に蒸着し20nmの正孔輸送層を設けた。
【0261】
更にH−2とD−1とIr(piq)とIr(ppy)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.025nm/秒、0.007nm/秒、0.002nm/秒で、前記正孔輸送層上に共蒸着し20nmの発光層を設けた。
【0262】
更にAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記発光層上に蒸着し20nmの電子輸送層を設けた。
【0263】
引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子3−1を作製した。
【0264】
《有機EL素子3−2〜3−10の作成》
有機EL素子3−1の作製において、D−1とH−2を表3のように変更した以外は同様にして、有機EL素子3−2〜3−10を作製した。
【0265】
以下に、緑色材料のIr(ppy)と赤色材料のIr(piq)の構造を示す。
【0266】
【化26】

【0267】
(有機EL素子3−1〜3−10の評価)
得られた有機EL素子を評価するに際しては、実施例1の有機EL素子1−1〜1−20と同様に封止し、図1、2に示すような照明装置を形成して評価した。
【0268】
次いで、下記の評価を行い、表3にその結果をまとめた。
【0269】
(駆動電圧)
有機EL素子を室温(約23℃〜25℃)、2.5mA/cmの定電流条件下で駆動したときの電圧を各々測定し、測定結果を下記に示すように、有機EL素子3−1を100として各々相対値で示した。
【0270】
電圧=(各素子の駆動電圧/有機EL素子3−1の駆動電圧)×100
尚、値が小さいほうが比較に対して駆動電圧が低いことを示す。
【0271】
(発光寿命)
発光寿命については実施例1と同様の方法で評価した。
【0272】
(発光色)
発光色については実施例1と同様の方法で評価した。
【0273】
【表3】

【0274】
表3より、発光層のドーパント化合物に本発明の化合物を含む本発明の有機EL素子は、比較の有機EL素子に比べ長寿命化ならびに低電圧駆動化が達成されていることが分かる。
【0275】
実施例4
《有機EL素子4−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0276】
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔輸送層を設けた。
【0277】
この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、50mgのα−NPDを10mlのトルエンに溶解した溶液を用いて1500rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約20nmの第2正孔輸送層とした。
【0278】
この第2正孔輸送層上に、100mgのH−3と20mgのD−1と0.5mgのIr(ppy)と0.2mgのIr(piq)を10mlの酢酸ブチルに溶解した溶液を用いて600rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約70nmの発光層とした。
【0279】
次に、この発光層上に、50mgのAlqを10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用いて1000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約30nmの電子輸送層とした。
【0280】
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10−4Paまで減圧した後、陰極バッファー層としてフッ化カリウム0.4nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子4−1を作製した。
【0281】
《有機EL素子4−2〜4−10の作成》
有機EL素子4−1の作製において、D−1とH−3を表4のように変更した以外は同様にして、有機EL素子4−2〜4−10を作製した。
【0282】
(有機EL素子4−2〜4−10の評価)
得られた有機EL素子を評価するに際しては、実施例1の有機EL素子1−1〜1−20と同様に封止し、図1、図2に示すような照明装置を形成して評価した。
【0283】
次いで、下記の評価を行い、表4にその結果をまとめた。
【0284】
(駆動電圧)
駆動電圧については実施例3と同様の方法で評価した。
【0285】
(発光寿命)
発光寿命については実施例1と同様の方法で評価した。
【0286】
(発光色)
発光色については実施例1と同様の方法で評価した。
【0287】
【表4】

【0288】
表4より、発光層のドーパント化合物に本発明の化合物を含む本発明の有機EL素子は、比較の有機EL素子に比べ長寿命化ならびに低電圧駆動化が達成されていることが分かる。
【0289】
実施例5
《有機EL素子5−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0290】
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔輸送層を設けた。
【0291】
この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、50mgのα−NPDを10mlのトルエンに溶解した溶液を用いて1500rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約20nmの第2正孔輸送層とした。
【0292】
この第2正孔輸送層上に、この第2正孔輸送層上に、100mgのH−4と10mgのD−1を10mlの酢酸ブチルに溶解した溶液を用いて2000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約35nmの第1発光層とした。
【0293】
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートにH−4を200mg入れ、別のモリブデン製抵抗加熱ボートにIr(piq)を200mg入れ、別のモリブデン抵抗加熱ボートにIr(ppy)を200mg入れ、別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。
【0294】
次いで真空槽を4×10−4Paまで減圧した後、H−1とIr(piq)とIr(ppy)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒、0.002nm/秒で、前記第1発光層上に共蒸着し35nmの第2発光層を設けた。
【0295】
更にAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記第2発光層上に蒸着し20nmの電子輸送層を設けた。
【0296】
引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子5−1を作製した。
【0297】
《有機EL素子5−2〜5−10の作成》
有機EL素子5−1の作製においてD−1とH−4を表5のように変更した以外は同様にして、有機EL素子5−2〜5−10を作製した。
【0298】
(有機EL素子5−2〜5−10の評価)
得られた有機EL素子を評価するに際しては、実施例1の有機EL素子1−1〜1−20と同様に封止し、図1、図2に示すような照明装置を形成して評価した。
【0299】
次いで、下記の評価を行い、表5にその結果をまとめた。
【0300】
(経時安定性)
有機EL素子を70℃、60%RHの条件で一ヶ月保存後、保存前後における各電力効率を求め、各々の電力効率比を下式に従って求め、これを経時安定性の尺度とした。
【0301】
経時安定性(%)=保存後の電力効率/保存前の電力効率×100
尚、電力効率については分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて、各有機EL素子の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/mにおける電力効率を求めた。
【0302】
(外部量子効率)
外部量子効率については実施例1と同様の方法で評価した。
【0303】
(発光寿命)
発光寿命については実施例1と同様の方法で評価した。
【0304】
(発光色)
発光色については実施例1と同様の方法で評価した。
【0305】
【表5】

【0306】
表5より、発光層のドーパント化合物に本発明の化合物を含む本発明の有機EL素子は、比較の有機EL素子に比べ高効率化ならびに長寿命化が達成されており、さらに経時安定性が向上していることが分かる。
【0307】
実施例6
《有機EL素子6−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0308】
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用いて3000rpm、30秒の条件下、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔輸送層を設けた。
【0309】
この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、50mgのα−NPDを10mlのトルエンに溶解した溶液を用いて1500rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約20nmの第2正孔輸送層とした。
【0310】
この第2正孔輸送層上に、この第2正孔輸送層上に、100mgのホスト材料H−4と10mgのD−1を10mlの酢酸ブチルに溶解した溶液を用いて2000rpm、30秒の条件下、スピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約35nmの第1発光層とした。
【0311】
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートにH−5を200mg入れ、別のモリブデン製抵抗加熱ボートにIr(piq)を200mg入れ、別のモリブデン抵抗加熱ボートにIr(ppy)を200mg入れ、別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。
【0312】
次いで真空槽を4×10−4Paまで減圧した後、H−5とIr(piq)とIr(ppy)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.010nm/秒、0.002nm/秒で、前記第1発光層上に共蒸着し35nmの第2発光層を設けた。
【0313】
更にAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で、前記第2発光層上に蒸着し20nmの電子輸送層を設けた。
【0314】
引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子6−1を作製した。
【0315】
《有機EL素子6−2〜6−10の作成》
有機EL素子6−1の作製において、D−1とH−4、H−5を表6のように変更した以外は同様にして、有機EL素子6−2〜6−10を作製した。
【0316】
(有機EL素子6−2〜6−10の評価)
得られた有機EL素子を評価するに際しては、実施例1の有機EL素子1−1〜1−20と同様に封止し、図1、図2に示すような照明装置を形成して評価した。
【0317】
次いで、下記の評価を行い、表6にその結果をまとめた。
【0318】
(経時安定性)
経時安定性については実施例5と同様の方法で評価した。
【0319】
(外部量子効率)
外部量子効率については実施例3と同様の方法で評価した。
【0320】
(発光寿命)
発光寿命については実施例1と同様の方法で評価した。
【0321】
(発光色)
発光色については実施例1と同様の方法で評価した。
【0322】
【表6】

【0323】
表6より、発光層のドーパント化合物に本発明の化合物を含む本発明の有機EL素子は、比較の有機EL素子に比べ高効率化ならびに長寿命化が達成されており、さらに経時安定性が向上していることが分かる。
【符号の説明】
【0324】
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤

【特許請求の範囲】
【請求項1】
陽極と陰極の間に少なくとも発光層を有する1層または複数層からなる有機層が挟持された有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層が下記一般式(1)で表される構造を有する配位子が配位した、リン光発光性の有機金属錯体を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化1】

〔式中、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、R及びRの少なくとも一方が炭素原子数2以上のアルキル基である。Raは、それぞれ独立に、ハロゲン原子、ニトロ基、アシル基、−SO−R11、−SO−R11、−P(R11)(R12)、−P(=O)(R11)(R12)、−P(=S)(R11)(R12)、シリル基、環Aと炭素原子で結合する5員複素芳香環基を表す。ここでR11、R12は、それぞれアルキル基、またはアリール基を表す。
Rbは、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、アリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、Rc及びRdはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、naは1〜3の整数を表し、nbは0〜2を表し、ncは1〜4の整数を表し、ndは2を表す。〕
【請求項2】
陽極と陰極の間に少なくとも発光層を有する1層または複数層からなる有機層が挟持された有機エレクトロルミネッセンス素子において、該有機層の少なくとも1層が下記一般式(2)で表される有機金属錯体を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化2】

〔式中、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表し、R及びRはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、R及びRの少なくとも一方が炭素原子数2以上のアルキル基である。Raは、それぞれ独立に、ハロゲン原子、ニトロ基、アシル基、−SO−R11、−SO−R11、−P(R11)(R12)、−P(=O)(R11)(R12)、−P(=S)(R11)(R12)、シリル基、環Aと炭素原子で結合する5員複素芳香環基を表す。ここでR11、R12は、それぞれアルキル基、またはアリール基を表す。
Rbは、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリールアルキル基、アリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、RcおよびRdはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、naは1〜3の整数を表し、nbは0〜2を表し、ncは1〜4の整数を表し、ndは2を表す。LはMに配位したモノアニオン性の二座配位子であり、Mは原子番号40以上且つ元素周期表における8〜10族の遷移金属原子を表し、mは1〜3の整数を表し、nは少0〜2の整数を表し、m+nは2または3である。〕
【請求項3】
前記一般式(2)中、R及びRが共にアルキル基であることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。
【請求項4】
前記一般式(2)中、R及びRが共に炭素原子数2以上のアルキル基であることを特徴とする請求項2または3に記載の有機エレクトロルミネッセンス素子。
【請求項5】
前記一般式(2)中、環Bがベンゼン環であることを特徴とする請求項2〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項6】
一般式(2)が一般式(2−1)で表されることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。
【化3】

〔一般式(2−1)において、R、R、Ra、Rb、Rc、Rdは前記一般式(2)もおいて定義された基であり、M、L、またna、nb、nc、nd、nおよびmについても一般式(2)と同義である。〕
【請求項7】
前記一般式(2−1)中、naが1もしくは2であることを特徴とする請求項6に記載の有機エレクトロルミネッセンス素子。
【請求項8】
前記一般式(2−1)中、naが1であることを特徴とする請求項6または7に記載の有機エレクトロルミネッセンス素子。
【請求項9】
前記一般式(2−1)中、Raが5員複素芳香環基であることを特徴とする請求項6〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項10】
前記一般式(2−1)中、Raが、酸素原子もしくは硫黄原子のいずれか少なくとも一つ含む、環Aと炭素原子で結合する5員複素芳香環基であることを特徴とする請求項6〜9のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項11】
前記5員複素芳香環基が、チオフェン環、フラン環からなることを特徴とする請求項10に記載の有機エレクトロルミネッセンス素子。
【請求項12】
前記一般式(2−1)中、MがIrであることを特徴とする請求項6〜11のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項13】
白色に発光することを特徴とする請求項1〜12のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項14】
請求項1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
【請求項15】
請求項1〜13のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−38299(P2013−38299A)
【公開日】平成25年2月21日(2013.2.21)
【国際特許分類】
【出願番号】特願2011−174634(P2011−174634)
【出願日】平成23年8月10日(2011.8.10)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】